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Passive scalar evolution in peripheral regions
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We consider the evolution of a passive scalar~concentration of pollutants or temperature! in a chaotic
~turbulent! flow. A universal asymptotic behavior of the passive scalar decay~homogenization! related to
peripheral regions~near walls! is established. The passive scalar moments and their pair correlation function in
the peripheral region are analyzed. A special case investigated in our paper is the passive scalar decay along a
pipe.
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INTRODUCTION

The problem of mixing attracts great attention both due
its fundamental significance and a variety of applicatio
Mixing rate of an additive to a fluid is very sensitive to th
character of the hydrodynamic flow excited in the fluid. R
cently an essential breakthrough was achieved in the th
of the so-called passive scalar~which can be concentration o
pollutants or temperature! in chaotic and turbulent flows~see
reviews@1,2#!. The word ‘‘passive’’ means that a feedback
the scalar field to the flow is negligible. It is correct for dilu
solutions of pollutants and for relatively weak fluctuations
temperature. The passive scalar in a fluid is subjected
diffusion ~thermodiffusion! and advection, leading to th
evolution of its spatial distribution. A final result of the evo
lution is a homogeneous state of the passive scalar. We
interested in the passive scalar decay, that is, in the l
governing the homogenization of the passive scalar field
chaotic and turbulent flows. We consider the case of the la
Schmidt number Sc which is the ratio of the kinematic v
cosity of the fluidn to the diffusion~thermodiffusion! coef-
ficient k.

As is noted in the paper@3#, at large Sc the homogeniza
tion of the passive scalar field in the peripheral regions
slower than in the bulk since mixing is suppressed near w
of the vessel. Then the advanced stages of the passive s
decay are dominated just by the peripheral regions. In
paper@3# main stages related to the passive scalar evolu
in the peripheral region were established~see also the pape
@4#!. Here we develop further the theory of the passive sc
evolution in the peripheral region having in mind two diffe
ent physical situations. The first case is the passive scal
the viscous boundary layer of the developed~high-Reynolds-
number! turbulence~explanations of its properties can b
found in the book of Monin and Yaglom@5#!. The second
case is the peripheral region of a chaotic flow. A perf
example of such a flow is the so-called elastic turbule
state revealed by Groisman and Steinberg@6# in dilute poly-
mer solutions. Both the velocity in the viscous bounda
layer~in the first case! and the chaotic velocity~in the second
case! can be treated as smooth. For the elastic turbulence
explained by the character of the velocity spectrum wh
decays faster thank23 @6#. Though we consider two physi
cally different cases, their unified description is admitted
1063-651X/2004/69~3!/036301~11!/$22.50 69 0363
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cause of the universal behavior of the fluid flow near a w
The smoothness of the random velocity field is one of

key ingredients of our analysis. The theory of the pass
scalar in a smooth random flow was pioneered by Batch
@7# and Kraichnan@8# who considered the cases of velociti
long correlated and short correlated in time, respectively. T
case of arbitrary velocity correlation time was considered
the paper@9#. In the works the flow was treated as u
bounded and the passive scalar was assumed to poss
stationary statistics due to pumping. Properties of the pas
scalar decay in an unbounded statistically homogeneous
dom flow are also known. As was demonstrated in the pa
@10#, in the inertial range of the developed turbulence t
scalar decays in accordance with a power law. Besides,
interesting to consider the passive scalar decay in the Ba
elor region of scales~below the Kolmogorov viscous scale!,
where the velocity field is smooth~for details see, e.g., the
book of Batchelor@11#!. The decay law of the passive scal
in the region is exponential, as is demonstrated in the pa
@12,13#. The same consideration is applicable to the ela
turbulence. In the paper@3# the combined case was consi
ered, when both the inertial region of scales and the Ba
elor region of scales are taken into account. Then the pas
scalar decay is dominated by eddies from the inertial inter
~excluding, maybe, some initial stage of evolution! and is,
consequently, governed by a power law.

As is noted in the paper@3# the theory of the passive
scalar in the random flow, developed for the bulk, need
modification for the peripheral region even for the smoo
flow. The reason is that the approximation of the velocity
linear profiles, used for the bulk, fails in the peripheral r
gion. However, near a wall, the velocity possesses a defi
dependence on the separation from the wall, explaining
universal properties of the passive scalar decay in the per
eral region. Another property, simplifying an analysis, is t
slowness of the passive scalar mixing in the peripheral
gion, enabling one to treat the velocity as short correlat
The first problem, we consider, is an evolution of the co
centration of pollutants, when the boundaries are conside
as impenetrable for the pollutants. This approach can be
tended to the case of the binary chemical reactions~see the
paper@4#!. Another problem, which can be treated inside o
approach, is the temperature relaxation in the bulk, if
temperature at the walls of the vessel is fixed. Then a h
©2004 The American Physical Society01-1
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flow from the boundary to the bulk is forced which is go
erned just by the velocity fluctuations in the peripheral
gion. The passive scalar evolution can be examined also
fluid ~where random motion is excited! flowing through a
pipe. Then the role of time is played by the coordinate alo
the pipe. This setup is closely related to the experimen
Groisman and Steinberg@14#.

A remarkable property of a turbulent flow is its stron
intermittency leading to the so-called anomalous scaling
the velocity correlation functions, which are dependent
the integral scale of turbulence at a power, referred to as
anomalous scaling index~see, e.g., the book of Frisch@15#!.
Theoretically, an existence of the anomalous scaling of s
kind was established for the passive scalar in the framew
of the so-called Kraichnan model~see Ref.@16#!. One could
anticipate that the same phenomenon takes place for the
sive scalar decay. We demonstrate that in the periphera
gion the passive scalar moments possess, indeed, an an
lous scaling, which is in some sense extreme. Namely, all
moments of the passive scalar damp in accordance with
same power law at increasing the separation from the w

The paper is organized as follows. In Sec. I we pres
general equations, which describe the passive scalar ev
tion in the peripheral region. In Sec. II we analyze the p
sive scalar evolution near the wall of the vessel. In Sec.
we consider the passive scalar decay along a pipe. S
general remarks and a short comparison with experimen
presented in the Conclusion.

