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Convex Restriction of Power Flow Feasibility Set
Dongchan Lee, Hung D. Nguyen, Krishnamurthy Dvijotham, and Konstantin Turitsyn

Abstract—Convex restriction of the power flow feasible set
identifies the convex subset of power injections where the solution
of power flow is guaranteed to exist and satisfy the operational
constraints. In contrast to convex relaxation, convex restriction
provides a sufficient condition and is particularly useful for
problems involving uncertainty in power generation and demand.
In this paper, we present a general framework of constructing
convex restriction of an algebraic set defined by equality and
inequality constraints, and apply the framework to power flow
feasibility problem. The procedure results in a explicitly defined
second order cone that provides a nearly tight approximation
of the actual feasibility set for some of the IEEE test cases.
In comparison to other approaches to the same problem, our
framework is not relying on any simplifying assumptions about
the nonlinearity and provide an analytical algebraic condition.

Index Terms—Convex restriction, power flow feasibility, emer-
gency control, security assessment

I. INTRODUCTION

Power flow equation is one of the fundamental condition
required in the steady-state analysis of the power grid. Power
injections to the grid continuously vary with generation dis-
patch and demand, and the system operator has to assign the
steady-state set point appropriately to ensure stability of the
grid. Existence of steady-state equilibrium that respects the
operational constraints such as voltage magnitude limits and
reactive power limits is a necessary condition to ensure secure
operation of the grid in a designed way [1], [2]. However,
deriving a tractable sufficient condition for feasibility of power
flow equation has remained as a challenge.

Power flow equation is a nonlinear equality constraint,
which makes the feasible set generally non-convex and NP-
hard [3], even for a radial network [4]–[6]. Convex relaxation
of power flow equation has been studied extensively for
solving Optimal Power Flow (OPF) [5]–[8]. Convex relaxation
provides a necessary condition to satisfy the power flow equa-
tion and forms a set that contains the power flow feasible set.
While the relaxation has the ability to check whether a solution
is globally optimal in OPF problems, it does not guarantee
the feasibility of the solution. There is a need for understand
and characterize feasibility constraint and enforce them into
OPF, especially with growing uncertain power injection from
renewables [9], [10].

The search for tractable sufficient conditions for power flow
solvability and feasibility started in [11] to find security region
where the system is safe to operate. In recent years, number of
progress has been made in this area, but its performance and
generalization have been still lacking. Most of the work rely on
certain modeling assumption such as radial structure [12]–[16],
lossless network [17], [18], and decoupled power flow model
[19]. Recent effort has been made to find a sufficient condition
in a general network, but they still suffer from scalability and

Fig. 1. Convex restriction and convex relaxation of feasible set over the
controllable variable space.

conservativeness. [20]–[22] In [23], the inner approximation
with Brouwers fixed point theorem showed promising results
in a general power network. One of the limitations of this
approach was that it required solving non-convex optimization
problem to find a locally maximal set that satisfies the self-
mapping condition. In this paper, this limitation is alleviated
by describing the set in a lifted space and give a closed form
expression. Moreover, our approach in the lifted space is the
union of all the self-mapping set that satisfies the Brouwer’s
fied point theorem. This allows drastic improvements against
the conservativeness of the condition.

The term convex restriction will be used to describe a
convex set that is a sufficient condition for power flow feasi-
bility. This paper proposes construction of convex restriction
in a lifted space where the restriction become possible with
envelopes over the nonlinearity. Convex restriction has features
that are complementary to convex relaxation. Later, we will
show that a concave envelope, which is also complementary
to convex envelope, is needed for convex restriction. This
envelope is counter-intuitive from the perspective of convex
relaxation, but we will see that it enforces convexity to restric-
tion. We frame our derivation of convex restriction for general
equality and inequality constraints with variables divided into
controllable and uncontrollable variables. Active and reactive
power injections are considered as the controllable variables,
and voltage magnitude and phase angles are considered un-
controllable variables. Convex restriction is derived for the
controllable variables so that a convex optimization can be
carried out while guaranteeing the feasibility of the solution.
Our convex restriction is constructed around a base point, and
we show that it is non-empty given a feasible base point. The
current or planned operating point can be naturally used as the
base point, and convex restriction can rigorously determine the
robustness and margin to infeasibility from the base point.

Rest of the paper is organized as follows. In Section II,
feasibility problem is formulated for power flow equation.
Convex restriction for a general constraint is discussed in
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Section III. The proposed method is applied to the power
flow equation with visualization IV. Section V concludes with
discussions.

II. CONVEX RESTRICTION OF FEASIBILITY SET:
FORMULATION AND PRELIMINARIES

A. Power Flow Equation and Operational Constraints

Consider a power network as a directed graph N(V+, E)
where each node V+ = {0} ∪ V represents bus with V =
{1, ..., |V|}, and {0} being the slack bus. The slack bus has
fixed voltage magnitude and phase angle. E ⊆ V+ × V+

represents a transmission lines. The set of PV buses are
denoted by G ⊆ V , and the set of PQ buses are denoted
L ⊆ V , and V = G ∪ L. Consider AC power flow equation
with operational constraints:

pi =

n∑
k=1

vivk(Gik cos θik +Bik sin θik), i ∈ V,

qi =

n∑
k=1

vivk(Gik sin θik −Bik cos θik), i ∈ V,
(1)

pmini ≤pi ≤ pmaxi , i ∈ G (2a)

qmini ≤qi ≤ qmaxi , i ∈ G (2b)

vmini ≤vi ≤ vmaxi , i ∈ L (2c)

ϑmine ≤θik ≤ ϑmaxe , e = (i, k) ∈ E . (2d)

A line connecting bus k and l are indexed by either e or
(i, k). The phase difference is denoted by θik = θi − θk.
The phase difference bound may be introduced as a stability
constraint, but it could be also removed by setting ϑmine = −π
and ϑmaxe = π. The variables involved in the power flow
equations are voltage magnitude, phase angle, active and
reactive power at every bus. In most analysis, the interest of
the system operator is making decision over the controllable
variables, which will be denoted by u. Controllable variables
can include active power generation and voltage magnitude
setting at generator buses, or active and reactive power at load
buses controlled by load-shedding actions. The uncontrollable
variables x include voltage phase angle or voltage magnitude
at PQ buses, which are the internal state of the system.
The system operators need to decide the set point on the
controllable variable subject to the power flow feasibility set in
equation (1) and (2) based on their objective. Our objective is
to find the maximal convex restriction around some base point,
which is a convex set that is contained in the feasibility set.
A general framework for constructing convex restriction will
be presented, and then an example in power flow feasibility
will be shown.

