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Abstract—Power system transient stability assessment stud-
ies the ability of the system to maintain synchronism under
disturbances. The continuous effort on integrating renewable
energy sources to the grid has created the need for stability
assessment techniques that reflect the growing uncertainties.
Reachability analysis has been recently proposed to address the
issue with the uncertain initial operating condition by solving
the relaxed linear optimization problem. Unlike conventional
single-point simulation, reachability analysis performs a time
domain simulation of a set described by a polytope. The polytope
trajectory contains all possible simulation trajectories, and the
convergence of the polytope towards the equilibrium is a sufficient
condition for robust stability against the bounded uncertain
initial condition. In this paper, we present the result on a
second order swing equation model to explore the convergence
condition of reachability analysis. We examine the relaxation gap
introduced by the relaxation and relate the convergence to the
contraction analysis.

I. INTRODUCTION

Transient stability ensures that generators remain synchro-
nized after large disturbances, such as fault and generation
re-dispatch [1], [2]. Due to the nonlinear dynamics and the
scale of power systems, the transient stability still remain
a challenging task. Moreover, the power system operates in
a constantly changing environment where such variables are
generation, loads, topology and operating parameters [1]. The
recent integration of renewables adds more uncertainty in
the operating environment, and we need new approaches to
reliably address these issues.

The dominant approach in practice for transient stability
assessment is the time-domain simulation, which relies on the
known initial condition and system parameters [3]. The in-
troduction of uncertainty requires sampling-based approaches,
which requires a large amount of simulations [4]. From the
simulated points, the security assessment has to be inferred
to compute the secure region [5], [6]. The second most
popular approach is the direct energy method, which uses
the Lyapunov function to certify the stability [7], [8]. The
conventional methods find the unstable equilibrium point on
the conventional energy function. More recent approaches
use semidefinite programming to find the stable region [9],
[10]. However, the order of the generator model has to be
kept low in order to have a tractable Lyapunov function.
In addition, the energy function approach loses information

about the trajectories of the solution. There is a possibility
of violating security constraints along the trajectories [11],
[12], and computing the bounds on the trajectory with energy
function methods is difficult.

To take account of uncertainties in transient stability as-
sessment, we propose an idea of set simulation, where a
set of operating points are simulated rather than a single
point. A related work is the interval analysis, which has been
introduced to take account of numerical errors with interval
bounds [13], [14]. This type of bounding on the trajectories
were explored in the power systems application [15], however,
these methods were not applicable for concluding stability
due to the lack of contraction of the set. Alternatively, an
optimization-based reachability analysis using a polytope was
proposed in [16], [17] for polynomial systems. However, the
approach introduced in those papers is limited to a polynomial
systems, and the algorithms are not scalable with respect to the
state dimension of the system. In [18], the polytopic template
along the modes of the system was proposed to make the
analysis scalable for power systems application. Forming the
polytope around the modes of the system allows the number
of hyperplanes to be linear with respect to the system size.
The nonlinear dynamics are tackled with the direct outer-
approximation to relax the problem into linear programming,
which is most tractable optimization problem [19], [20].

While the convergence of the polytope towards the equi-
librium can guarantee the stability of a set, the gap between
the actual trajectories and the reachability analysis grows in
time due to the relaxation gap and imposing a fixed shape of
the polytope as a constraint. The contraction of the polytope
is necessary for the convergence of the trajectories, and we
show the relation of the reachability analysis to the contraction
analysis [21]. Contraction analysis is also useful for finding the
region of attractions in transient stability [22]. In this paper,
we will look at the convergence condition by looking at the
contraction rate of the polytope. The polytope will contract
as long as the contraction rate is larger than the relaxation
gap. We show that the relaxation gap is very small when the
input bound for the outer-approximation is small. Since the
input bound is essentially the diameter of the polytope in the
input variables, the polytope will contract in the presence of
the relaxation gap as long as the input bound is small enough.



While the reachability analysis can be applied to higher order
generator shown in [18], we present our study on a second
order swing equation to analytically state the relaxation gap.
We show the contraction of the polytope in 2 bus system and
39 bus system.

