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We consider the evolution of a passive scaleoncentration of pollutants or temperatuia a chaotic
(turbuleny flow. A universal asymptotic behavior of the passive scalar d€baynogenizatioh related to
peripheral regiongnear wall3 is established. The passive scalar moments and their pair correlation function in
the peripheral region are analyzed. A special case investigated in our paper is the passive scalar decay along a

pipe.
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INTRODUCTION cause of the universal behavior of the fluid flow near a wall.
The smoothness of the random velocity field is one of the
The problem of mixing attracts great attention both due tdkey ingredients of our analysis. The theory of the passive
its fundamental significance and a variety of applicationsscalar in a smooth random flow was pioneered by Batchelor
Mixing rate of an additive to a fluid is very sensitive to the [7] and Kraichnari8] who considered the cases of velocities
character of the hydrodynamic flow excited in the fluid. Re-long correlated and short correlated in time, respectively. The
cently an essential breakthrough was achieved in the theoryase of arbitrary velocity correlation time was considered in
of the so-called passive scalavhich can be concentration of the paper[9]. In the works the flow was treated as un-
pollutants or temperaturén chaotic and turbulent flomsee  bounded and the passive scalar was assumed to possess a
reviews|1,2]). The word “passive” means that a feedback of stationary statistics due to pumping. Properties of the passive
the scalar field to the flow is negligible. It is correct for dilute scalar decay in an unbounded statistically homogeneous ran-
solutions of pollutants and for relatively weak fluctuations of dom flow are also known. As was demonstrated in the paper
temperature. The passive scalar in a fluid is subjected tp10], in the inertial range of the developed turbulence the
diffusion (thermodiffusion and advection, leading to the scalar decays in accordance with a power law. Besides, it is
evolution of its spatial distribution. A final result of the evo- interesting to consider the passive scalar decay in the Batch-
lution is a homogeneous state of the passive scalar. We aegor region of scalegbelow the Kolmogorov viscous scale
interested in the passive scalar decay, that is, in the lawwhere the velocity field is smoottfor details see, e.g., the
governing the homogenization of the passive scalar field irhook of Batchelof11]). The decay law of the passive scalar
chaotic and turbulent flows. We consider the case of the largi the region is exponential, as is demonstrated in the papers
Schmidt number Sc which is the ratio of the kinematic vis-[12,13. The same consideration is applicable to the elastic
cosity of the fluidv to the diffusion(thermodiffusion coef-  turbulence. In the papgB] the combined case was consid-
ficient k. ered, when both the inertial region of scales and the Batch-
As is noted in the papdB], at large Sc the homogeniza- elor region of scales are taken into account. Then the passive
tion of the passive scalar field in the peripheral regions iscalar decay is dominated by eddies from the inertial interval
slower than in the bulk since mixing is suppressed near wallgexcluding, maybe, some initial stage of evoluliand is,
of the vessel. Then the advanced stages of the passive scatamsequently, governed by a power law.
decay are dominated just by the peripheral regions. In the As is noted in the papel3] the theory of the passive
paper[3] main stages related to the passive scalar evolutioscalar in the random flow, developed for the bulk, needs a
in the peripheral region were establishisee also the paper modification for the peripheral region even for the smooth
[4]). Here we develop further the theory of the passive scalaflow. The reason is that the approximation of the velocity by
evolution in the peripheral region having in mind two differ- linear profiles, used for the bulk, fails in the peripheral re-
ent physical situations. The first case is the passive scalar igion. However, near a wall, the velocity possesses a definite
the viscous boundary layer of the develogkih-Reynolds- dependence on the separation from the wall, explaining the
numbej turbulence(explanations of its properties can be universal properties of the passive scalar decay in the periph-
found in the book of Monin and Yaglorf6]). The second eral region. Another property, simplifying an analysis, is the
case is the peripheral region of a chaotic flow. A perfectslowness of the passive scalar mixing in the peripheral re-
example of such a flow is the so-called elastic turbulencejion, enabling one to treat the velocity as short correlated.
state revealed by Groisman and Steindépin dilute poly-  The first problem, we consider, is an evolution of the con-
mer solutions. Both the velocity in the viscous boundarycentration of pollutants, when the boundaries are considered
layer (in the first caspand the chaotic velocitgin the second as impenetrable for the pollutants. This approach can be ex-
case can be treated as smooth. For the elastic turbulence it iended to the case of the binary chemical reactises the
explained by the character of the velocity spectrum whichpaper[4]). Another problem, which can be treated inside our
decays faster thak 2 [6]. Though we consider two physi- approach, is the temperature relaxation in the bulk, if the
cally different cases, their unified description is admitted betemperature at the walls of the vessel is fixed. Then a heat
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flow from the boundary to the bulk is forced which is gov- Here we consider the flow in a closed vessel where the
erned just by the velocity fluctuations in the peripheral re-average velocity is equal to zero. A generalization to the case
gion. The passive scalar evolution can be examined also inw@hen the average velocity is nonzero is trivigd can be
fluid (where random motion is excitedlowing through a found in Sec. Ill where a fluid pushed through a pipe is
pipe. Then the role of time is played by the coordinate alongreated. The pair velocity correlation function
the pipe. This setup is closely related to the experiment ofv,,(t;,r1)vg(t2,rp)) depends on the time differente—t,
Groisman and Steinbeifd.4]. only (due to the assumed time homogengignd on coordi-

A remarkable property of a turbulent flow is its strong nates of both points; andr,.
intermittency leading to the so-called anomalous scaling of We have in mind two physically different situations. First,
the velocity correlation functions, which are dependent orit is the viscous boundary layer of the developed high-
the integral scale of turbulence at a power, referred to as thReynolds number turbulendéor details see, e.g., the book
anomalous scaling indefsee, e.g., the book of Fris¢5]).  [5]). Second, it is the peripheral region of a chaotic flow. As
Theoretically, an existence of the anomalous scaling of such perfect example of the chaotic flow, the elastic turbulence
kind was established for the passive scalar in the frameworkan be noted6]. In both cases the velocity is smooth in the
of the so-called Kraichnan modé&dee Ref[16]). One could peripheral region we are interested in. That means that the
anticipate that the same phenomenon takes place for the paglocity does not contain components with scales smaller
sive scalar decay. We demonstrate that in the peripheral réhanL wherel is the width of the viscous boundary lay@n
gion the passive scalar moments possess, indeed, an anontize first caspand the vessel sizén the second caseBe-
lous scaling, which is in some sense extreme. Namely, all theides, the velocity field possesses some peculiarities, related
moments of the passive scalar damp in accordance with th® zero value of the velocity at the boundary. That makes the
same power law at increasing the separation from the wall passive scalar decay in the peripheral region slow. Since the