I. GENERAL RELATIONS

Advection of a passive scalar fieldu by a moving fluid
~accompanied by the passive scalar diffusion! is described by
the equation

] tu1v•“u5k¹2u , ~1.1!

wherev is the flow velocity andk is the diffusion coeffi-
cient. Below, the fluid is assumed to be incompressible~that
is, “•v50). A formal solution of the Cauchy problem fo
Eq. ~1.1! can be written as

u~ t2!5T expH E
t1

t2
dt @2v~ t !•“1k¹2#J u~ t1!, ~1.2!

where expT means a chronologically ordered exponent.
course, some boundary conditions for the passive scalu
should be introduced. There could be two different types
the boundary conditions. Ifu is temperature~and walls are
made of a well heat conducting material! then u is fixed at
the boundary. Ifu is the density of pollutants and the wall
impenetrable for the pollutants then the gradient ofu in the
direction perpendicular to the boundary is zero~which cor-
responds to zero pollutant flux to the boundary!.

We consider a random flow which has to be characteri
statistically: via correlation functions. The correlation fun
tions are averages over time, they can be treated als
averages over velocity realizations. The flow is assumed
be statistically homogeneous in time, whereas there is
homogeneity in space~because of the boundary effects!.
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Here we consider the flow in a closed vessel where
average velocity is equal to zero. A generalization to the c
when the average velocity is nonzero is trivial~it can be
found in Sec. III where a fluid pushed through a pipe
treated!. The pair velocity correlation function
^va(t1 ,r1)vb(t2 ,r2)& depends on the time differencet12t2
only ~due to the assumed time homogeneity!, and on coordi-
nates of both pointsr1 and r2 .

We have in mind two physically different situations. Firs
it is the viscous boundary layer of the developed hig
Reynolds number turbulence~for details see, e.g., the boo
@5#!. Second, it is the peripheral region of a chaotic flow.
a perfect example of the chaotic flow, the elastic turbulen
can be noted@6#. In both cases the velocity is smooth in th
peripheral region we are interested in. That means that
velocity does not contain components with scales sma
thanL whereL is the width of the viscous boundary layer~in
the first case! and the vessel size~in the second case!. Be-
sides, the velocity field possesses some peculiarities, rel
to zero value of the velocity at the boundary. That makes
passive scalar decay in the peripheral region slow. Since
velocity correlation time is determined by dynamics in t
bulk, which is relatively fast, at examining the passive sca
evolution in the peripheral region the velocity can be trea
as short correlated in time. It is well known that in this ca
closed equations for the passive scalar correlation funct
can be derived. Below, we demonstrate principal steps of
derivation, based on Eq.~1.2!.

Let us examine the passive scalar evolution on a ti
interval (t1 ,t2) taking the differencet22t1 much larger than
the velocity correlation timet, but much smaller than the
characteristic mixing time~the gap between the mixing tim
and the velocity correlation time exists due to the no
weakness of mixing in the peripheral region related to
inequality Sc@1). The last condition enables one to produ
an expansion of theT exponent in Eq.~1.2!. One may keep
only two first terms of the expansion

u~ t2!'u~ t1!1~ t22t1!k¹2u~ t1!2E
t1

t2
dtv~ t !•“u~ t1!

1E
t1

t2
dt E

t1

t

dt8v~ t !•“@v~ t8!•“u~ t1!#. ~1.3!

The next step is averaging over the velocity statistics ins
the interval (t1 ,t2). This averaging is independent of th
velocity profiles att,t1 and t.t2 due to the conditiont2
2t1@t. Averaging the expression~1.3!, one obtains a rela-
tion for the average valuêu& of the passive scalar

^u~ t2 ,r!&2^u~ t1 ,r!&5~ t22t1!k¹2^u~ t1 ,r!&1~ t22t1!

3¹a@Dab~r,r!¹b^u~ t1 ,r!&#, ~1.4!

Dab~r1 ,r2!5E
0

`

dt ^va~ t,r1!vb~0,r2!&, ~1.5!

where a fast enough decay of the pair velocity correlat
function with t is implied. We used also the incompressibili
1-2
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PASSIVE SCALAR EVOLUTION IN PERIPHERAL . . . PHYSICAL REVIEW E 69, 036301 ~2004!
condition“•v50. The quantitŷ u& means a value average
over the velocity fluctuations. Ift22t1 is smaller than the
mixing time, then the right-hand side of Eq.~1.4! is a small
correction tô u&. Therefore Eq.~1.4! can be rewritten in the
differential form

] t^u&5¹a@Dab~r,r!¹b^u&#1k¹2^u&. ~1.6!

The quantityDab , entering Eq.~1.6!, can be called the
eddy diffusion tensor, since it describes diffusion of the p
sive scalar related to its chaotic displacements in the ran
flow ~similar to the Brownian motion!. This effect can be
compared to the turbulent diffusion causing a passive sc
evolution in turbulent flows on scales larger than the integ
scale. However, the eddy diffusion tensorDab is connected
with a smooth flow, and can be, consequently, used for
scription of the passive scalar dynamics on small scale
coordinate dependence ofDab is related to the statistica
inhomogeneity of the random flow near the boundary~wall!.

Analogously, starting from Eq.~1.2!, one can derive
closed equations for high-order correlation functions ofu.
Say, the equation for the pair correlation functionF is

] tF~ t,r1 ,r2!5k~¹1
21¹2

2!F1¹1a@Dab~r1 ,r1!¹1bF#

1¹2a@Dab~r2 ,r2!¹2bF#

1¹1a@Dab~r1 ,r2!¹2bF#

1¹2a@Dab~r2 ,r1!¹1bF#, ~1.7!