II. PROBLEM FORMULATION

A transmission line or generator contingency on power sys-
tems is a common cause of loss of synchronism. The existence
of the feasible solution is insufficient, and the dynamic stability
of the system should be studied as well in order to ensure the
security of the grid. In this paper, we consider the second order
swing equation with Kron reduction, which is widely used:

mk δ̈k + dk δ̇k +
∑
j∈Nk

akj sin(δk − δj) = Pmk (1)

where mk, dk and Pmk are the inertia, damping and mechan-
ical power injection at bus k, respectively. akj = BkjVkVj is
the constant as we assume that the voltage is strictly regulated
to 1 p.u. We note that our proposed method can be applied
to a generalized high order swing equation, which was shown
in [18]. We can rewrite the swing equation with the following
compact vector notation,

δ̇ = ω

ω̇ = M−1(−Dω − ETX−1 sin(Eδ) + Pinj).
(2)

where M , D and X are diagonal matrix with diagonal
entries being the inertia and damping of generators and line
impedance respectively. Pinj is a vector of power injection.
This is in a standard form for an ordinary differential equation,
ẋ = f(x), where the state of the system is x = [δT ωT ]T .
Our formulation will consider Explicit Euler method with time
step ∆t,

x(t+1) = x(t) + ∆tf(x(t)). (3)

The time stepping technique changes continuous ordinary
differential equations into a set of discrete algebraic equations,
and we will exploit this method to develop our algorithm.
These algebraic equations will become a constraint for the
optimization problem, and the Explicit Euler method allows
effective bounding of nonlinearity in dynamic equation, f(x).
While the conventional simulation based approach solves the
trajectories of an ordinary equation of a single point, we
propose an algorithm that can simulate a neighborhood of
states defined by a closed polytope denoted by

Ax(t) ≤ b(t), (4)

where A ∈ Rn×m and m is the number of hyperplanes in
the polytope. Given the polytope template A, we solve the
shifts of the hyperplane, b(t) at every time step. We take
advantage of the polytope that each hyperplane is linear and
can be computed separately. This yields the computation to be
decomposed into simpler problems with linear objectives.

Given the current states confined in a polytope, the polytope
at the next time step will contain every possible state that
the current state is projected in time with a fixed time step.

We want to find Ax(t+1) ≤ b(t+1) so that it contains every
possible x(t+1) originating from Ax(t) ≤ b(t). Finding such
b(t+1) involves an optimization problem as we want to find
maximum b(t+1) that is reachable from Ax(t) ≤ b(t). The
optimization problem is generally a non-convex problem for a
nonlinear system. Solving the relaxed problem is sufficient to
certify the containment of all reachable space. The polytope
formed by solving a relaxed problem will contain the polytope
formed by solving the original problem, and thus will contain
all reachable space. In general, the number of faces of the
polytope can grow enormously with respect to the system
size, but the construction of the polytope around the mode
can restrict the number of faces to grow linearly with respect
to the system size.

A. Template Construction

In this section, we show how the template, A ∈ Rm×n is
constructed around the equilibrium. Consider the linearized
system dynamic at the equilibrium to be ẋ = Jx with the
eigenvalue decomposition in the real system representation,
J = QΛQ−1. We denote each block of Λ as Λ(l) so that
Λ = blkdiag(Λ(1), ...,Λ(L)) where the real system representa-

tion gives Λ(l) = λl for real eigenvalue and Λ(l) =

[
σl ωl
−ωl σl

]
for complex conjugate pair. We construct a matrix A = ÂQ−1

such that Â = blkdiag(Â(1), ..., Â(L)) and Â(l). The construc-
tion rule is as follows:

1) If the eigenvalue at block (l) is real, then Â(l) =[
1 −1

]T
2) If the eigenvalues at block (l) are a complex conjugate

pair, then

Â(l) =

 cos(ψ1) sin(ψ1)
...

...
cos(ψml) sin(ψml)


where ψk = 2kπ

ml
and ml are chosen to be an even

number that satisfy the inequality, tan
(
π
ml

)
<
∣∣ σl
ωl

∣∣.
This construction method of the polytope considers the dy-
namic at the equilibrium and builds naturally around the
mode. This polytope is guaranteed to converge if the linearized
system at the equilibrium is stable. The number of hyperplanes
is even so that each hyperplane has its pair facing the opposite
direction. We will define ∆x as the distance between these
pairs in the later section and may refer to it as the diameter
of the polytope.