The paper is organized as follows. In Sec. | we presentelocity correlation time is determined by dynamics in the
general equations, which describe the passive scalar evolbulk, which is relatively fast, at examining the passive scalar
tion in the peripheral region. In Sec. Il we analyze the pasevolution in the peripheral region the velocity can be treated
sive scalar evolution near the wall of the vessel. In Sec. lllas short correlated in time. It is well known that in this case
we consider the passive scalar decay along a pipe. Sonwosed equations for the passive scalar correlation functions
general remarks and a short comparison with experiment arean be derived. Below, we demonstrate principal steps of the

presented in the Conclusion. derivation, based on Eql1.2).
Let us examine the passive scalar evolution on a time
|. GENERAL RELATIONS interval (t1,t,) taking the differencé,—t; much larger than

) ) ) ) ) the velocity correlation timer, but much smaller than the
Advection of a passive scalar fiell by a moving fluid  cparacteristic mixing timéthe gap between the mixing time
(accompanied by the passive scalar diffugisrdescribed by 5nq the velocity correlation time exists due to the noted
the equation weakness of mixing in the peripheral region related to the

To— U2 inequality Se>1). The last condition enables one to produce
H6+v-VO=KV70, @D an expansion of th& exponent in Eq(1.2). One may keep

wherewv is the flow velocity andk is the diffusion coeffi- Only two first terms of the expansion

cient. Below, the fluid is assumed to be incompressitiiat .

is, V-v=0). A formal solution of the Cauchy problem for 0(t)~ 0(t:) + (to—t1) V201 _f 2dt ). Vot
Eqg. (1.1) can be written as (t2)=6(t) + (t~ L)<V 70(L) ty v (t)

t2 tz t
0(t2)=TexW’J' dt[—v(t)-V+KV2] 0(ty), (1.2 +ft dt tdt’v(t)~V[v(t’)-V0(t1)]. 1.3
t 1 1

where expl’ means a chronologically ordered exponent. OfThe next step is averaging over the velocity statistics inside
course, some boundary conditions for the passive saalar the interval €;,t,). This averaging is independent of the
should be introduced. There could be two different types olelocity profiles att<t, andt>t, due to the conditiort,

the boundary conditions. 1§ is temperaturdand walls are  —t,> 7. Averaging the expressiofi.3), one obtains a rela-
made of a well heat conducting mateyitthen ¢ is fixed at  tion for the average valuéd) of the passive scalar

the boundary. I is the density of pollutants and the wall is

impenetrable for the pollutants then the gradientdh the — (8(t,,r))—{O(t1,r))=(to,—t1)k V3 O(t1,r))+ (t,—t;)

direction perpendicular to the boundary is zéwhich cor-

responds to zero pollutant flux to the boundary X Vo[ Dap(r,)Vp(0(ty, )], (14
We consider a random flow which has to be characterized

statistically: via correlation functions. The correlation func- _ Jm

i . D, s(r1,ro)=| dt{v,(t,r 0,5)), 1.

tions are averages over time, they can be treated also as plrur2) 0 (valtira)vp(0r2) (@9

averages over velocity realizations. The flow is assumed to
be statistically homogeneous in time, whereas there is nwhere a fast enough decay of the pair velocity correlation
homogeneity in spaceébecause of the boundary effects function withtis implied. We used also the incompressibility
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conditionV -» =0. The quantity §) means a value averaged Reynolds number turbulence and the size of the vessel in the
over the velocity fluctuations. If,—t, is smaller than the case of the chaotic flokelastic turbulence andV, is char-
mixing time, then the right-hand side of Eq..4) is a small ~ acteristic value of the velocity fluctuations in the bulk. For
correction to( 6). Therefore Eq(1.4) can be rewritten in the the high-Reynolds number turbulenwe is the friction ve-

differential form locity in the boundary layer. The weakness of the passive
scalar decay inside the peripheral region is explained by
I 0) =Vo[ D op(r,r)Vg(6) ]+ kV(6). (1.6)  smallness of the rati%v/V, there. The weakness makes the

_ ) passive scalar evolution in the peripheral region slow, thus

The quantityD 4, entering Eq.(1.6), can be called the jystifying our approach where velocity is treated as short
eddy diffusion tensor, since it describes diffusion of the pas¢grrelated in time. Note that for the elastic turbulences
sive scalar related to its chaotic displacements in the randojetermined by the polymer relaxation time and the condition
flow (similar to the Brownian motion This effect can be L/V, is no other than the Lumley criterion of strong
compared to the turbulent diffusion causing a passive scalajolymer elongation formulated in Refl17] (see also Ref.
evolution in turbulent flows on scales larger than the integraEFls])_
scale. However, the eddy diffusion tenddy,; is connected Let us explain the physical meaning of the passive scalar
with a smooth flow, and can be, consequently, used for decorrelation functions. They are averages of the passive scalar
scription of the passive scalar dynamics on small scales. fctuations over the velocity statistics. Therefore, to obtain
coordinate dependence @f,; is related to the statistical the correlation functions experimentally or in numerics, one
inhomogeneity of the.random flow near the boundavyll). has to measure the passive scalar decay many tifoes

Analogously, starting from Eq(1.2), one can derive many realizations of the velocity fieldand then to average
closed equations for high-order correlation functionséof  the result over the attempts. Initial conditions for the passive
Say, the equation for the pair correlation functiéns scalar field are implied to be fixed at the averaging proce-
dure. If we consider the case of a fluid pushed through a