F~ t,r1 ,r2!5^u~ t,r1!u~ t,r2!&. ~1.8!

Generally, the equation for thenth order correlation function
Fn of the passive scalar is

] tFn5k (
m51

n

¹m
2 Fn1 (

m,k51

n

¹ma@Dab~rm ,rk!¹kbFn#,

~1.9!

Fn~ t,r1 , . . . ,rn!5^u~ t,r1!•••u~ t,rn!&. ~1.10!

The structure of Eq.~1.9! is transparent: the evolution of th
passive scalar correlation function is determined by the m
lecular diffusion~the first term in the right-hand side! and by
the eddy diffusion~the second term in the right-hand side!.

Note that if the molecular diffusivity is negligible then
is possible to obtain a closed equation for the mome
^un(r)&5Fn(r, . . . ,r) from Eq. ~1.9!,

] t^u
n~r!&5¹a@Dab~r,r!¹b^un~r!&#, ~1.11!

which is identical to Eq.~1.6!, without the molecular diffu-
sion term. Equation~1.11! is a direct consequence of th
relation] t(u

n)52v•“(un), which follows from Eq.~1.1!,
if the molecular diffusion is neglected.

The eddy diffusion tensorD can be estimated asD
;V2t, whereV is the characteristic value of the veloci
fluctuations, andt is the velocity correlation time, which ca
be estimated ast;L/VL . HereL is the size of the viscous
boundary layer~Kolmogorov length! in the case of the high
03630
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Reynolds number turbulence and the size of the vessel in
case of the chaotic flow~elastic turbulence!, andVL is char-
acteristic value of the velocity fluctuations in the bulk. F
the high-Reynolds number turbulenceVL is the friction ve-
locity in the boundary layer. The weakness of the pass
scalar decay inside the peripheral region is explained
smallness of the ratioV/VL there. The weakness makes th
passive scalar evolution in the peripheral region slow, th
justifying our approach where velocity is treated as sh
correlated in time. Note that for the elastic turbulencet is
determined by the polymer relaxation time and the condit
t;L/VL is no other than the Lumley criterion of stron
polymer elongation formulated in Ref.@17# ~see also Ref.
@18#!.

Let us explain the physical meaning of the passive sc
correlation functions. They are averages of the passive sc
fluctuations over the velocity statistics. Therefore, to obt
the correlation functions experimentally or in numerics, o
has to measure the passive scalar decay many times~for
many realizations of the velocity field! and then to average
the result over the attempts. Initial conditions for the pass
scalar field are implied to be fixed at the averaging pro
dure. If we consider the case of a fluid pushed throug
pipe, then the passive scalar correlation functions are stat
ary. Then they can be treated as averages over long tim

Below we consider a passive scalar evolution in the
ripheral region. We assume that mixing already produced
homogeneous distribution of the passive scalar in the b
~recall that the process in the bulk is much faster than
periphery!. And we subtract fromu a constant, correspond
ing to the bulk value ofu ~this redefinition does not chang
the equations describing the passive scalar evolution!. In
other words, the value ofu tends to zero when we go awa
from the boundary. Analyzing the evolution of the passi
scalar after the homogenization in the bulk, we treat its ini
valueu0 as dependent mainly on the separation from the w
and practically independent of coordinates along the wal

II. DECAY IN A VESSEL

Here we consider the passive scalar decay in a clo
vessel. If the walls of the vessel are smooth and their cur
ture is of the order of the vessel size, then at considering
peripheral region the boundary can be treated as flat in
main approximation. Then it is possible to introduce the
thogonal reference system, where the coordinateq measures
separation from the boundary andr z are coordinates along
the wall. In the reference frame the incompressibility con
tion is written as]qvq1]v1 /]r 11]v2 /]r 250, wherevq is
the velocity component perpendicular to the wall andv1,2 are
the components along the wall. Sincev1,2 tends to zero as
q→0 thenv1,2}q near the boundary, and the incompressib
ity leads to the proportionality lawvq}q2. This is the main
feature of the velocity profile in the peripheral region.

For the flat wall, it is natural to assume homogeneity
the velocity correlation functions along the wall and al
their isotropy in the planes parallel to the wall. Then w
obtain a general expression for the components of the e
diffusion tensor~1.5!,
1-3
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Dzs~r1 ,r2!5H1~% !dzsq1q21H2~% !%z%sq1q2 ,

Dqs~r1 ,r2!52
1

2
H18~% !

%s

%
q1

2q22
1

2
@%H28~% !

13H2~% !#%sq1
2q2 ,

Dzq~r1 ,r2!5
1

2
H18~% !

%z

%
q1q2

21
1

2
@%H28~% !

13H2~% !#%zq1q2
2 ,

Dqq~r1 ,r2!52
1

4 FH18~% !

%
1H19~% !Gq1

2q2
22

1

4
@6H2~% !

16%H28~% !1%2H29~% !#q1
2q2

2 , ~2.1!

where%z5r 1z2r 2z , H1 and H2 are some functions of%,
and the subscriptsz, s are running over 1 and 2. The stru
ture of the eddy diffusion tensor~2.1! is explained by theq
dependence of the velocity near the wall~stated above!. The
dependence leads to the proportionality lawsDqa}q1

2, Dza

}q1 , and analogously for the second point. Then the% de-
pendence of the tensor components is established using
conditions ¹1aDab(r1 ,r2)505¹2bDab(r1 ,r2), following
from the incompressibility.