B. Dynamic Template

After constructing the initial template, the template is up-
dated at every time step to capture the change in the template
due to the dynamics. The dynamic template approach was
introduced in [16], and the update rule is given as follows:

A(t+1) = A(t) · (I + ∆t · J(x̃(t)))−1 (5)

where x̃(t) is an approximate mid-point of the polytope. This
point can be computed by direct simulation of the mid-point



in the initial polytope or by computing the centroid of the
polytope at every time step. The dynamic template may not
align with the modes of the system after going through the
nonlinear dynamics, so the dynamic can be truncated with the
original template that is fixed. After updating the polytope
template, the only computation left is b(t+1) in order to fully
describe the set. Computing the polytope at every step can be
formulated as an optimization problem of solving b(t+1) that
bounds all possible states, x(t+1). This problem can be written
as

maximize
x(t), x(t+1)

A
(t+1)
i · x(t+1)

subject to x(t+1) = x(t) + ∆t · f(x(t))

A(t)x(t) ≤ b(t)
(6)

where we try to maximize the location of the hyperplane, Ai,
at the next time step. The dynamic and the bounds on the
current state constrain the possible state in the next time step.
This problem has to be solved for every hyperplane in the
polytope. Due to the non-linearity of power systems, this is a
non-convex problem and is hard to solve in general.

III. RELAXED LINEAR OPTIMIZATION

We propose the relaxation of this problem based on the
outer-approximation of nonlinearity in the constraint. In the
case for the second order swing equation, the source of non-
linearity is from the sine function. We confine the nonlinearity
into a separate variable and develop a precomputed outer-
approximation.

maximize
x(t), x(t+1)

A
(t+1)
i · x(t+1)

subject to δ(t+1) = δ(t) + ∆t · ω(t)

ω(t+1) = ω(t) + ∆t ·M−1(−Dω(t)

− ETX−1u+ Pinj)

A(t)x(t) ≤ b(t)

u ∈ 〈sin(Eδ(t))〉

(7)

where 〈sin(Eδ(t))〉 is the sine envelope, and x = [δT ωT ]T .
The outer-approximation is especially powerful in our for-
mulation because the dynamics of interest are confined by
the polytope. Within this polytope, the dynamic can be
approximated very well via linearization. Then, a polytope
can approximate the function tightly and minimize the gap
between the original and relaxed problems.

A. Sine Envelopes

The outer-approximation of the sinusoidal function replaces
the nonlinear function by linear inequalities. Our envelope
further exploit the bound on the generator angles δ(t) to
develop very tight linear bounds. Since the gap from solving
this type of optimization accumulate over time, it is important
to minimize the gap between the original and relaxed problem.
Given the function u = sin(δ) with δ ≤ δ ≤ δ, |δ| ≤ π and
|δ| ≤ π, the linear envelope can be categorized to three cases.

This is a sine envelope without phase shift developed in [18],
and it extends the range to be between −π to π. Figure 1
illustrates examples of the categorized cases.

1) Convex/Concave Region: For 0 ≤ δ ≤ δ and δ ≤ δ ≤
0, the function is concave and convex respectively. In this
case, the first order condition at the boundary points, the chord
between boundary points, and the boundary from the mean
value theorem can be used for the linear envelope. Let ma,b

be the slope of the chord between point a and b, ma,b =( sin(a)−sin(b)
a−b

)
. In the convex case, the linear envelope is as

follows:

u ≥ cos δ(δ − δ) + sin δ

u ≥ cos δ(δ − δ) + sin δ

u ≤ mδ,δ(δ − δ) + sin δ

u ≥ mδ,δ(δ − cos−1mδ,δ) + sin(cos−1mδ.δ)

(8)

For the concave case, inequality signs can be changed to
the other side.

2) Chord-connected Region: If the region is not convex or
concave but the function in the given input bound either lies
above or below the chord, we classify this case as a chord-
connected region. In this case, we define the following points:
ϕδ = max{ϕ | cosϕ =

( sin(δ)−sin(δ)
ϕ−δ

)
, ϕ < δ} and ϕδ =

min{ϕ | cosϕ =
( sin(δ)−sin(δ)

ϕ−δ
)
, ϕ > δ}. The point, ϕδ

is the that its derivative tangent to the chord between δ and
ϕδ . Since this is a point that has to satisfy the equality of a
nonlinear function, the Newton-Raphson algorithm should be
used to identify this point. This can be computed very quickly
since the function and variable are scalar. If the function lies
below the chord, then the following constraints describe the
outer-approximation:

u ≥ mϕδ,δ
(δ − δ) + sin δ

u ≥ cos δ(δ − δ) + sin δ

u ≤ ∆mδ,δ(δ − δ) + sin δ

u ≥ ∆mδ,δ(δ − cos−1mδ,δ) + sin(cos−1mδ,δ).

(9)

If the function lies above the chord, the above constraints
with the inequality signs changed to the other side can be used.