— 2, v2
F(t.11,12) = k(V1F+ Vo) F 4 Vio[ D op(ry r1) VagF] pipe, then the passive scalar correlation functions are station-

+ Vau[ D ap(2,72) VagF ] ary. Then they can be treated. as averages over Io_ng time.
Below we consider a passive scalar evolution in the pe-
+ V14D op(r,12) Vo5F ] ripheral region. We assume that mixing already produced the
homogeneous distribution of the passive scalar in the bulk
+ Voo Dap(r2,r1) VigF], (1.7) (recall that the process in the bulk is much faster than in
. periphery. And we subtract fromp a constant, correspond-
F(try,rp)=(6(t,ry)o(t,ry)). (18 ing to the bulk value o (this redefinition does not change

the equations describing the passive scalar evolutibon
other words, the value of tends to zero when we go away
from the boundary. Analyzing the evolution of the passive
n n scalar after the homogenization in the bulk, we treat its initial
OF =KD, VAZF .+ X Vinal D ag(rm i) VigFnl, value 6, as dependent mainly on the separation from the wall
m=1 mk=1 (1.9 and practically independent of coordinates along the wall.

Generally, the equation for theth order correlation function
F, of the passive scalar is

Fa(t,re, ... 1) =(0(t,r)---6(t,ry)).  (1.10 Il. DECAY IN A VESSEL

The structure of Eq(1.9) is transparent: the evolution of the ~ Here we consider the passive scalar decay in a closed
passive scalar correlation function is determined by the moYessel- If the walls of the vessel are smooth and their curva-
lecular diffusion(the first term in the right-hand sitland by ~ ture is of the qrder of the vessel size, then at conS|der|r)g the
the eddy diffusionthe second term in the right-hand side ~Peripheral region the boundary can be treated as flat in the

Note that if the molecular diffusivity is negligible then it Main approximation. Then it is possible to m_troduce the or-
is possible to obtain a closed equation for the moment§hogonal reference system, where the coordinateeasures

(6"(r)y=F(r, ... r) from Eq.(1.9), separation from the boundary and are coordina}tgg along .
the wall. In the reference frame the incompressibility condi-
3 0"(r)) =V,[ D p5(r,r)Vg(6"(r)) ], (1.1)  tion is written asdqu g+ dvy/dr,+dv,/dr,=0, wherev, is

the velocity component perpendicular to the wall apg are
which is identical to Eq(1.6), without the molecular diffu- the components along the wall. Since, tends to zero as
sion term. Equation(1.1) is a direct consequence of the q—0 thenv, ,q near the boundary, and the incompressibil-
relationd,(6") = —v - V(6"), which follows from Eq.(1.1), ity leads to the proportionality law<q?. This is the main
if the molecular diffusion is neglected. feature of the velocity profile in the peripheral region.

The eddy diffusion tensoD can be estimated ab For the flat wall, it is natural to assume homogeneity of
~V?27, whereV is the characteristic value of the velocity the velocity correlation functions along the wall and also
fluctuations, and is the velocity correlation time, which can their isotropy in the planes parallel to the wall. Then we
be estimated as~L/V, . Herel is the size of the viscous obtain a general expression for the components of the eddy
boundary layefKolmogorov length in the case of the high- diffusion tensor(1.5),
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Dy(r1,r2) =H1(0) 650102+ Ha(0) 00,9102, boundary layer, one obtains P&c, where Se v/« is the
Schmidt number. For the elastic turbulence, one finds a
1 v , 1 , slightly different estimate PeScx Re.
Doo(r1,r2) == 5H1(0) a1z~ 5LeHa(e)

A. Average scalar

+3H Q0. . . . .
2(0)10,919: Here we consider the simplest possible correlation func-

1 0 1 tion: the average value of the passive scdi@r. The quan-
D q(r1,12)= EHi(Q) _§q1q§+ E[QHé(Q) tity essentially depends on thfa separation from the wahgd
e slowly depends on the coordinates along the wall. We ignore

n 2 the last dependence, assuming that its characteristic length is
3Ha(0)]e,maz, the vessel size. Then we find from Ed$.6) and (2.3) the
R E[Hi(Q) +H”(Q)} - E[GH - following equation for the object:
aa(M12) == 71—, A 3 0) = pag(q*dq( ) + k3% 6). (2.5
+60H3(0)+02H5(0)]a303, (2.1)  The advection termwith ) in Eq. (2.5 dominates ing

i >ry, and the diffusion termwith «) dominates ag<<r,,
whereg,=r;;—r;;, Hy andH, are some functions of,  \yherer,, is the thickness of the boundary diffusion layer
and the subscripts, o~ are running over 1 and 2. The struc- gefined by Eq(2.4). As we explained in the last paragraph
ture of the eddy diffusion tensdR.1) is explained by thel ot sec. | at solving the problem we should assume
dependence of the velocity near the wliated above The iy, (6)=0, since largey corresponds to the bulk, where
dependence leads to the proportionality |awq31o<qi, D¢ 4=
«(,, and analogously for the second point. Then ghde-
pendence of the tensor components is established using t

0 is assumed to tend to zero. The condition is implied below.
he We examine the passive scalar evolution in the peripheral
o 0 : region, which begins after its homogenization in the bulk is
conditions ViaDap(r1,12)=0=V25Dup(r1.r2), following gy e the initial distribution of the passive scalar has

from the incompressibility. L T
Since we consider the region where the velocity field isthe characteristic length. The subsequent evolution is di-

smooth, then boti, andH, have regular expansion ia vided into two stages. At the first stage the thicknéssd the