Since we consider the region where the velocity field
smooth, then bothH1 and H2 have regular expansion in%
~containing even powers! at small%, that is, at%!L ~recall
that L is the thickness of the peripheral region which is t
thickness of the viscous boundary layer in the case of
developed turbulence and is of the order of the vessel size
the elastic turbulence!. In this limit the main contribution to
the eddy diffusion tensor is determined by first terms of
expansion

H1'H102~m13H20/2!%2, H2'H20, ~2.2!

Dzs'H10dzsq1q2 , Dqq'mq1
2q2

2 . ~2.3!

The quantity m characterizes the flow intensity near th
boundary. It can be estimated asm;VL /L3, where, as pre-
viously, VL is the characteristic velocity fluctuation in th
bulk. In the framework of the Karman-Prandtl theory of t
viscous boundary layer~for details see, e.g., the book@5#!
the width of the layer is estimated asL;n/VL ~wheren is
kinematic viscosity of the fluid! and one findsm;VL

4n23.
For the elastic turbulenceL is the vessel size andm
;VL

4n23Re23, where Re5VLL/n is the Reynolds number.
Comparing the eddy diffusion term for the motion perpe

dicular to the wall, which can be estimated asmq4]q
2 , and

the molecular diffusion termk]q
2 , one finds the width of the

boundary diffusion layer

r bl5~k/m!1/4. ~2.4!

We assume thatr bl!L. The relation can be rewritten as P
@1 where Pe is the Peclet number: Pe5VLL/k. As follows
from Eq. ~2.4!, L/r bl;Pe1/4. For the case of the viscou
03630
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boundary layer, one obtains Pe;Sc, where Sc5n/k is the
Schmidt number. For the elastic turbulence, one find
slightly different estimate Pe;Sc3Re.

A. Average scalar

Here we consider the simplest possible correlation fu
tion: the average value of the passive scalar^u&. The quan-
tity essentially depends on the separation from the wallq and
slowly depends on the coordinates along the wall. We ign
the last dependence, assuming that its characteristic leng
the vessel size. Then we find from Eqs.~1.6! and ~2.3! the
following equation for the object:

] t^u&5m]q~q4]q^u&!1k]q
2^u&. ~2.5!

The advection term~with m) in Eq. ~2.5! dominates inq
@r bl and the diffusion term~with k) dominates atq!r bl ,
where r bl is the thickness of the boundary diffusion lay
defined by Eq.~2.4!. As we explained in the last paragrap
of Sec. I, at solving the problem we should assu
lim

q→`
^u&50, since largeq corresponds to the bulk, wher

u is assumed to tend to zero. The condition is implied belo
We examine the passive scalar evolution in the periph

region, which begins after its homogenization in the bulk
finished. Then the initial distribution of the passive scalar h
the characteristic lengthL. The subsequent evolution is d
vided into two stages. At the first stage the thicknessd of the
layer, whereu is concentrated, diminishes asd5(mt)21/2.
Whend reachesr bl , the second stage starts, which is ch
acterized by the fixed spatial scaler bl .

At treating the first stage one can omit the diffusion te
~with k) in Eq. ~2.5!, which leads to the equation

] t^u&5m]q~q4]q^u&!. ~2.6!

Looking for a solution̂ u&5exp(2st)ws(q), one obtains from
Eq. ~2.6!,

ws5Ap

2 S s

mq2D 3/4

J3/2~As/mq21!. ~2.7!

Using the orthogonality relation

E
0

`

dqws~q!ws~q!5
ps3/2

m1/2
d~s2s!,

one finds a general solution of Eq.~2.6!,

^u~ t,q!&5E
0

`

dsws~q!
Am e2st

ps3/2 E
0

`

dq8 ws~q8!u0~q8!

~2.8!

in terms of the initial passive scalar distribution. The a
proximation~2.8! is correct providedd@r bl ~then it is pos-
sible to neglect the diffusion boundary layer where diffusi
is relevant!.

We start from a distribution ofu with the characteristic
length L. Therefore at times, whend!L and atq!L, one
1-4
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can substituteu(t50) in Eq. ~2.8! by q05u(t50,q50).
Taking then the integrals in Eq.~2.8!, one derives

^u~ t,q!&5
q0

p E
0

`ds

s
e2stws~q!

5q0FerfS d

2qD2
d

Ap q
expS 2

d2

4q2D G . ~2.9!

This profile has a universal form insensitive to details of
initial distribution ofu. Let us stress that the expression~2.9!
implies contraction of the region occupied by the pass
scalar sinced5(mt)21/2. If q@d then one obtains from Eq
~2.9!,

^u&'
q0d3

6Apq3
. ~2.10!

If q!d then we find^u&5q0 . So, the value ofu is practi-
cally unchanged inside the layerq,d.

Note that though Eq.~2.6! has form of the conservatio
law for ^u&, the total amount of the passive scalar in t
peripheral region*dq ^u& appears to be time dependent,
the expression~2.9! is integrated. The reason is that the co
sidered solution corresponds to nonzero passive scalar
directed to largeq, i.e., to the bulk, which can be treated as
big reservoir. This fluxmq4]q^u& can be obtained directly
from the asymptotic expression~2.10!. Note also that the
passive scalar evolution at the first stage is insensitive to
boundary conditions, and therefore it is described identic
for the concentration of pollutants and temperature.

Now we analyze the passive scalar behavior at the sec
stage, then the diffusion term cannot be ignored. Let us
examine the case when the passive scalar represents the
centration of pollutants. Then Eq.~2.5! has to be supple
mented by the boundary condition]q^u&50 at q50, which
means zero flux of pollutants to the boundary. At long tim
only the contribution related to the minimal~by its absolute
value! eigenvalue of the operator in the right-hand side
Eq. ~2.5! is left. That leads to the exponential decay^u&
}exp(2gt). The value ofg is g5cEAkm, where the factor
cE can be found numerically, it iscE'1.81. The asymptotic
behavior of ^u& can be related to the initial value of th
passive scalarq0 near the wall: ^u(q50)&5c0q0exp
3(2gt), wherec0'1.55. The total amount of the scalar ne
the boundary behaves as*dq ^u&5c1q0r blexp(2gt), where
c1'1.55.