3) Chord-crossing Region: For the case that the function
crosses the chord at any point within the input bound, the
chord constraint cannot be used. In this case, we can use the
following constraints:

u ≥ cos δ(δ − δ) + sin δ

u ≥ cos δ(δ − δ) + sin δ

u ≥ mδ,ϕδ
(δ − δ) + sin δ

u ≥ mϕδ,δ(δ − δ) + sin δ.

(10)

The input bound shown in Figure 1 (c) and (d) belongs to this
case.



Fig. 1. The outer-approximation for the sine function is presented. The given
bound is marked with blue circles, and the polytope approximation is colored
with light blue.

IV. ANALYSIS ON THE CONVERGENCE OF REACHABILITY
ANALYSIS

A. Gap from Outer-Approximation

In this section, we present the relaxation gap from using
the outer-approximation of the sine function. The gap of the
outer-approximation for a sinusoidal function can be explicitly
written, and we can bound the relaxation gap in the optimiza-
tion problem in Equation 7. Given the upper and lower input
bound, we can explicitly compute the maximum possible gap.
This gap is drawn in Figure 2.

Fig. 2. The outer-approximation gap for the sine function.

The relaxation gap increases with the size of the input bound
as we expected. The bound is lower near δ = 0 since this
region can be approximated by a linear function very well. In
this case, the gap is very small as shown in Figure 1 (c). To
simplify our analysis, we can focus on the size of the input

bound without specifying its location. We denote the size of
the input bound as ∆δ = δ− δ, and Figure 3 shows the same
picture as Figure 2 projected to ∆δ.

Fig. 3. The outer-approximation gap for the sine function with respect to the
size of the input bound. The upper and lower bound on this gap is shown as
a function of input bound size.

In this case, we can explicitly state the bound on the gap
between the outer-approximation and the original function.
Given the bound ∆δ ≤ 2π, the gap between the original sine
function and outer-approximation will be

∣∣ sin(δ)− 〈sin(δ)〉
∣∣ ≤ 2 sin

(
∆δ

4

)2

. (11)

where ∆δ is the size of the input bound. This occurs when
the input bound of size ∆δ has its midpoint at π

2 or −π2 .
For ∆δ > 2π, the maximum gap will be 2 since sinusoidal
functions are bounded between -1 to 1. Although it may not
be as useful as the upper bound, it is also possible to get an
expression for the lower bound of maximum gap as follows:

∣∣ sin(δ)− 〈sin(δ)〉
∣∣ ≥ ∆δ cos(θ)− 2 sin

(
∆δ

2

)
(12)

where θ = min{θ | cos θ = sin(θ)+sin(∆δ/2)
θ+∆δ/2 , θ > 0}. This

lower bound occurs when the input bound of size ∆δ has its
midpoint at 0. These two bounds are drawn in Figure 3 as well
as sampled points. From the upper-bound of the maximum
gap, the upper-bound on the relaxation gap in Equation 7 can
be bounded as follows:

ε = b− b∗ ≤
∣∣∣∣2∆tA

[
0

M−1ETX−1 sin
(

∆δ
4

)2] ∣∣∣∣. (13)

The upper bound for the relaxation gap is a non-decreasing
function with respect to the size of the polytope. In addition,
the size of the system or lacking inertia increases the relaxation
gap as well.

B. Convergence condition for a linear system with constant
gap

In this section, we examine the condition for the conver-
gence of the network in a linear system, ẋ = Jx with a



fixed polytope template A. To simplify our statements, we will
consider the initial polytope in the form of A(x−x̃) ≤ 1m·b̃(0)

where 1m is a vector of 1, b̃(t) is a scalar, and x̃ is the
relocated position of the polytope. In the standard from,
Ax ≤ b = Ax̃+ 1m · b̃(0). From the contraction analysis, we
have a matrix measure of a polytopic norm, ||x||A = maxAx,
defined as

µA(J) = lim
ε→0+

||I + εJ || − 1

ε
(14)

where the matrix norm is defined as ||J || = maxx 6=0
||Jx||A
||x||A .

This matrix measure can be numerically computed by solving

µA(J) = max
x,i∈R

AiJx

subject to Ax ≤ 1, Aix = 1.
(15)

The matrix measure of our polytopic norm is the contraction
rate of the current polytope, and the relaxation has to be
less than the contraction rate for the polytope to converge to
the equilibrium. Given the relaxation gap ε, the convergence
condition is

µA(J) +
ε

∆tb̃(t)
≤ 0. (16)

where µA is the matrix measure at time t. To see this, we have

b
(t+1)
i − b(t)i = max

x(t), x(t+1)
Ai · x(t+1) − b(t)i

subject to x(t+1) = x(t) + ∆tJx(t)

A(x− x̃) ≤ 1m · b̃(t).