B. General Formulation

Consider the following general nonlinear equality and in-
equality constraint with control variable u ∈ Rm and uncon-
trollable variable x ∈ Rn,

Fi(x, u) = 0, i = 1, ..., n (3a)
hi(x, u) ≤ 0, i = 1, ..., r. (3b)

where Fi(x, u) : (Rn,Rm)→ R and hi(x, u) : (Rn,Rm)→ R
are smooth functions.

In this paper, the feasibility of active power injection at PV
buses and active and reactive power at PQ buses is considered.
The controllable space considered is u =

[
pTV qTL

]T
with

internal state x =
[
vTV θTV qTG

]T
.

The feasibility set will be denoted as N = F ∩H, which is
an intersection of the equality constrained set F = {(x, u) |
Fi(x, u) = 0, i = 1, ..., n} and inequality constrained set
H = {(x, u) | hi(x, u) ≤ 0, i = 1, ..., r}.The projection
of set N to controllable space u is defined as Nu = {u |
∃x such that (x, u) ∈ N}. Similarly, Hu and Fu is defined
as projection of equality and inequality constrained set to the
controllable variable space. The goal of this paper is to find
the convex restriction of the projection of feasibility set to the
controllable variable space, Nu. If u ∈ Fu, then u is solvable,
and Fu is referred as solvability set. Similarly, if u ∈ Nu,
then u is feasible, and Nu referred as feasibility set.

C. Convex Restriction of Inequality Constraint

First, let us consider the convex restriction of inequality con-
straints. This case is much simpler than the convex restriction
with nonlinear equality constraint. Suppose a vector of func-
tions h(x, u) and h(x, u) establishing bounds on individual
components as in

hk(x, u) ≤ hk(x, u) ≤ hk(x, u). (4)

hk(x, u) and hk(x, u) are referred as under-estimator and over-
estimator of hk(x, u), respectively. Let us consider and com-
pare convex restriction and convex relaxation in this inequality
constraint, H = {(x, u) | hk(x, u) ≤ 0, k = 1, ..., r}.

Lemma 1. Consider under and over-estimators hk(x, u) and
hk(x, u) that satisfy Equation (4). If both estimators are
convex, then

H = {(x, u) | hk(x, u) ≤ 0, k = 1, ..., r} (5)

is a convex relaxation, and

Ĥ = {(x, u) | hk(x, u) ≤ 0, k = 1, ..., r} (6)

is a convex restriction of H.

Proof. hk(x, u) ≤ 0 is a necessary, and hk(x, u) ≤ 0 is a
sufficient condition for hk(x, u) ≤ 0, so Ĥ ⊆ H ⊆ H.
Moreover, Ĥ andH are convex sets because the over-estimator
and under-estimators are convex functions.

Throughout the paper, convex restriction of H will be
denoted by Ĥ. In literatures in convex relaxation, a “concave”
envelope refers to a concave under-estimator, and a “convex”
envelope refers to a convex over-estimator [24]. In this paper,
we redefine these terms so that an envelope is a convex
envelope if the enclosed region is a convex set, and concave
envelope if the complement of the enclosed region is a convex
set. With this definition, convex over-estimator and concave
under-estimator are concave envelopes, and concave over-
estimator and convex under-estimator are convex envelope as
illustrated in Figure 2. The intersection of convex envelope
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forms a convex region and is widely used for relaxation [8].
The concave envelope is found to be useful in enforcing
convexity to the restriction of feasibility set.

Fig. 2. Example of convex and concave envelope.

III. DERIVATION OF CONVEX RESTRICTION

Suppose the equality constraint can be decomposed into a
linear combination of basis functions:

F (x, u) = Mψ(x, u) (7)

where M ∈ Rn×r is a sparse constant matrix and ψ(x, u) ∈ Rr

is a vector of basis functions. In power flow equation in
(1), vivk cos(θik) and vivk sin(θik) could be chosen as basis
functions as an example. Basis functions involved in F (x, u)
may not be unique, and its choice can be exploited. Choosing
appropriate basis functions is crucial in this approach as it
determines both approximation gap and complexity of the con-
straints. For power flow equations, nonlinearities are involved
with transmission lines and buses, and the number of basis
function r grows linearly with respect to number of buses and
number of lines. Suppose a convex restriction is constructed
around some base point (xbase, ubase) that has a non-singular
Jacobian JbaseF = ∂F

∂x

∣∣
xbase,ubase . Let us consider and define

residue of basis function at the base point:

f(x, u) = ψ(x, u)− Jψ(x− xbase)− ψ(xbase, ubase). (8)

where Jbaseψ = ∂ψ
∂x

∣∣
xbase,ubase . Note that f(xbase, ubase) = 0

and ∂f
∂x

∣∣
xbase,ubase = 0. Based on this definition, an equality

constraint can be written as

F (x, u) = JFx+Mf(x, u) (9)

where JbaseF = MJbaseψ is a non-singular square Jacobian
at the base point, and Mf(x) is a residue of F (x, u) after
linearization. the equality constraint can be written in the
following fixed point iteration:

x = −J−1
F Mf(x, u). (10)

This fixed point from is the same form used in Newton-
Raphson method, which is one of the most popular algorithms
for solving steady state power flow equation [25]. This is
widely used in practice due to its fast convergence given a
good initial guess. For our framework, this fixed point form
allows tight bound on the nonlinearity over a range of x, which
plays an important role for constructing tight convex restriction
to the actual feasible region.