Let us now consider the case when the passive scalu
represents temperature, assuming that it is fixed at
boundaryu(q50)5q0 . Then after the first stage a quas
stationary distribution of̂u& is formed, since the bulk can b
treated as a big reservoir having a constant temperature.
quasistationary distribution can be found directly from E
~2.5! where the term with the time derivative has to be om
ted,
03630
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^u&5
2A2

p
k3/4m1/4q0E

q

` dq1

mq1
41k

. ~2.11!

At q@r bl we find, again,̂ u&}q23. That corresponds to a
nonzero passive scalar flux~heat flux! to the bulk. This flux
is time independent in the case considered.

Now we can justify the time separation leading to E
~1.9!. For the intermediate evolution characterized by t
profile ~2.9!, the characteristic time ist;(md2)21. Thus, the
time ratio t/t ~wheret is the velocity correlation time! can
be estimated ast/t;(L/d)2@1. In the case when the passiv
scalar evolution is determined by the interplay of the visc
ity and advection, the lengthd has to be substituted byr bl .
Then using the estimates formulated earlier we find thatt/t
;Pe1/2@1.

B. High moments

As we already noted, at the first stage the diffusive term
the equation for the passive scalar correlation functions
be omitted. Then the closed equation~1.11! for high mo-
ments of the passive scalar is correct. The high mome
~similar to the first one! depend mainly onq and we ignore
their dependence on the coordinates along the wall. Th
substituting into the equation the expressions~2.3!, one finds

] t^u
n&5m]q~q4]q^u

n&!, ~2.12!

which is a generalization of Eq.~2.6!. Its solution can be
written as the expression~2.8!,

^un&5E
0

`

dsws~q!
Am e2st

ps3/2 E
0

`

dq8 ws~q8!u0
n~q8!.

~2.13!

The expression~2.13! implies thatd@r bl since only at this
condition it is possible to neglect the regionq;r bl where the
diffusion is relevant. Since the initial distribution ofu has the
characteristic lengthL, at the conditiond!L we obtain,
again, a universal expression

^un&5q0
nFerfS d

2qD2
d

Ap q
expS 2

d2

4q2D G , ~2.14!

which is a generalization of Eq.~2.9!. The expression show
that in the regionq@d, ^un&'q0

nd3/(6Ap q3).
Actually, the expression~2.13! is correct for any averaged

local function of the scalaru. We can use it to find the loca
scalar PDFP(t,q,u)5^d@u2u(t,q)#&. Let us first rewrite
the expression like Eq.~2.13! as

P~ t,q!5
1

q3/2E0

`

dkE
0

` dq8

~q8!3/2
k exp~2mk2t !

3J3/2~k/q!J3/2~k/q8!P~0,q8!. ~2.15!

One can take the integral overk in Eq. ~2.15! to obtain
1-5
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P5
1

Apmt
E

0

` dq8

qq8
expF2

1

4q2mt
2

1

4q82mt
GP~0,q8!

3H coshF 1

2qq8mt
G22mtqq8sinhF 1

2qq8 mt
G J .~2.16!

Let us assume that the initial scalar distribution is a mo
tonic functionu0(q), which is equal to zero atq→` and
reaches a maximum value atq→0. Then P(t50,q,u)5
2@1/u08(q)#d@q2q0(u)#, where the functionq0(u) is deter-
mined from the relationu0(q0)5u. Calculating the integra
~2.16!, one finds

P~ t,q,u!5
1

qq0uu08~q0!u
FgS 1

q
2

1

q0
D ~122mtqq0!

1gS 1

q
1

1

q0
D ~112mtqq0!G ,

g~x!5
1

2Apmt
expS 2

x2

4mt D . ~2.17!

Whent grows, the boundary layer, determined byd, shrinks,
that is, the characteristic value ofq decreases. Besides,q0 is
fixed at a givenu. Therefore one can expand the express
in the square brackets in Eq.~2.17! in 1/q0 to obtain a uni-
versal probability distribution

P5
1

12q2Ap~mt !5/2q0
3uu08~q0!u

expS 2
1

4q2mt
D .

~2.18!

Unfortunately, expression~2.18! cannot be utilized for calcu
lation of the moments ofu, since the integrals*du unP(u)
diverge near the maximum value ofu, q0 . The reason is tha
the expression~2.18! is correct only ifq0(u)@q, which is
violated at smallq0 , corresponding tou close toq0 .

At the second stage diffusion starts to be relevant, and
impossible to obtain closed equations for the mome
^un(t,q)&. To find the moments one has to solve the co
plete equations~1.9! for the passive scalar correlation fun
tions, which is a complicated problem. One can say only t
due to linearity of the problem, the asymptotic in time b
havior of the correlation functions~and, consequently, mo
ments! is determined by the minimal eigenvalue of the o
erator in the right-hand side of Eq.~1.9!. Therefore for the
concentration of pollutantŝun(t,q)&}exp(2gnt) where gn

;Akm. The estimate can be obtained by equating the t
derivative, the eddy diffusion term, and the molecular dif
sion term in Eq.~1.9!. If we consider the regionq@r bl then
it is possible to neglect the molecular diffusion term in E
~1.9! and we return to the closed equation~2.12!. There the
time derivative] t can be substituted by2gn and we con-
clude that at the same conditionq@r bl it is possible to ne-
glect the term with the time derivative in Eq.~2.12!. There-
fore we obtain, again, the asymptotic behavior
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^un~ t,q!&}q23, ~2.19!

at q@r bl . The situation here is analogous to one for t
average passive scalar, since Eq.~2.12! has the form of con-
servation law for the high moments. The laws^un(t,q)&
}q23 correspond to nonzero fluxes of high degrees of
passive scalar.