(17)

With direct substitutions of constraints into the objective, we
get

b
(t+1)
i − b(t)i ≥ ∆tb̃(t)µA(J). (18)

Since the condition on the relaxation gap for the contraction
is ε ≤ b(t)i − b

(t+1)
i , we arrive in Equation 16. The inequality

in Equation 16 can be interpreted as the contraction rate being
greater than the relaxation gap. When the polytope contracts,
it results in a tighter input bound for the next time step.
Since the relaxation gap decreases rapidly with respect to
the input bound as shown in Figure 3, the polytope contracts
faster at every iteration once the size of the polytope is less
than some threshold. Moreover, the reachability analysis with
dynamic template in a linear system results in the exact set of
trajectories. This result gives high chance for the reachability
analysis in a nonlinear system to give a useful result by tightly
bounding the nonlinearities.

In Figure 4, we show the contraction of the polytope
size depending the the relaxation gap. When the relaxation
gap is equal to the contraction rate, then the size of the
polytope stays constant because the deflation from contraction
is compensated by the inflation from the relaxation gap. When
the contraction is stronger than the relaxation gap, it shows
exponential convergence. In addition, we note that using the
dynamic template contracts much faster than fixed template.

Fig. 4. Contraction of the polytope depending on the relaxation gap. We
rescale µ = ∆tb(0)µA(J) in this plot.

The fixed template has an accumulating error from imposing
a certain shape, which result in a set that is larger than the
exact set. The dynamic template accounts for this effect from
the shape of the polytope and achieves faster convergence.
The damping in the system decreases the matrix measure,
so high damping result in stronger contraction and allow
larger relaxation gap. An alternative view is considering the
relaxation gap as uncertainties of the model. For a marginally
stable system, uncertainties can play a critical role, making it
much more difficult to converge.

V. CASE STUDIES

A. 2 bus system

In this section, we present result on a 2 bus system for
illustration of our approach. Figure 5 shows the phase portrait
of the system as well as the polytope computed at every time

Fig. 5. The phase portrait of the dynamics as well as the polytopes computed
with the reachability analysis is shown for a 2 bus system. In this case all the
initial conditions converged to the equilibrium.



step. In this case, every trajectory from the initial operating
point set is stabilized to the equilibrium. We note that this
approach can survive near the unstable equilibrium point
where the system becomes highly nonlinear in 2 dimensional
analysis.

Figure 6 shows the Monte-Carlo simulation as well as the
bound computed using the reachability approach. The bound
is shown to be very tight to the Monte-Carlo simulation and
converges to the equilibrium.

Fig. 6. The time domain simulation of the system based on the Monte-carlo
simulation is shown. The red dashed lines are the bound from the reachability
analysis. On the bottom, the distance of each planes from the equilibrium is
shown, which converged to zero.

In Figure 7, the change in the size of the polytope is shown.
The system experiences nonlinear transient effect until 7 sec-
onds, and after that point, the polytope shows an exponential
contraction.

Fig. 7. Contraction of polytope size on a 2 bus system.

Figure 8 shows a case where the initial polytope goes
through the unstable equilibrium. While some of the solutions
are able to reach back to the equilibrium, the polytope grows
due to the trajectories that do not converge to the desired
equilibrium.

Fig. 8. Case study for an unstable case in 2 bus system is shown in this
figure.

B. 39 bus system

In Figure 9, the contraction of the polytope is also shown.
It also demonstrates an exponential convergence towards the
equilibrium. According to Equation 13, the size of the network
increases the relaxation gap, and it may need to be compen-
sated by reducing the size of the polytope, which corresponds
to reducing the bound on the uncertainties.

Fig. 9. Contraction of polytope size on a 39 bus system.

VI. CONCLUSION

In this paper, we present the reachability analysis approach
for robust transient stability assessment. We explored the
effect of the relaxation gap in solving the relaxed optimiza-
tion problem in reachability analysis. We showed that the
convergence condition is determined by the contraction rate
and the relaxation gap. The contraction rate has to be greater
than the relaxation gap in order for the polytope to converge
and contract towards the equilibrium. The relaxation gap
from the outer-approximation of the sinusoidal function is
very tight with small input bound, and the use of dynamic
template further reduces the accumulating errors. Currently,
the dynamic template only considers the linear effect based on
the approximate midpoint of the polytope, and the future work



includes exploring options for adding additional hyperplanes
in the template that takes account for the nonlinear effect.
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