(containing even powerat smallp, that is, ato <L (recall layer, whered is concentrated, diminishes ﬁ('f’“t) .1/2'
that L is the thickness of the peripheral region which is theWhen d reachesyy, the second stage starts, which is char-
thickness of the viscous boundary layer in the case of th@Cte”ZEd by the f|>_<ed spatial scalg . . e
developed turbulence and is of the order of the vessel size for _At trez_itlng the first st_age one can omit the.d|ffu3|on term
the elastic turbulengeln this limit the main contribution to  \With «) in Eq. (2.5), which leads to the equation

the eddy diffusion tensor is determined by first terms of the

— 4
expansion 9 0) = pig(q*ag(0)). (2.6
Looking for a solution #) = exp(—s{) , one obtains from
Hi~Hio- (u+3Ha02)0%, Ha=Hao, (22 goa 6= exptshedd
Dso~H1080102, Dgq=~pdids. (2.3 a s \¥
. . _ _ *s= V3|~ Ja Vsl g™ ?). (2.7
The quantity u characterizes the flow intensity near the ~q

boundary. It can be estimated as-V, /L3, where, as pre- . ) ,
viously, V, is the characteristic velocity fluctuation in the USIng the orthogonality relation
bulk. In the framework of the Karman-Prandtl theory of the
viscous boundary layeffor details see, e.g., the bodk]) fwdq(,D (@) o) =
the width of the layer is estimated &s-v/V, (wherev is 0 s 7
kinematic viscosity of the fluidand one findsu~V{v 2.
For the elastic turbulencd is the vessel size ange ~ ©One finds a general solution of E.6),
~V{v73Re 3, where Re=V L/v is the Reynolds number. (rest
Comparing the eddy diffusion term for the motion perpen- [ ne <, , ,
dicular to the wall, which can be estimated ag*d;, and (o(t.a)= fo dse(q) 32 fo 49’ ¢<(q")0o(a’)
the molecular diffusion termag, one finds the width of the (2.9
boundary diffusion layer

3/2

o(s—o),
12

in terms of the initial passive scalar distribution. The ap-
M= (il ) V4, (2.4  proximation(2.8) is correct provideds>ry, (then it is pos-
sible to neglect the diffusion boundary layer where diffusion
We assume that,<L. The relation can be rewritten as Pe is relevant.
>1 where Pe is the Peclet number:=Pé L/k. As follows We start from a distribution of) with the characteristic
from Eq. (2.4), L/r,~Pe"%. For the case of the viscous lengthL. Therefore at times, whed<L and atq<L, one
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can substituted(t=0) in Eq. (2.8 by J,=6(t=0,=0). 2.2 = dgy
Taking then the integrals in E§2.8), one derives (0)= —K3’4,u1’4ﬁof e (2.11)
77 a9 mQytk
(6t,q))= %fxd_se_st (@) At g>ry, we find, again{#)=<q~3. That corresponds to a
q 7)o S ¢sq nonzero passive scalar flfreat fluy to the bulk. This flux

is time independent in the case considered.
1) o 5 Now we can justify the time separation leading to Eq.
erf(ﬁ)—Tex - (29 (1.9. For the intermediate evolution characterized by the
74 profile (2.9), the characteristic time i~ (. 6%) 1. Thus, the
time ratiot/ 7 (where 7 is the velocity correlation timecan
This profile has a universal form insensitive to details of thebe estimated agr~ (L/5)?>1. In the case when the passive
initial distribution of 6. Let us stress that the expressi@m®) scalar evolution is determined by the interplay of the viscos-
implies contraction of the region occupied by the passivdty and advection, the length has to be substituted ly, .
scalar sinceS=(ut) “Y2 If g> & then one obtains from Eq. Theguzusing the estimates formulated earlier we find that
(2.9, ~Pe’>1.

= 1(}0 4q2

9.5 B. High moments
(O)y~ o 3 (2.10 As we already noted, at the first stage the diffusive term in
6\ the equation for the passive scalar correlation functions can
be omitted. Then the closed equati¢hl1l) for high mo-
ments of the passive scalar is correct. The high moments
(similar to the first ongdepend mainly org and we ignore
their dependence on the coordinates along the wall. Then,
substituting into the equation the expressi¢hsg), one finds

If g< ¢ then we find(#)=9,. So, the value of) is practi-
cally unchanged inside the laygk 8.

Note that though Eq(2.6) has form of the conservation
law for (6), the total amount of the passive scalar in the
peripheral regionfdq{6) appears to be time dependent, if n _ 4 n
the expressiofi2.9) is i<nt>egrated. The reason is that the con- 0= 1Ig( G 0(7)), (212
sidered solution cprresponds to nonzero passive scalar ﬂ%hich is a generalization of Eq2.6). Its solution can be
directed to large, i.e., to the bulk, which can be treated as a\yritten as the expressiof2.8)

) ) . 4 . . ;
big reservoir. This fluxuq®de(6) can be obtained directly
from the asymptotic expressiof2.10. Note also that the . oSt
passive scalar evolution at the first stage is insensitive to the ny J NEE f , g,
boundary conditions, and therefore it is described identically (6% 0 dses(a) s Jo da” es(a’) 65(a’)
for the concentration of pollutants and temperature. (2.13

Now we analyze the passive scalar behavior at the second
stage, then the diffusion term cannot be ignored. Let us firsThe expressiori2.13 implies thaté>ry, since only at this
examine the case when the passive scalar represents the copndition it is possible to neglect the regign-r,, where the
centration of pollutants. Then E@2.5 has to be supple- diffusion is relevant. Since the initial distribution éthas the
mented by the boundary conditiag(#)=0 atq=0, which  characteristic lengtiL, at the conditiond<L we obtain,
means zero flux of pollutants to the boundary. At long timesagain, a universal expression

only the contribution related to the minimély its absolute
5) ) p( PR ) (2.1
=—=|——exp ——| |, .
2a/ g 497

value eigenvalue of the operator in the right-hand side of
Eq. (2.5 is left. That leads to the exponential decég) (M=,

cexp(—t). The value ofy is y=cg\ku, where the factor

ce can be found numerically, it isg~1.81. The asymptotic L L .
bI(Eahavior of(6) can be relgted t% the initial vaIZe F())f the whm_h IS a gen_era||zat|on r?fNquég)‘ Tr\1/e_e><3pre33|on shows
passive scalard, near the wall: (9(q=0))=cod,exp thatin the regiorg>4, (¢")~906"/ (6\m q’).