Now we can turn to the case when the passive scala
temperature, fixed at the boundary. If the temperature in
bulk is different from that at the boundary then a heat flow
produced from the boundary to the bulk. Since the bulk i
big reservoir then in the main approximation its temperat
can be treated as time independent. In this case statisticsu
becomes quasistationary at the second stage~all the correla-
tion functions are independent of time!. The equations for the
passive scalar correlation functions are determined by
~1.9! where the time derivative can be omitted. Particular
at q@r bl one obtains the closed equation for the mome
~2.12! ~where time derivative has to be omitted! leading to
the same law~2.19!. Inside the diffusion boundary layeru
;q0 , whereq0 is the temperature at the boundary~recall
that we assumeu50 in the bulk!. Then, as it follows from
Eq. ~1.11!, ^un&;q0

n(r bl /q)3.
We established that ifq@d at the first stage or ifq@r bl at

the second stage then the law~2.19! is valid. Moreover, it is
possible to formulate the estimates^un&;^u&n(q/d)3(n21)

for the first stage and the inequalities^un&
*^u&n(q/r bl)

3(n21) for the second stage. The estimat
show that the high moments of the passive scalar are m
larger than their Gaussian evaluation. This property imp
strong intermittency in the system. The expression~2.19! can
be treated as a manifestation of anomalous scaling. It is
treme since the exponent characterizingq dependence of the
moments is independent ofn.

C. Pair correlation function

Here we examine the pair correlation functionF(r1 ,r2).
One could anticipate its nontrivial scaling behavior in t
region q1 ,q2@d ~for the first stage! or q1 ,q2@r bl ~for
the second stage!. If q1@q2 then only the term
¹1a@Dab(r1 ,r1)¹1bF# in Eq. ~1.7! should be kept, and we
come to the conclusion thatF}q1

23. Therefore we obtain the
behavior, which is similar to the passive scalar moments
this asymptotic case.

Now we consider the case of close pointsr1 and r2 , as-
suming small value of%z5r 1z2r 2z , %!L, admitting the
expressions~2.3! and q!Q, where Q5(q11q2)/2 and q
5q12q2 . Then one obtains from Eq.~1.7!,

] tF5m]Q~Q4]QF !1~k/2!]Q
2 F12k]q

2F1$4mQ3q]Q]q

22mQ3%]Q]%1@H10q
2/%22~2m

13H20!Q
2%#]%%F1$4mQ2q2]q

222H30Q
4%2]q

2

22mQ2%q]q]%1~2m1H20!Q
2%2]%

21H10q
2]%

2%F.

~2.20!
1-6
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Details of the derivation of Eq.~2.20! can be found in the
Appendix. It is natural to writeF5^u2(Q)& (11§). Here
unity represents the main contribution to the pair correlat
function, related to the second-order moment, and§ is a
small correction tending to zero atr1→r2 .

In the regionQ@d for the first stage or in the regionQ
@r bl for the second stage the time derivative in Eq.~2.20!
can be omitted in comparison with the eddy diffusion ter
which is the first one in the right-hand side of Eq.~2.20!. If
the molecular diffusion terms in Eq.~2.20! are also neglected
then one finds

$~2H30%
227x2!]x

2211x]x131@~21H20!%
21H10x

2#]%
2

1@2~123H20!%1H10x
2/%#]%%§50, ~2.21!

where x5q/Q and we have taken into account th
^u2(Q)&}Q23. A solution of Eq.~2.21! can be written as a
sum of§b5(qQ)bf b(x,%) wheref b satisfy Eq.~2.21! ~since
qQ is zero mode of the operator figuring in this equatio!.
It is clear that the main contribution is related tob50 ~since
negativeb are forbidden!. Since the operator in Eq.~2.21!
has definite scaling properties, solutions of the equation
be written in a simple self-similar form §
5(q/Q)aC(Q%/q). The principal contribution to§ is asso-
ciated with the smallesta. Unfortunately, the exponenta is
nonuniversal, being dependent on the coefficientsHi j . The
molecular diffusion smoothes the function§ at q;r bl

2 /Q.
The above expressions demonstrate the following nat

behavior of the pair correlation function. The main anom
lous dependence of the function is related to the second
ment of the passive scalar. As to the dependence on the
tive separation between the pointsr1 and r2 , it is described
in terms of the function§ possessing a nontrivial scalin
behavior with a self-similar factor depending on the com
nationQ%/q.

III. DECAY ALONG A PIPE

Here we discuss the case when the passive scalar de
along a pipe in a statistically homogeneous flow, which
assumed to be chaotic and has an average velocityu along
the pipe. Such a setup was used by Groisman and Stein
in their experiments@14#. In this case the chaotic flow~elas-
tic turbulence! was excited in a polymer solution pushe
through a curvilinear pipe. The scalar dynamics is then g
erned by the equation

] tu1u]zu1va¹au5k¹2u, ~3.1!

wherev is fluctuating part of the velocity~with zero mean!
andz is coordinate along the pipe. Below, the average vel
ity u is assumed to be much larger thanv ~which corre-
sponds to the experimental situation!.

If the pressure difference, pushing the flow, is consta
the flow is statistically stationary and homogeneous alo
the pipe~which is assumed to have a constant cross secti!.
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Thereforeu is independent ofz and the velocity correlation
functions do depend on the time differences and coordin
differences along the pipe. Thus, for a problem with a s
tionary scalar injection to the pipe the scalar statistics is ti
independent and the coordinatez along the pipe plays the
role of time in the decay problem. Following the procedu
described in the first section one obtains from Eq.~3.1! the
following equations for the scalar correlation functions:

u]zFn5k (
m51

n

¹m
2 Fn1 (

m,k51

n

¹ma@Dab~rm ,rk!¹kb#Fn .