Fig. 3. The self-mapping is illustrated in this figure in the domain of X .
Here, H(u) = {x | (x, u) ∈ H}, and existence of the self-mapping set P(b)
ensures solvability and feasibility of u.

Remark. The fixed point condition in Equation (10) is an
equivalent condition to the equality condition in (3a), so F =
{(x, u) | x = −J−1

x Mf(x, u)}.

Since the fixed point form is not unique, rest of the paper
will be developed in a general fixed point form:

x = Df(x, u) (11)

where D ∈ Rm×r is a constant matrix and f(x, u) :
(Rn,Rm) → Rr is a smooth multi-dimensional map. The
fixed-point form in (10) is a special case where the constant
matrix is D = −J−1

x M . Given a fixed point equation,
Brouwer’s fixed point theorem provides a condition for solv-
ability of the equality constraint.

Theorem 1. (Brouwer’s fixed point theorem) Let G : P →
P be a continuous map where P is a compact and convex set
in Rm. Then the map has a fixed point in P , namely x = G(x)
has a solution in x ∈ P .

Brouwer’s Fixed Point Theorem provides a sufficient con-
dition for existence of solution. This Theorem can be directly
applied to the fixed point map in equation (11).

Lemma 2. If Df(x, u) ∈ P for all x ∈ P , then the system
is solvable and has at least one solution in x ∈ P for the
controllable variable u.

Proof. Let G(x) = Df(x, u). Then, there exist a solution
x ∈ P from Brouwer’s fixed point theorem.

The self-mapping condition is illustrated in Figure 3.
Lemma 2 provides a sufficient condition for existence of
solution in the controllable space U . The objective of convex
restriction is to describe Nu such that the existence of the
solution is guaranteed inside the inequality constraint. If the
set P satisfy the self-mapping condition, then the equality con-
dition is solvable. Moreover, if (u, x) ⊆ H for all x ∈ P , then
the feasibility of solution can be also guaranteed. Brouwer’s
fixed point theorem states the solution belongs to P , which
belongs to the feasibility set. Later the outer approximation of
the set Df(P, u) will be used to form a tractable self-mapping
condition.

Notice that the self-mapping set is not unique, and the union
of all possible sets that satisfy the self-mapping condition can
describe the feasibility set. This brings the idea of describing
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the feasibility set into the lifted space where additional param-
eter describes the self-mapping set. Suppose P(b) ⊆ X is a
self-mapping set that is parametrized by b. Then, existence of
b such that Df(P(b), u) ⊆ P(b) also satisfies the Brouwer’s
fixed point condition.

Lemma 3. The union of convex and compact self-mapping
set parametrized by b ∈ Rs can be written in a lifted domain,
(u, b) ∈ (Rs,Rm), as

W = {(u, b) | ∀x ∈ P(b), Df(x, u) ∈ P(b), (x, u) ∈ H}.
(12)

Then,Wu = {u | ∃ b, (u, b) ∈ W} is restriction of the feasible
region, i.e. Wu ⊆ Nu.

Proof. Condition {∀x ∈ P(b), Df(x, u) ∈ P(b)} ensure the
self-mapping under the map x → Df(x, u), and thus there
exists a solution u for the equality constraint in equation (3a)
with x ∈ P(b) by Brower’s fixed point Theorem. Condition
{∀x ∈ P(b), (x, u) ∈ H} ensures P(b) belongs to the feasible
set for inequality constraint in equation (3b). u ∈ Wu satisfies
both constraint in (3), and thus belongs to the feasibility set.

The set in equation (12) lifts the domain to interval space
characterized by b. It was shown in Lemma 1 that convex
restriction is simple for inequality constraints, but it is not
obvious for nonlinear equality constraints. In this paper, it will
be shown that the lifting of variable space to interval space
allows convex restriction of nonlinear equality constraints in
a similar way to convex restriction of inequality constraints.

A. Self-mapping with a Polytope Set

While the self-mapping set can be any convex and compact
set, a polytope will be considered in this paper. There is a
significant computational advantage of using polytope because
nonlinear functions only goes through a linear transformation.
Let us consider a non-empty compact polytope set P ,

Ax ≤ b, (13)

where A ∈ Rc×n and b ∈ Rc are constant matrix and vector
that sets the operational constraint over the internal state space.
This map will be denoted as P(b) = {x | Ax ≤ b}. One of
the advantages of using constant A is that the variables are
involved as a linear combination. Convexity is preserved if
all the entries of A is positive, and it will be used to enforce
convexity in our approach [26].

Lemma 4. There exists a solution x ∈ P(b) = {x | Ax ≤ b}
that satisfies the equality constraint in equation (3a) for u if

max
x∈P(b)

ADf(x, u) ≤ b. (14)

Proof. The above condition is equivalent to ∀{x | Ax ≤
b}, ADf(x, u) ≤ b, which is shows self-mapping of P(b).
Then from Lemma 2, there exists a solution x ∈ P(b).

The nonlinearity is still contained in f(x, u), so using the
polytope as the self-mapping set does not introduce extra
complexity.

Fig. 4. Variable gk(b) and g
k
(b) are illustrated on this figure. In the case of

scalar x, the self-mapping set Pk(b) forms a range. gk(b) and g
k
(b) defines

maximum and minimum bound of fk over this range of x, and their convexity
is enforced by putting concave envelope over fk .