X (=), wherec,~1.55. The total amount of the scalar near Actually, the expressiof2.13) is correct for any averaged
the boundary behaves #8lq(6)=c,d,r ,iexp(— ), where local function of the scalaf. We can use it to find the local
c.~1.55 1ooThl ’ scalar PDFP(t,q,0)=(38[ 6— 6(t,q)]). Let us first rewrite
R the expression like Eq2.13 as

erf

Let us now consider the case when the passive scalar
represents temperature, assuming that it is fixed at the

boundary#(q=0)=9,. Then after the first stage a quasi- 1 (= (= dd )
stationary distribution of #) is formed, since the bulk can be Pt.a)= qT/JO dkfo (q')3?2 kexp(— k)
treated as a big reservoir having a constant temperature. This

quasistationary distribution can be found directly from Eq. X J3(kIq)Iz(klIq")P(09"). (2.19
(2.5 where the term with the time derivative has to be omit-

ted, One can take the integral ovkrin Eqg. (2.15 to obtain
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1 = dq’ 1 1
P=—T—| —exg-—-————"—
VautJo qq 49°ut 49’ “ut

(6"(t,q))ecq 3, (2.19

P(0a")

1 at g>ry,. The situation here is analogous to one for the
><| cos?{ —2,utqq’sinf{ }.(2.16) average passive scalar, since E212 has the form of con-
29q’ ut 299’ ut servation law for the high moments. The law8"(t,q))
«q~ 3 correspond to nonzero fluxes of high degrees of the
Let us assume that the initial scalar distribution is a monopassive scalar.
tonic function 6y(q), which is equal to zero aj—«~ and Now we can turn to the case when the passive scalar is
reaches a maximum value gt—0. Then P(t=0,,6)= temperature, fixed at the boundary. If the temperature in the

—[1/64(a)18[q—do(8) ], where the functiomy( ) is deter-  bulk is different from that at the boundary then a heat flow is
mined from the relatiordy(qy) = 6. Calculating the integral produced from the boundary to the bulk. Since the bulk is a
(2.16, one finds big reservoir then in the main approximation its temperature
can be treated as time independent. In this case statistits of
1 1 1 becomes quasistationary at the second statjehe correla-
P(t,q,0)= —,[g(— - —) (1-2utqqo) tion functions are independent of tim&he equations for the
Adol Bo(do)| L 19 Fo passive scalar correlation functions are determined by Eq.
(1.9 where the time derivative can be omitted. Particularly,
(1+ Zﬂtqqo)}, at g>ry, one obtains the closed equation for the moments
(2.12 (where time derivative has to be omitjdéading to
the same law2.19. Inside the diffusion boundary layet
1 X2 ~ 9, whered, is the temperature at the bounddngcall
9(x)= 2\/7T_,utex T apt) (217 that we assum@=0 in the bulk. Then, as it follows from
Eq. (1.19), (8™~ I5(ry /q)>.
Whent grows, the boundary layer, determined &yshrinks, We established that d> & at the first stage or i§>ry, at
that is, the characteristic value qfdecreases. Besideg, is ~ the second stage then the |&19 is valid. Moreover, it is
fixed at a givend. Therefore one can expand the expressiorPossible to formulate the estimates™)~(6)"(q/8)>"

in the square brackets in E(.17) in 1/g, to obtain a uni- for the fi3rst stage and the inequalities(")
versal probability distribution =(6)"(qlry)®" Y for the second stage. The estimates

show that the high moments of the passive scalar are much

larger than their Gaussian evaluation. This property implies

strong intermittency in the system. The expresgii9 can

be treated as a manifestation of anomalous scaling. It is ex-
(2.189  treme since the exponent characterizindependence of the

moments is independent af

I
gq do

1 1
P= exp —
1202\ ut) %593 65(q0) | p( 492ut

Unfortunately, expressiof2.18 cannot be utilized for calcu-
lation of the moments o), since the integralgdd 6"P(6)
diverge near the maximum value @f 9. The reason is that C. Pair correlation function

the expressioni2.18 is correct only ifqo(6)>q, which is Here we examine the pair correlation functibigry,r,).

violated at smallyy, corresponding t@ close tody. - . o : 1,72
At the second stage diffusion starts to be relevant, and it is? ne could anticipate its nontrivial scaling behavior in the

impossible to obtain closed equations for the moment%relglor;eqcldgé>zt;gg Itfhe f'r; statgr]])zr(])r grlll'qzi:g' (tfeorrm
(6"(t,q)). To find the moments one has to solve the com-g “rpy (r1.r)VigF] in qu(lq% should beyke ¢ and we

lete equation$1.9) for the passive scalar correlation func- ~1et~ap\ 171/ Y101 g. (1.1 P, an
fi)ons V\(/qhich is a complicate?j problem. One can say only th ome to the conclusion th&txq; 3. Therefore we obtain the
due to linearity of the problem, the asymptotic in time be- he_hawor, WhI.Ch is similar to the passive scalar moments in
havior of the correlation functiong@nd, consequently, mo- t |sNasymptot|c qzse. h £ el : d
ments is determined by the minimal eigenvalue of the op- ow we CI(I)nSII er the Ease ot close pom;?n. 2, arsl'
erator in the right-hand side of E(L.9). Therefore for the SUMNG small vajue Opi_rli;]r%' @<L, admitting the
concentration of pollutanté6"(t,q))<exp(—y,t) where y, (ixprissmn_liﬁa-g) Oildc?bfa%s\?;o%resﬁ; %Chﬂh)/z .
~+/ku. The estimate can be obtained by equating the time 917 9z2- W
derivative, the eddy diffusion term, and the molecular diffu- _ 4 2 2 3