~3.2!

The only difference in comparison with Eq.~1.9! is that the
time derivative is substituted by the advection term along
pipe.

As previously, we introduce the coordinateq measuring a
separation of a given point from the wall. The average
locity u is a function ofq, tending to zero asu}q near the
boundary. That leads to the main difference between
situation and the one discussed in the preceding section.
equation for the average scalar turns to

s0q]z^u&5@m]qq4]q1k]q
2#^u&. ~3.3!

Despite the additional factorq in the left-hand side of the
equation in comparison with Eq.~2.5!, the qualitative picture
of scalar evolution remains the same. At the first stage
scalar is mostly situated in the layer of the widthd
5s0 /(mz), and the molecular diffusion can be neglecte
The scalar decay at this stage is algebraic with the long
dinal coordinatez. Whend reaches the boundary layer widt
r bl , the molecular diffusion becomes relevant, and the sc
decay starts to be exponential.

As in the previous case, it is possible to obtain compl
statistical properties of the scalar at the first stage. In
case one can omit the molecular diffusion term. Hence,
erages of any single-point functionsF(u), such as the mo-
ments^un& or the scalar PDFP(u,q,z)5^d@u2u(q,z)#&,
are described by the same equation

]z^F&5
m

s0q
]qq4]q^F&[Ĥ^F&. ~3.4!

This is a linear equation, and it can be solved using
Green function formalism. Namely, the solution of Eq.~3.4!
can be written as

^F~z,q!&5E
0

`

dq8G~z,q,q8!F~z50,q8!, ~3.5!

whereG is the Green function. In order to obtain an explic
equation for the Green function one should first solve
corresponding eigenvalue problems. Since the operatorĤ is
not Hermitian, then one should find both its right and le
1-7
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eigenfunctions. They are solutions of the equationsĤ f l

1l f l50 and Ĥ1gl1lgl50, respectively, whereH1

5(s0 /m)]qq4]qq21. We find

f l5x3J3~x!, gl5xJ3~x!, x52Al/q. ~3.6!

Using the orthogonality relation

E
0

`

dqgl~q! f l8~q!516l2d~l2l8!,

one derives

G~z,q,q8!5E
0

` dl

16l2
exp~2ld21! f l~q!gl~q8!

5
d

q3/2~q8!1/2
exp~2d/q2d/q8!I 3~2d/Aqq8!.

~3.7!

Since we assumed thatu5u0(q) initially, then for thenth
order scalar moment^un(q,z)& the initial condition isu0

n(q).
If d!L then one can substitutêun(0,z)& by q0

n , whereq0

5u0(0,0). In this case an explicit integration in Eq.~3.5!
leads to the expression

^un~z,q!&5
q0

nd3

6q3
exp~2d/q! 1F1~1,4,d/q!. ~3.8!

Again, we obtain a universal profile. Ifq@d then both the
exponent and1F1 can be substituted by unity to obta
^un(z,q)&5q0

nd3/(6q3). If q!d then ^un(z,q)&5q0
n . In

order to obtain the scalar PDF, one should use the in
distribution P(z50,q,u)5d„u2u0(q)…52@1/u08(q)#d„q
2q0(u)…. Hereq0(u) is defined, as previously, by the rela
tion u0(q0)5u. The convolution with the Green function i
now

P~z,q,u!5E dq8G~z,q,q8!P~0,q,u!

52
1

q3/2q0
1/2

d

u08~q0!
expS 2

d

q
2

d

q0
D I 3S 2

d

Aqq0
D .

~3.9!

At large distances,q@d2/L ~and alsoL@d), one can use the
following approximation:

P~z,q,u!'2
d4

6q3q0
2u08~q0!

exp~2d/q!. ~3.10!
03630
al

Again, this expression cannot be exploited for calculation
moments of the passive scalar because of the diverge
near the maximum value ofu, q0 .

For the pipe, the characteristic length where the diffus
becomes relevant is determined by the same expres
~2.4!. Whend diminishes down tor bl another regime comes
For the density of pollutants the regime is characterized
an exponential decay of the passive scalar moments a
the pipe. For the first moment the decrement of the decay
be extracted from Eq.~3.3!. It is determined by the smalles
eigenvalue of the operator in the right-hand side of the eq
tion. Thus, for large enoughz the decay law^u&}exp
3(2az) is correct wherea;k1/4m3/4s0

21. The eigenvalue
problem, corresponding to Eq.~3.3! can be solved numeri
cally, then one obtainsa'3.72k1/4m3/4s0

21.
For the temperature, fixed at the boundary, we obtai

quasistationary distribution if the fixed value isz indepen-
dent. The average temperature is described by Eq.~3.3!
wherez derivative is dropped. Then we return to the sam
equation as previously~for the decay in the vessel!, with the
solution ~2.11!. Higher moments of the temperature a
slightly different than for the decay in the vessel. Howev
qualitatively their behavior is the same. Namely,^un&'q0

n if
q!r bl , and^un&;q0

n(r bl /q)3, if q@r bl .
One can examine the pair correlation functionF of the

passive scalar. Qualitatively, it is the same, as for the de
in the vessel. Namely, the main anomalous dependenc
the function is related to the second moment of the pas
scalar. The function is practically undistinguished from t
second moment ifq1 ,q2!r bl . As to the dependence on th
relative separation between the pointsr1 and r2 for q1 ,q2
@r bl , it is described in terms of a functionz, ^u2(Q)& (1
1§), possessing a nontrivial scaling behavior with a se
similar factor depending on the combinationQ%/q.