B. Enclosure of Concave Envelope

Consider over and under estimators of f(x, u), denoted
by f(x, u) and f(x, u) establishing bounds on individual
components:

f
k
(x, u) ≤ fk(x, u) ≤ fk(x, u). (15)

For a system with both equality and inequality constraint,
the envelope needs to be valid only over the feasible set
for the inequality constraint, x ∈ Hx. This may be ex-
ploited to develop tighter envelope. The idea of concave
envelope of the nonlinear function extends naturally to the
equality constraints in our framework. Consider an equality
constraint Fj(x, u) = 0. Convex relaxation replaces the
equality constraint with concave over-estimator and convex
under-estimator. This is a necessary condition for the equality
constraint since F j(x, u) ≥ 0 and F j(x, u) ≤ 0 needs to
be satisfied in order to satisfy the equality constraint. The
same trick does not work in convex restriction because the
slack cannot be afforded for deriving a sufficient condition.
However, note that constructing the envelope in an opposite
way made the restriction convex for inequality condition
as stated on Lemma 1. Similarly, let us consider concave
envelope, an over-estimator, fk(x, u), and under estimator,
f
k
(x, u), that are constructed in a way that they are convex

and concave in (x, u) respectively. This envelope again is
illustrated on Figure 4.

Existence of such bound allows us to establish the following
enclosures of the original nonlinear functions over the self-
mapping set:

gk(u, b) = max
x∈P(b)

fk(x, u), (16a)

g
k
(u, b) = min

x∈P(b)
f
k
(x, u), (16b)

Note that these definitions results in non-convex optimizations,
however for sparse nonlinearities fk(x, u), they can be carried
out easily as the number of vertices of the polytope Pk(b) is
small.
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Lemma 5. Functions g
k
(u, b) and gk(u, b) are respectively

concave and convex in (u, b) and are given by

gk(u, b) = max
v∈∂Pk(b)

fk(v, u), (17a)

g
k
(u, b) = min

v∈∂Pk(b)
f
k
(v, u) (17b)

where fk(v, u) and f
k
(v, u) are convex and concave func-

tions, respectively, and ∂Pk(b) denotes the vertices of polytope
Pk(b).

Proof. We restrict our proof only to the first inequality for
gk(u, b). Any point inside the polytope Pk(b) can be repre-
sented as x =

∑
n λnvn(b) where vn(b) ∈ ∂Pk(b) is the n-th

vertex of the polytope Pk(b), while λn ≥ 0 and
∑
n λn = 1.

Therefore, due to convexity, f(x, u) ≥
∑
n λnf(vn(b), u) and

thus g(u, b) = maxn f(vn(b), u). To prove convexity with
respect to b, note that every vertex is an intersection of some
subset of all the polytope faces characterized by a projection
operator Pk and thus solves the equation PnAvn(b) = Pnb,
so vn is linear in b, which proves convexity of g(u, b).

The following bound is established where the bound on
fk(x, u) is established based on the domain of the self-
mapping set:

g
k
(b, u) ≤ fk(x, u) ≤ gk(b, u), ∀x ∈ P(b). (18)

This forms a compact region that contains the nonlinearity in
the given domain, P , which is illustrated in Figure 4. The
bound illustrated here are also studied in interval analysis to
provide enclosures of the function [27].

C. Enforcing Convexity in Restriction Set

Based on the concave envelope proposed in the previous
section, convexity can be enforced for the restriction of feasi-
bility set. First, positive and negative parts of matrix A ∈ Rc×r

are defined as [A]± ∈ Rc×r with

[A]+ij =

{
Aij if Aij > 0

0 otherwise
[A]−ij =

{
Aij if Aij < 0

0 otherwise
(19)

where [A]+ij refer to ith row and jth column of matrix [A]+.
So A = [A]+ + [A]− and ±[A]±ij ≥ 0.

Lemma 6. For matrix AD ∈ Rc×r, there exists a nonlinear
map w(u, b) : (Rs,Rm) → Rc with every entry wi(u, b) is a
convex function with respect to (b, u) and

max
x∈P(b)

ADf(x, u) ≤ w(u, b). (20)

This function is given by

w(u, b) = [AD]+g(u, b) + [AD]−g(u, b), (21)

where [AD]± ∈ Rc×r refer to positive and negative parts of
the matrix defined in equation 19.

Proof. The functions g(u, b) and g(u, b) establish bounds on
f(x, u). For all x in P(b), ADf(x, u) ≤ [AD]+g(u, b) +
[AD]−g(u, b). Since g(x, u) and −g(x, u) are convex func-
tions from Lemma 5 and [AD]+ and −[AD]− have non-
negative entries, convexity is preserved to w(u, b).

Construction of these convex maps allows us to establish
convex solvability regions of the original equation (3). Let us
first consider the solvability set of equation (3a).

Theorem 2. Suppose ŴFu =
{
u | ∃ b, (u, b) ∈ ŴF

}
and

ŴF =
{

(u, b) |
[
AD

]+
g(u, b) +

[
AD

]−
g(u, b) ≤ b

}
.

(22)
If u ∈ ŴFu , then there exists a solution x? ∈ Fx to equation
(3a). ŴFu is a convex restriction of solvability set Fx.

Proof.
[
AD

]+
g(u, b)+

[
AD

]−
g(u, b) ≤ b is an upper bound

of maxx∈P(b)ADf(x, u) from Lemma 6. Thus the condition
in 22 is a sufficient condition for maxx∈P(b)ADf(x, u) ≤ b,
which ensures solvability according to Lemma 4.

Let us define convex bound on h(x, u) given given a convex
over-estimator h(x, u) using Lemma 5:

νk(u, b) = max
v∈∂Pk(b)

hk(v, u). (23)

νk(u, b) ≤ 0 is a sufficient condition for hk(x, u) ≤ 0 for all
x ∈ Pk(b). This ensures the self-mapping set is contained in
the feasible set for inequality constraint, ∀x ∈ Pk(b), (x, u) ∈
H. Based on this condition, the convex restriction of feasibility
set can be established.

Theorem 3. Suppose Ŵu =
{
u | ∃ b, (u, b) ∈ Ŵ

}
and

Ŵ =
{

(u, b) |
[
AD

]+
g(u, b) +

[
AD

]−
g(u, b) ≤ b

νk(u, b) ≤ 0, k = 1, ..., r
}
.

(24)

If u ∈ Ŵu, then there exists a solution x? that satisfies
equation (3). Ŵu is a convex restriction of feasibility set Nx.