' ! F=puao JoF)+ (kl2)dgF +2kdsF+{4 dod

sion term in Eq(1.9). If we consider the regiog>ry, then tF=1dq(QdoF) + (x12) g KIqF +{4uQ A7,

it is possible to neglect the molecular diffusion term in Eq. —ZMQSQ&QL?Q-I—[HquZ/Q—Z(Z,u
(1.9 and we return to the closed equati¢hl2. There the 5 b 22 422
time derivatived, can be substituted by y, and we con- +3H320) Q219 F +{41Q°q"d5— 2H3,Q" 07y

clude that at the same conditigf®ry, it is possible to ne- B 2 2 2.2 2.2
glect the term with the time derivative in E(2.12). There- 211Q°Q00qdo + (2 + Ha0) Q770 + Higl "0} F.
fore we obtain, again, the asymptotic behavior (2.20
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Details of the derivation of Eq2.20 can be found in the Thereforeu is independent of and the velocity correlation
Appendix. It is natural to writeF =(6?(Q)) (1+s). Here functions do depend on the time differences and coordinate
unity represents the main contribution to the pair correlatiordifferences along the pipe. Thus, for a problem with a sta-
function, related to the second-order moment, gnés a  tionary scalar injection to the pipe the scalar statistics is time
small correction tending to zero ef—r,. independent and the coordinatealong the pipe plays the

In the regionQ> ¢ for the first stage or in the regio@  role of time in the decay problem. Following the procedure
>r,, for the second stage the time derivative in E320  described in the first section one obtains from &1 the
can be omitted in comparison with the eddy diffusion term,following equations for the scalar correlation functions:
which is the first one in the right-hand side of Eg.20. If
the molecular diffusion terms in EQR.20 are also neglected

n n
then one finds WoF o=k 2 ViFot 3 Vin[Daglfm: o Vgl

{(2H3002— 7x2) 32— 11X 3+ 3+[ (2+ Ha9) 02+ H1 %] 3 52
) The only difference in comparison with E@L.9) is that the
+[2(1=3Hzg) @ +Hix*/@]d,}s =0, (22D time derivative is substituted by the advection term along the
pipe.
where x=q/Q and we have taken into account that AS previously, we introduce the coordinajeneasuring a
(6#%(Q))=Q 3. A solution of Eq.(2.21) can be written as a separation of a given point from the wall. The average ve-
sum ofsy=(qQ)°f,(x,0) wheref,, satisfy Eq.(2.21) (since  locity u is a function ofq, tending to zero asi«q near the
qQ is zero mode of the operator figuring in this equation Poundary. That leads to the main difference between this
It is clear that the main contribution is relatedite-0 (since ~ Situation and the one discussed in the preceding section. The
negativeb are forbiddeh Since the operator in Eq2.2)  €quation for the average scalar tumns to
has definite scaling properties, solutions of the equation can
be written in a simple self-similar form s — 4 2
=(9/Q)2¥(Qe/q). The priné)ipal contribution tg is asso- Sod76)=[ 19qq"dq + 1 g)(6). @3

ciated with the smallesh. Unfortunately, the exponera is . . . .
4 D Despite the additional factay in the left-hand side of the

nonuniversal, being dependent on the coefficiétis The = ; X o ;
molecular diffusion smoothes the functigrat q~r§|/Q. equation in comparison W'th E@.5), the qualltatlye picture
The above expressions demonstrate the following naturacff Sca'?f evolution remains _the same. At the first stage the
Scalar is mostly situated in the layer of the width

behavior of the pair correlation function. The main anoma-_" / d th lecular diffusi b lected

lous dependence of the function is related to the second m —_hso ('U“Zl)' gn et r;::.) ectu ar d u|5|oB can 't?] tnheglec e’t.

ment of the passive scalar. As to the dependence on the re%.— € scaiar decay at this stage IS algebraic wi € lonhgitu-
inal coordinate. When § reaches the boundary layer width

tive separation between the poimtsandr,, it is described h lecular diffusion b | + and th |
in terms of the functiors possessing a nontrivial scaling 'b!+ 1€ MOIEcUar diftusion becomes relevant, and the scalar
decay starts to be exponential.

behavior with a self-similar factor depending on the combi- . ) L . .
P 9 As in the previous case, it is possible to obtain complete

nation . S . . .
ationQe/q statistical properties of the scalar at the first stage. In this
case one can omit the molecular diffusion term. Hence, av-
lll. DECAY ALONG A PIPE erages of any single-point functiods(6), such as the mo-

Here we discuss the case when the passive scalar deca%e”tswn_) or the scalar PDFP(6,9,2)=(4[ 6~ 6(q,2)]),
along a pipe in a statistically homogeneous flow, which is&"® described by the same equation
assumed to be chaotic and has an average velaciipng
the pipe. Such a setup was used by Groisman and Steinberg u R
in their experiment$14]. In this case the chaotic flogelas- L D)= —— 49" 9g(P)=H(D). (3.9
tic turbulence was excited in a polymer solution pushed S04

through a curvilinear pipe. The scalar dynamics is then gov-
erned by the equation This is a linear equation, and it can be solved using the

Green function formalism. Namely, the solution of E§.4)
can be written as
8,0+ud,0+v V,0=kV?0, (3.1

whergv is fluptuating part of the velocitywith zero meah (D(2,q))= fwdq’G(z,q,q’)fb(z: 0q’), (3.5

andzis coordinate along the pipe. Below, the average veloc- 0

ity uis assumed to be much larger than(which corre-

sponds to the experimental situation whereG is the Green function. In order to obtain an explicit
If the pressure difference, pushing the flow, is constanteéquation for the Green function one should first solve the

the flow is statistically stationary and homogeneous alongorresponding eigenvalue problems. Since the opekatisr

the pipe(which is assumed to have a constant cross sectionnot Hermitian, then one should find both its right and left
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eigenfunctions. They are solutions of the equati(ﬁhfsA

+Nf,=0 and H*g,+\g,=0, respectively, whereH*
=(So/ 1) dq0*dqa~*. We find

fL,=x3J3(X), gy=xJ3(X), x=2\/q.

Using the orthogonality relation

(3.6

fo dagy(a)fy () =16\ *S(A—\"),
one derives

[’

A
G(z,q,q’)=J0 16A2exp(—x5’l>fx(q)gx(q’)

)
- qs/z(q/)l/zexﬁ_ olq—46/q")15(26/Vaq’).

3.7

Since we assumed thét 6,(q) initially, then for thenth
order scalar moment"(q,z)) the initial condition iség(q).
If <L then one can substitut®"(0,z)) by 97, whered,
=6,(0,0). In this case an explicit integration in E@®.5
leads to the expression

95

6q°

(3.9

(6"(z,a))= exp(—6/q) 1F1(1,46/9).