Proof. Constraint
[
AD

]+
g(u, b)+

[
AD

]−
g(u, b) ≤ b ensures

the existence of solution according to Theorem 2. νk(u, b) ≤
0, k = 1, ..., r ensure that the polytope P(b) lies within the
feasible region of inequality constraint, i.e. (u, x) ⊆ H, ∀x ∈
P(b). Therefore, this is a sufficient constraint for solvability
of equation (3a) and feasibility of equation (3b).

Remark. Suppose we are given a base point
(xbase, ubase) ∈ N . If f i(x

base, ubase) = f
i
(xbase, ubase),

and hi(x
base, ubase) = h(xbase, ubase) ≤ 0 (i.e. concave

envelopes are tight and feasible at the base point), then the
convex restriction in Equation 24 is non-empty and contains
the base point.

Proof. Since P(b) = {x | Ax ≤ b} is closed, there exists b
such that P(b) = {xbase}. Since the concave envelopes are
tight at the base point, gi(u

base, bbase) = g
i
(ubase, bbase) = 0

and νi(ubase, bbase) = h(xbase, ubase). Given the base point is
feasible, the condition in Theorem 3 is always satisfied at the
base point, and thus the convex restriction contains the base
point and is non-empty.

From the above remark, a non-empty convex restriction can
be always constructed around a feasible base point. The current
or planned operating point can be naturally used as the base
point for power flow feasibility set. The change of base point



6

can be also explored to construct convex restriction around the
desired region.

IV. CONVEX RESTRICTION OF POWER FLOW FEASIBILITY
SET

In this section, convex restriction is constructed for AC
power flow equation in polar coordinate. The fixed point
form of the power flow equation is not unique, but the polar
representation of power flow equation is chosen. The polar
representation includes the voltage magnitude explicitly in
the equation so it is easier to ensure feasibility of voltage
magnitude limits. AC power flow equation in equation (1) can
be written in complex plane as follows:

pi + jqi =
∑
k

Y Hik vivke
−jθik , i ∈ V, (25)

where Yik = Gik + jBik, and Y Hik is a conjugate of Yik.
Suppose the feasible base point if provided by θbase and vbase.
Let ∆θ = θ− θbase and ∆v = v− vbase. Let the deviation of
phase difference be θik = θbaseik + ∆θik, then

pi + jqi =
∑
k

(
Y Hik e

−jθbase
ik

)
vivke

−j∆θik , i ∈ V, (26)

where the base point phase is combined with the admittance
matrix. This can be expressed with trigonometric functions for
i ∈ V ,

pi =
∑
k∈V\i

vivk(G̃ik cos ∆ϑe + B̃ik sin ∆ϑe) + G̃iiv
2
i

qi =
∑
k∈V\i

vivk(G̃ik sin ∆ϑe − B̃ik cos ∆ϑe)− B̃iiv2
i ,

(27)

where G̃ik+jB̃ik = Y Hik e
−jθbase

ik and ∆ϑe = ∆θi−∆θk, e =
(i, k). The advantage of using equation (27) over (1) is that
the concave envelope over trigonometric function is tighter
and easier to derive when the base point is at the zero of the
trigonometric functions. From the power flow equation, basis
functions can be recognized by identifying sparse nonlineari-
ties,

ψ(x, u) =


pV
qL

vfrvto cos ∆ϑ
vfrvto sin ∆ϑ

v2
L
v2
G

 . (28)

where vfr and vto are voltages at the from and to end of
transmission line respectively. The equality condition over
active power balance at every bus and reactive power balance
at PQ buses will be enforced. Let the uncontrollable variables
be the deviation of voltage magnitude and phase deviation,
x =

[
∆θTV ∆vTL

]
. The phase at the slack bus is fixed to

zero and the voltage magnitude at PV buses are also fixed.
The reactive power balance at PV buses will be placed as
the inequality condition to represent reactive power limit.
With the basis function in (28), the equality constraint is
F (x, u) = Mψ(x, u) = 0 where

M =

[
I|V| 0 −G̃E+

V −B̃E−V −G̃dL −G̃dG
0 I|L| B̃E+

L −G̃E−L B̃dL B̃dG

]
(29)

where I|V| ∈ R|V|×|V| is an identity matrix and 0 is a matrix
with zero entries of appropriate size. Moreover,

G̃E+
le =


G̃ik if l = i

G̃ik if l = k

0 otherwise
G̃E−le =


G̃ik if l = i

−G̃ik if l = k

0 otherwise
(30)

for l ∈ V and e = (i, k) ∈ E . B̃E± are defined in the same way
by replacing G̃ik with B̃ik. G̃d and B̃d are diagonal matrices
with its diagonal elements equal to diagonals of G̃ and B̃,
respectively. G̃E+

V denotes selecting only rows i ∈ V from
G̃E+. Residues of basis functions are computed using equation
(8),

f(x, u) =



pV − pbaseV
qL − pbaseV

vfrvto(cos ∆ϑ− 1)− vbasefr ∆vto −∆vfrv
base
to

vfrvto sin ∆ϑ− vbasefr vbaseto ∆ϑ

v2
L − 2vbaseL ∆vL −

(
vbaseL

)2
0|G|

 ,
(31)

where a product notation is overloaded to element-wise prod-
uct. For example, vfrvto cos ∆ϑ is element-wise product of
vfr, vto, and cos ∆ϑ. The operational constraint on the voltage
magnitude and phase can be written as Ax ≤ bmax where

A =


ETV 0
0 I|L|
−ETV 0

0 −I|L|

 and bmax =


∆ϑmaxV
∆vmaxL
−∆ϑminV
−∆vminL

 (32)

where ∆ϑmin/max = ϑmin/max − ϑbase and ∆vmin/max =
vmin/max − vbase. EV is the incidence matrix with columns
chosen for only non-slack buses. The reactive power limit
constraint on PV buses can be written as Cf(x, u) ≤ d where

C =

[
0 0 −B̃E+

G G̃E−G −B̃dL −B̃dG
0 0 B̃E+

G −G̃E−G B̃dL B̃dG

]
(33)

and d =
[
(∆qmaxG )T −(∆qminG )T

]T
. Operational constraint

over the active power at every bus and reactive power at load
buses will not be considered. These constraints only add upper
and lower bound over u, which does not add any interesting
features. The inequality constrained set is then H = {(x, u) |
Ax ≤ bmax, Cf(x, u) ≤ d}. The matrix A will be also used
for the self-mapping set, P = {x | Ax ≤ b}. Therefore,
P ⊆ H if b ≤ bmax and [C]+g(u, b) + [C]−g(u, b) ≤ d. The
trigonometric terms and its product with voltage magnitudes
are bounded effectively with the phase angle differences and
voltage magnitudes, and tight concave envelopes can be de-
rived with such self-mapping set. Quadratic concave envelopes
will be derived for bilinear and trigonometric functions, and
the convex restriction will be constructed as a second order
cone.

A. Quadratic concave envelope
The main nonlinearities involved in the power flow equation

in polar coordinates are the bilinear, trilinear and trigonomet-
ric functions. The concave envelopes of these functions are
developed as building blocks.
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Corollary 1. Bilinear function can be bounded by the follow-
ing concave envelopes with ρ1, ρ2 > 0 and x = xbase + ∆x
and y = ybase + ∆y. :

xy ≥ −1

4
(ρ1∆x− 1

ρ1
∆y)2 + xbase∆y + ∆xybase + xbaseybase

xy ≤ 1

4
(ρ2∆x+

1

ρ2
∆y)2 + xbase∆y + ∆xybase + xbaseybase.

(34)
The over-estimator is tight along ρ2∆x− 1

ρ2
∆y = 0, and the

under-estimator is tight along ρ2∆x + 1
ρ2

∆y = 0. Both over
and under-estimators are tight at the base point.

A scalar quadratic function can be bounded using the
bilinear envelope as well. Choose ρ1 = ρ2 = 1, then x2 ≥ 0
is a concave under estimator and x2 itself is a convex over
estimator of x2.

Corollary 2. Trigonometric functions can be bounded by the
following quadratic concave envelopes:

sin θ ≥ θ +

(
sin θmax − θmax

(θmax)2

)
θ2, θ < θmax

sin θ ≤ θ +

(
sin θmin − θmin

(θmin)2

)
θ2, θ > θmin

(35)

where θmax ∈ [0, π] and θmin ∈ [−π, 0], and

cos θ ≥ 1− 1

2
θ2

cos θ ≤ 1
(36)

for all θ.

Fig. 5. Illustration of concave envelopes in Corollary 1 and 2. In (c), θmax

and θmin is drawn with yellow dashed line.

Envelopes for bilinear and trigonometric functions are il-
lustrated in Figure 5. Given the concave envelopes, the bound
over intervals can be defined and given in the Appendix.

These are special cases of Lemma 5 for the given function.
Trilinear functions are bounded by cascading bilinear concave
envelope. Essentially, vfrvto∆ cosϑ was bounded by defining
intermediate variable vv = vfrvto, and the bilinear envelope
was applied to vv and vv∆ cosϑ. It is important to note that
the vertices still need to be aligned in the overall function,
not only within the intermediate function. In the following
Lemma, we finally state the analytical expression in the form
of second order cone for the convex restriction of power flow
feasibility set.

Corollary 3. (Convex Restriction of Power Flow Feasi-
bility Set with Second Order Cone) The following sec-
ond order cone constraint provide a convex restriction of
power flow feasibility set described in equation (1) and
(2). This provides a sufficient condition for existence of
a feasible solution in controllable variable domain, u =[
(pV − pbaseV )T (qL − qbaseL )T

]T
.[

AD
]+
g +

[
AD

]−
g ≤ b

[C]+g + [C]−g ≤ d, b ≤ bmax

b =
[
−∆ϑT −∆vT ∆ϑ

T
∆vT

]T
g =

[
pTV qTL gT3 gT4 gT5 gT6

]T
∆ϑ ≤ ∆ϑ, ∆v ≤ ∆v

∀ e = (i, k) ∈ E
g3,e ≥ gvv cos

1,e − vbasei ∆vk −∆viv
base
k − vbaseik

g3,e ≥ gvv cos
2,e − vbasei ∆vk −∆viv

base
k − vbaseik

g
3,e
≤ gvv cos

1,e
− vbasei ∆vk −∆viv

base
k − vbaseik

g
3,e
≤ gvv cos

2,e
− vbasei ∆vk −∆viv

base
k − vbaseik

g4,e ≥ gvv sin
1,e − vbaseik ∆ϑ

g4,e ≥ gvv sin
2,e − vbaseik ∆ϑ

g
4,e
≤ gvv sin

1,e
− vbaseik ∆ϑ

g
4,e
≤ gvv sin

2,e
− vbaseik ∆ϑ

∀ k ∈ G, g
5,k
≥ 0, g

5,k
≤ 0

∀ k ∈ L, g6,k ≥ ∆v2
k, g6,k ≥ ∆v2

k, g
6,k
≤ 0

(37)

where vbaseik = vbasei vbasek . gvv cos
e /gvv cos

e
and gvv sin

e /gvv sin
e

denote the interval bound of vivk cosϑe and vivk sinϑe. These
bounds are provided in the Appendix.

Remark. The number of constraints grows linearly with
respect to the number of bus and number of lines. The number
of equality and inequality constraints involved in Corollary 3
is 11|V| + 38|E| + |L| where |V|, |E| and |L| are number of
buses, lines and PQ buses, respectively.