Again, we obtain a universal profile. f> 6 then both the

exponent and;F; can be substituted by unity to obtain

(0"(z,9))=956°%(60@%). If q<d then (6"(z,q))=137. In

order to obtain the scalar PDF, one should use the initi

distribution P(z=0,q,0)= (60— 6(q))=—[1/64(q)15(q

—qo(0)). Hereq(6) is defined, as previously, by the rela-
tion 6y(qo) = 6. The convolution with the Green function is

now

P(z,q,6)=f dq'G(z,9,9")P(0,4,6)

1 5 p( 5 5)| (2
== o eXp -~ —|ls
q¥205% 05(qo) qa do

3

(3.9

At large distancegy> 6%/L (and alsd_> §), one can use the

following approximation:

P(z,q,0)~— exp(—d/q).  (3.10

60°0505(do)

PHYSICAL REVIEW E69, 036301 (2004

Again, this expression cannot be exploited for calculation of
moments of the passive scalar because of the divergency
near the maximum value df, 9.

For the pipe, the characteristic length where the diffusion
becomes relevant is determined by the same expression
(2.4). When§ diminishes down t@,, another regime comes.
For the density of pollutants the regime is characterized by
an exponential decay of the passive scalar moments along
the pipe. For the first moment the decrement of the decay can
be extracted from Eq3.3). It is determined by the smallest
eigenvalue of the operator in the right-hand side of the equa-
tion. Thus, for large enouglz the decay law{6)xexp
X(—a2) is correct wherea~ k¥4u3*s;*. The eigenvalue
problem, corresponding to E@3.3) can be solved numeri-
cally, then one obtaina~3.72*4u s, *.

For the temperature, fixed at the boundary, we obtain a
quasistationary distribution if the fixed value sindepen-
dent. The average temperature is described by (B
where z derivative is dropped. Then we return to the same
equation as previouslffor the decay in the vesgelwith the
solution (2.11). Higher moments of the temperature are
slightly different than for the decay in the vessel. However,
qualitatively their behavior is the same. Namélg) ~ 97 if
q<rp;, and( ")~ 95(ry /a)°, if q=>ry;.

One can examine the pair correlation functiBrof the
passive scalar. Qualitatively, it is the same, as for the decay
in the vessel. Namely, the main anomalous dependence of
the function is related to the second moment of the passive
scalar. The function is practically undistinguished from the
second moment ij;,q,<<ry, . As to the dependence on the
relative separation between the poimisandr, for q4,q,
>ry,, it is described in terms of a functiofy (6*(Q)) (1
+s), possessing a nontrivial scaling behavior with a self-
similar factor depending on the combinatiQp/q.

Now we can justify the time separation leading to Eq.
(1.9 in the case of the decay along the pipe. For the inter-

apwediate evolution characterized by the profBe8), the char-
acteristic time ig~ (1 6%) ~ 1. Thus, the time rati¢/  (where
7 is the velocity correlation timecan be estimated agr
~(L/8)?>1. In the case when the passive scalar evolution is
determined by the interplay of the viscosity and advection
the lengthé has to be substituted bst,. Then using the
estimates formulated earlier we find that~ Peé’>>1.

IV. CONCLUSION

We have investigated the passive scétamcentration of
pollutants or temperatuyevolution in the chaotic and turbu-
lent flows near the boundargwall), which dominates(at
large S¢ the advanced stages of the passive scalar homog-
enization. There are some universal features of the decay
related to the universal velocity dependence on the coordi-
nate perpendicular to the wall. We assumed that the Schmidt
number Sc is large enough to guarantee the condition
>r, whereL is the width of the peripheral region ang is
the thickness of the diffusive boundary lay@rhich is deter-
mined by equating the molecular diffusivity and the eddy
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diffusivity). The width of the peripheral region is the thick- ary layer,ry, (which is determined experimentally by a maxi-
ness of the viscous boundary layer for the developed highmum in the passive scalar fluctuatipnand for the decre-
Reynolds-number turbulence. For the elastic turbuldné®  ments of the passive scalar decay along the pipe.
the vessel sizéor the pipe radius for the decay along the The peripheral region serves as a source supplying the
pipe). passive scalar to the bulk. Since the passive scalar decay in
We have considered the evolution beginning after that hothe peripheral region is slogcomparing to the bulk it can
mogenization of the passive scalar is finished in the bulkbe considered as a quasistationary source of the passive sca-
Then the initial passive scalar distribution is characterized byar for the bulk, where the passive scalar correlation func-
the lengthL, which is much larger thar,, . The first stage of tions adjust adiabatically to the level of the supply. Therefore
the passive scalar decay in the peripheral region is insensibe situation is close to one characteristic of the passive sca-
tive to diffusion. The characteristic length of the passive scalar, supplied by pumping, in a smooth random velocity field.
lar distribution at this stagé satisfies the inequalitids>5  Statistical properties of the passive scalar in this case were
>ryp,. For the decay in a closed vessel the length behaves &amined in Refs[7-9]. Particularly, correlation functions
5xt~ 12 whereas for the decay along pipe-z ' (wherez  Of the passive scalar in the bulk should possess a behavior
is coordinate along the pipeThe passive scalar inhomoge- close to the logarithmic one. This prediction is also in agree-
neity is kept mainly for separationg from the boundary, ment with the experimental dafa4,19.
satisfyingg< & whereas for largeq the advection effectively One of the remarkable predictions of our theory is strong
homogenizes the passive scallire mechanism is in stretch- intermittency of the passive scalar and extreme anomalous
ing producing small-scale fluctuations of the passive scalagcaling of its moments for the dependence on the separation
which are effectively removed by diffusipn from the boundaryg: all the moments scale identically as
When 6 achieves the thickness of the diffusion boundaryd ® for L>q>é or L>q>ry,, depending on the stage.
layer, rp,;, the decay of the concentration of pollutants be-Physically that means that a system of filamelatssheets
comes exponential. This character of the decay is explaine@f the passive scalar is formed, which contractjascreases.
by the space distribution of the passive scalar inhomogeneTheir dynamics is diffusionless and therefore the passive sca-
ities, which are concentrated mainly in the diffusive bound-lar 6 in the filaments is of the order of its boundary value. At
ary layer, and decay due to the flow to the bulk, which isthe conditiong>& or g>ry, the filaments occupy a small
proportional to the level of the inhomogeneities. The decrefraction of the volume, which explains the strong intermit-
ments of the decay can be expressed in terms of the Pecli@ncy. As to the correlation functions of the passive scalar,
number which is PeV L/ (whereV, is the amplitude of our theory predicts some definite self-similar and scaling be-
the velocity fluctuations in the bulk and is the molecular haviors, which are complex due to the space inhomogeneity
diffusivity). For the viscous boundary layer the Peclet num-characteristic of the problem. It would be interesting to
ber coincides with the Schmidt number, whereas for the elascheck the predictions experimentally.
tic turbulence it differs from the Schmidt number by the The final remark concerns an extension of our results to
factor which is the Reynolds number. For the time decay thé@ther problems. As it was noted in the papé}; the scheme
decrement is proportional to P¥% whereas for the decay developed for the passive scalar decay can be without serious
along the pipe the decrement is proportional to B For mo_dlflcanons z_ipplled to _fasF binary chemical reactions. W_e
the temperature fixed at the boundary the second stage glieve that minor modifications of the scheme can make it
characterized by a quasistationary distribution, since the bulRPplicable for more complicated chemical reactions. The
serves as a big reservoir keeping its temperature constant aféher problem, which can be posed for the peripheral region,
absorbing heat, transferred from the boundary. is dynamics of polymergsay, for the case of the elastic
We neglected an inhomogeneity of the passive scalafurbulence. Then one should go beyond the scope of the
along the wall. It is motivated by the faster decay of thePassive approach.
passive scalar fluctuations, related to such inhomogeneity,
both in time and in spacén the regiong>34 or g>ry,, ACKNOWLEDGMENTS
depending on the stageHowever, in some cases the inho-
mogeneity can play an essential role. It is a subject of sepa- We thank M. Chertkov and I. Kolokolov for helpful dis-