B. Visualization

Here, we provide visualization of the convex restriction in
2 dimensional space. The plots are drawn for a cross section
of the region crossing the base point along two chosen plot
variables. The actual feasible set was solved using Newton
Raphson over a mesh grid in the plot region. MATPOWER
package was used for solving Newton-Raphson and the same
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data set was used for convex restriction [28]. The second order
cone convex restriction was plotted by testing feasibility of the
constraint over the same mesh grid. The results are shown for
IEEE 9 bus, 39 bus and 118 bus system in Figure 6, 7, and
8. The convex restriction appears to be very tight along some
of the boundaries. The blue lines in the figure plots individual
voltage magnitude and reactive power limits. Individual blue
line indicates the boundary of violating a single operational
constraint.

Fig. 6. Convex restriction of feasible active power injection set in 9 bus
system with voltage limit of 1% deviation from the base operating point.

Fig. 7. Convex restriction of feasible active power injection set in 39 bus
system with voltage limit of 1% deviation from the base operating point.

V. CONCLUSION

This paper proposed a convex restriction of a general
feasibility set and presented its application to power flow
equation with operational constraints. These results suggest a
new understanding of power flow feasibility set as a counter-
part to the convex relaxation. The convex restriction of power
flow feasibility set was constructed in a closed-form expression
as a second order cone constraint. Reliability of the power

Fig. 8. Convex restriction of feasible active power injection set in 118 bus
system with voltage limit of 5% deviation from the base operating point.

grid is a top priority in the operation and analysis, and the
convex restriction gives a guarantee for existence of steady-
state solution that respects the operational constraint. Plots
of the region shows that our construction is very close to
the actual feasible region along some of the boundaries. For
future work, our closed-form expression can replace power
flow equations to design tractable algorithms in emergency
control and security assessment.

APPENDIX

The bound over the interval used in the convex restriction
of power flow feasibility set are listed here. The intervals are
given by ϑe ∈ [∆ϑe, ∆ϑe] and ve ∈ [∆ve, ∆ve]. These are
results directly from Lemma 5 with envelopes presented in
Corollary 1 and 2. ρ1 = ρ2 = 1 was used for bounding bilinear
function. These bounds are established for the following
indices: ∀ e = (i, k) ∈ E .

A. Cosine Bound over Interval
cos ∆ϑe − 1 over ∆ϑe ∈ [∆ϑe, ∆ϑe] is bounded by the

following inequalities:

g∆ cos
e ≥ 0 g∆ cos

e
≤ −∆ϑ

2

e

2
, g∆ cos

e
≤ −∆ϑ2

e

2
. (38)

B. Sine Bound over Interval
sin ∆ϑe over ∆ϑe ∈ [∆ϑe, ∆ϑe] is bounded by the

following inequalities:

g∆ sin
1,e ≥ ∆ϑe +

(
sinϑ

min

e − ϑmine

(ϑ
min

e )2

)
∆ϑ

2

e

g∆ sin
2,e ≥ ∆ϑe +

(
sinϑ

min

e − ϑmine

(ϑ
min

e )2

)
∆ϑ2

e

g∆ sin
1,e

≤ ∆ϑe +

(
sinϑmaxe − ϑmaxe

(ϑmaxe )2

)
∆ϑ

2

e

g∆ sin
2,e

≤ ∆ϑe +

(
sinϑmaxe − ϑmaxe

(ϑmaxe )2

)
∆ϑ2

e

∆ϑe ≤ ϑ
max
e , ∆ϑe ≥ ϑ

min

e .

(39)
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C. Bilinear Bound over Interval

∆vi∆vk − vbaseik over ∆vi ∈ [∆vi, ∆vi] is bounded by the
following inequalities:

g∆vv
1,e ≥

1

4
(∆vi + ∆vk)2 + vbasei ∆vk + ∆viv

base
k

g∆vv
2,e ≥

1

4
(∆vi + ∆vk)2 + vbasei ∆vk + ∆viv

base
k

g∆vv
1,e
≤ −1

4
(∆vi −∆vk)2 + vbasei ∆vk + ∆viv

base
k

g∆vv
2,e
≤ −1

4
(∆vi −∆vk)2 + vbasei ∆vk + ∆viv

base
k

g∆vv
e
≤ g∆vv

1,e
, g∆vv

e
≤ g∆vv

2,e

g∆vv
e ≥ g∆vv

1,e , g
∆vv
e ≥ g∆vv

2,e

(40)

where vbaseik = vbasei vbasek .

D. vivk cos θik Bound over Interval

∆vi∆vk cos θik − vbaseik over ∆vi ∈ [∆vi, ∆vi] and ∆vi ∈
[∆vi, ∆vi] is bounded by the following inequalities:

gvv cos
1,e ≥ g∆vv

1,e , g
vv cos
2,e ≥ g∆vv

2,e

gvv cos
1,e

≤ −1

4
(g∆vv
e,1
− g∆ cos

e
)2 + vbaseik g∆ cos

e
+ g∆vv

e,1
+ vbaseik

gvv cos
2,e

≤ −1

4
(g∆vv
e,2
− g∆ cos

e
)2 + vbaseik g∆ cos

e
+ g∆vv

e,2
+ vbaseik .

(41)

E. vivk sin θik Bound over Interval

∆vi∆vk sin θik over ∆vi ∈ [∆vi, ∆vi] and ∆vi ∈
[∆vi, ∆vi] is bounded by the following inequalities:

gvv sin
1,e ≥ 1

4
(g∆vv
e + g∆ sin

1,e )2 + vbaseik g∆ sin
1,e

gvv sin
2,e ≥ 1

4
(g∆vv
e + g∆ sin

2,e )2 + vbaseik g∆ sin
2,e

gvv sin
1,e

≤ −1

4
(g∆vv
e
− g∆ sin

1,e
)2 + vbaseik g∆ sin

1,e

gvv sin
2,e

≤ −1

4
(g∆vv
e
− g∆ sin

2,e
)2 + vbaseik g∆ sin

2,e
.

(42)

REFERENCES

[1] T. Van Cutsem and C. Vournas, Voltage stability of electric power
systems. Springer Science &amp; Business Media, 1998, vol. 441.

[2] P. Kundur, N. J. Balu, and M. G. Lauby, Power system stability and
control. McGraw-hill New York, 1994, vol. 7.