rate investigation. cussions and V. Steinberg for valuable remarks.
Our theoretical predictions can be compared with the ex-
perimental data presented in the pap[éﬂs,lq, obtained for APPENDIX: PAIR CORRELATION FUNCTION
the dye concentration decélyomogenizatiopalong the cur- .
vilinear pipe, where the chaotic flovelastic turbulenceis The eddy diffusion operatoh is given by the last terms

excited in a dilute polymer solution. The most interestingof Eq. (1.7). It can be rewritten as
comparison concerns the Pe dependence of different quanti-

ties, which was extracted from the experimgt@] by vary- P DI\ 4
ing the diffusion coefficienk by two orders of magnitudét A=D — — + ( _ | —. (A1)
was done by changing the molecular weight of the dye car- axtaxt | ax' [ axX!

riers). The experimental datécorresponding to the second '
stage in our theoretical schejrae in a good agreement with Here X' is an extended set of variable&oordinates
the law Pe ¥ both for the thickness of the diffusion bound- {q;,r11,r 12,92, 21.F 25}, and the tensob is
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Mqél1 0 0 quiqﬁ M‘ﬁ%(ru_ r1) M(ﬁ%(rlz_ r22)
0 Hyg0? 0 pO195(r—r11)  Higgp+d* dt?
0 0 Hy003 191951 25— T 1) d?! H,q;0,+d?
D= H.0202 2, 2, 4 :
30105 #0105(r22— 1) p0105(ra1—r19) Jeaep 0 0
MQ%Q2(V11_"21) Hyq,0,+d™ d*? 0 Hloqg 0
MO0 (T 12— T 20) d?! Hq,0,+d* 0 0 H1005
(A2)

Hi=Hio— (s +3Hz0/2)[ (r 11— 2%+ (F 12— 2971, R e @0 - &T} d oDl d
(A3) AZDIITiTJ—k—l‘FD”Ti _k —|+ — J_k
X 5 aY* oY aY®) oY X! aY
Haz=p+Had (ri—ro0)+(rio—ronl, (A4)
. ~. 0 . d
d" =Ho01qa(r i —rai)(ryj—roj)- (A5) =Dl — —+fl—, (AB)
A aY' aY! aY'
Now we turn to the new set of variablesy'
={Q.a,R1,R;,0,¢}, where Q=(0;:+0,)/20=0:-02.R;
=(rqj+ry)/2,0 COSPp=r11— 51,0 SiNp=r1,— .  Then _
the eddy diffusion operatoh is transformed to WhereT}zaY‘/aXj is the Jacoby matrix,
1/2 0 0 1/2 0 0
1 0 0 -1 0 0
0 1/2 0 0 1/2 0
T= (A7)
0 0 1/2 0 0 1/2
0 COS¢ sing 0 —C0S¢ —sing
0 -—sin(¢)/le cogep)le 0 sing)/e —codep)le

After some algebraic manipulations one can easily obtain the new tBrisand the first order terrfi. The exact expressions
are rather bulky. However, if the initial distribution of scalar depends solelg, @he only relevant terms are those preceding
dq.dq.d, - Therefore one can reduce the final variables s¢Qy,¢}. In the limit Q>q,{—0 one obtains

Q*(u+Hsz00%2) 2uQ%q -uQ%
D= 2uQ%q 4uq°Q%*—2H3Q%0? —uQ%ge : (A8)
—uQ3 - rQ%qe (2 +H0) Q%+ H; 0
[
fO=4Q3(u+Hs?2), f9=0, A= (u+H300%/2) 36Q%do+ 4uQ3qdodq— 2uQ3% dod,
+(4uQ2%9?—2H3Q*0?) 75— 21Q%q0 dgdo +[ (21
H 2
fo— 1Q°q —4( .+ 3H,/2)Q%. (A9) +H20 Q%0+ H1g0’]95 +4Q%(u+Han?/2) dg
H 00
+ 0 —4(n+3H02)Q%p |, . (A10)

Then we obtain the following expression for the operdtor  This leads to the expressida.20).
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