[3] B. C. Lesieutre and I. A. Hiskens, “Convexity of the set of feasible
injections and revenue adequacy in ftr markets,” IEEE Transactions on
Power Systems, vol. 20, no. 4, pp. 1790–1798, 2005.

[4] K. Lehmann, A. Grastien, and P. Van Hentenryck, “Ac-feasibility on
tree networks is np-hard,” IEEE Transactions on Power Systems, vol. 31,
no. 1, pp. 798–801, 2016.

[5] S. H. Low, “Convex relaxation of optimal power flow—part i: For-
mulations and equivalence,” IEEE Transactions on Control of Network
Systems, vol. 1, no. 1, pp. 15–27, 2014.

[6] ——, “Convex relaxation of optimal power flow—part ii: Exactness,”
IEEE Transactions on Control of Network Systems, vol. 1, no. 2, pp.
177–189, 2014.

[7] J. Lavaei and S. H. Low, “Zero duality gap in optimal power flow
problem,” IEEE Transactions on Power Systems, vol. 27, no. 1, pp.
92–107, 2012.

[8] C. Coffrin, H. L. Hijazi, and P. Van Hentenryck, “The qc relaxation:
A theoretical and computational study on optimal power flow,” IEEE
Transactions on Power Systems, vol. 31, no. 4, pp. 3008–3018, 2016.

[9] B. Cui and X. A. Sun, “A new voltage stability-constrained optimal
power flow model: Sufficient condition, socp representation, and relax-
ation,” arXiv preprint arXiv:1705.10372, 2017.

[10] D. K. Molzahn, “Computing the feasible spaces of optimal power flow
problems,” IEEE Transactions on Power Systems, vol. 32, no. 6, pp.
4752–4763, 2017.

[11] F. Wu and S. Kumagai, “Steady-state security regions of power systems,”
IEEE Transactions on Circuits and Systems, vol. 29, no. 11, pp. 703–
711, 1982.

[12] S. Bolognani and S. Zampieri, “On the existence and linear approxima-
tion of the power flow solution in power distribution networks,” IEEE
Transactions on Power Systems, vol. 31, no. 1, pp. 163–172, 2016.

[13] S. Yu, H. D. Nguyen, and K. S. Turitsyn, “Simple certificate of
solvability of power flow equations for distribution systems,” in Power
&amp; Energy Society General Meeting, 2015 IEEE. IEEE, 2015, pp.
1–5.

[14] C. Wang, A. Bernstein, J.-Y. Le Boudec, and M. Paolone, “Explicit con-
ditions on existence and uniqueness of load-flow solutions in distribution
networks,” IEEE Transactions on Smart Grid, 2016.

[15] ——, “Existence and uniqueness of load-flow solutions in three-phase
distribution networks,” IEEE Transactions on Power Systems, vol. 32,
no. 4, pp. 3319–3320, 2017.

[16] K. Dvijotham, E. Mallada, and J. W. Simpson-Porco, “High-voltage
solution in radial power networks: Existence, properties, and equivalent
algorithms,” IEEE control systems letters, vol. 1, no. 2, pp. 322–327,
2017.

[17] J. W. Simpson-Porco, “A theory of solvability for lossless power flow
equations–part i: Fixed-point power flow,” IEEE Transactions on Control
of Network Systems, 2017.

[18] ——, “A theory of solvability for lossless power flow equations–part
ii: Conditions for radial networks,” IEEE Transactions on Control of
Network Systems, 2017.

[19] J. W. Simpson-Porco, F. Dörfler, and F. Bullo, “Voltage collapse in
complex power grids,” Nature communications, vol. 7, p. 10790, 2016.

[20] K. Dvijotham and K. Turitsyn, “Construction of power flow feasibility
sets,” arXiv preprint arXiv:1506.07191, 2015.

[21] K. Dvijotham, H. Nguyen, and K. Turitsyn, “Solvability regions of
affinely parameterized quadratic equations,” IEEE Control Systems Let-
ters, vol. 2, no. 1, pp. 25–30, 2018.

[22] H.-D. Chiang and C.-Y. Jiang, “Feasible region of optimal power
flow: Characterization and applications,” IEEE Transactions on Power
Systems, vol. 33, no. 1, pp. 236–244, 2018.

[23] H. D. Nguyen, K. Dvijotham, and K. Turitsyn, “Inner approximations
of power flow feasibility sets,” arXiv preprint arXiv:1708.06845, 2017.

[24] M. Tawarmalani, J.-P. P. Richard, and C. Xiong, “Explicit convex
and concave envelopes through polyhedral subdivisions,” Mathematical
Programming, vol. 138, no. 1-2, pp. 531–577, 2013.

[25] D. Mehta, D. K. Molzahn, and K. Turitsyn, “Recent advances in
computational methods for the power flow equations,” in American
Control Conference (ACC), 2016. IEEE, 2016, pp. 1753–1765.

[26] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
university press, 2004.

[27] R. E. Moore, R. B. Kearfott, and M. J. Cloud, Introduction to interval
analysis. Siam, 2009, vol. 110.

[28] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, “Mat-
power: Steady-state operations, planning, and analysis tools for power
systems research and education,” IEEE Transactions on power systems,
vol. 26, no. 1, pp. 12–19, 2011.


	I Introduction
	II Convex Restriction of Feasibility Set: Formulation and Preliminaries
	II-A Power Flow Equation and Operational Constraints
	II-B General Formulation
	II-C Convex Restriction of Inequality Constraint

	III Derivation of Convex Restriction
	III-A Self-mapping with a Polytope Set
	III-B Enclosure of Concave Envelope
	III-C Enforcing Convexity in Restriction Set

	IV Convex Restriction of Power Flow Feasibility Set
	IV-A Quadratic concave envelope
	IV-B Visualization

	V Conclusion
	Appendix
	A Cosine Bound over Interval
	B Sine Bound over Interval
	C Bilinear Bound over Interval
	D vivkcosik Bound over Interval
	E vivksinik Bound over Interval

	References