Now we can justify the time separation leading to E
~1.9! in the case of the decay along the pipe. For the in
mediate evolution characterized by the profile~3.8!, the char-
acteristic time ist;(md2)21. Thus, the time ratiot/t ~where
t is the velocity correlation time! can be estimated ast/t
;(L/d)2@1. In the case when the passive scalar evolutio
determined by the interplay of the viscosity and advect
the lengthd has to be substituted byr bl . Then using the
estimates formulated earlier we find thatt/t;Pe1/2@1.

IV. CONCLUSION

We have investigated the passive scalar~concentration of
pollutants or temperature! evolution in the chaotic and turbu
lent flows near the boundary~wall!, which dominates~at
large Sc! the advanced stages of the passive scalar hom
enization. There are some universal features of the de
related to the universal velocity dependence on the coo
nate perpendicular to the wall. We assumed that the Schm
number Sc is large enough to guarantee the conditionL
@r bl whereL is the width of the peripheral region andr bl is
the thickness of the diffusive boundary layer~which is deter-
mined by equating the molecular diffusivity and the ed
1-8
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diffusivity!. The width of the peripheral region is the thick
ness of the viscous boundary layer for the developed h
Reynolds-number turbulence. For the elastic turbulenceL is
the vessel size~or the pipe radius for the decay along th
pipe!.

We have considered the evolution beginning after that
mogenization of the passive scalar is finished in the bu
Then the initial passive scalar distribution is characterized
the lengthL, which is much larger thanr bl . The first stage of
the passive scalar decay in the peripheral region is inse
tive to diffusion. The characteristic length of the passive s
lar distribution at this staged satisfies the inequalitiesL@d
@r bl . For the decay in a closed vessel the length behave
d}t21/2, whereas for the decay along piped}z21 ~wherez
is coordinate along the pipe!. The passive scalar inhomoge
neity is kept mainly for separationsq from the boundary,
satisfyingq,d whereas for largerq the advection effectively
homogenizes the passive scalar~the mechanism is in stretch
ing producing small-scale fluctuations of the passive sca
which are effectively removed by diffusion!.

Whend achieves the thickness of the diffusion bounda
layer, r bl , the decay of the concentration of pollutants b
comes exponential. This character of the decay is expla
by the space distribution of the passive scalar inhomoge
ities, which are concentrated mainly in the diffusive boun
ary layer, and decay due to the flow to the bulk, which
proportional to the level of the inhomogeneities. The dec
ments of the decay can be expressed in terms of the P
number which is Pe5VLL/k ~whereVL is the amplitude of
the velocity fluctuations in the bulk andk is the molecular
diffusivity!. For the viscous boundary layer the Peclet nu
ber coincides with the Schmidt number, whereas for the e
tic turbulence it differs from the Schmidt number by th
factor which is the Reynolds number. For the time decay
decrement is proportional to Pe21/2, whereas for the deca
along the pipe the decrement is proportional to Pe21/4. For
the temperature fixed at the boundary the second stag
characterized by a quasistationary distribution, since the b
serves as a big reservoir keeping its temperature constan
absorbing heat, transferred from the boundary.

We neglected an inhomogeneity of the passive sc
along the wall. It is motivated by the faster decay of t
passive scalar fluctuations, related to such inhomogen
both in time and in space~in the regionq@d or q@r bl ,
depending on the stage!. However, in some cases the inh
mogeneity can play an essential role. It is a subject of se
rate investigation.

Our theoretical predictions can be compared with the
perimental data presented in the papers@14,19#, obtained for
the dye concentration decay~homogenization! along the cur-
vilinear pipe, where the chaotic flow~elastic turbulence! is
excited in a dilute polymer solution. The most interesti
comparison concerns the Pe dependence of different qu
ties, which was extracted from the experiment@19# by vary-
ing the diffusion coefficientk by two orders of magnitude~it
was done by changing the molecular weight of the dye c
riers!. The experimental data~corresponding to the secon
stage in our theoretical scheme! are in a good agreement wit
the law Pe21/4 both for the thickness of the diffusion bound
03630
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ary layer,r bl ~which is determined experimentally by a max
mum in the passive scalar fluctuations!, and for the decre-
ments of the passive scalar decay along the pipe.

The peripheral region serves as a source supplying
passive scalar to the bulk. Since the passive scalar deca
the peripheral region is slow~comparing to the bulk!, it can
be considered as a quasistationary source of the passive
lar for the bulk, where the passive scalar correlation fu
tions adjust adiabatically to the level of the supply. Therefo
the situation is close to one characteristic of the passive
lar, supplied by pumping, in a smooth random velocity fie
Statistical properties of the passive scalar in this case w
examined in Refs.@7–9#. Particularly, correlation functions
of the passive scalar in the bulk should possess a beha
close to the logarithmic one. This prediction is also in agr
ment with the experimental data@14,19#.

One of the remarkable predictions of our theory is stro
intermittency of the passive scalar and extreme anoma
scaling of its moments for the dependence on the separa
from the boundaryq: all the moments scale identically a
q23 for L@q@d or L@q@r bl , depending on the stage
Physically that means that a system of filaments~or sheets!
of the passive scalar is formed, which contract asq increases.
Their dynamics is diffusionless and therefore the passive
lar u in the filaments is of the order of its boundary value.
the conditionq@d or q@r bl the filaments occupy a sma
fraction of the volume, which explains the strong interm
tency. As to the correlation functions of the passive sca
our theory predicts some definite self-similar and scaling
haviors, which are complex due to the space inhomogen
characteristic of the problem. It would be interesting
check the predictions experimentally.

The final remark concerns an extension of our results
other problems. As it was noted in the paper@4#, the scheme
developed for the passive scalar decay can be without ser
modifications applied to fast binary chemical reactions.
believe that minor modifications of the scheme can mak
applicable for more complicated chemical reactions. T
other problem, which can be posed for the peripheral reg
is dynamics of polymers~say, for the case of the elasti
turbulence!. Then one should go beyond the scope of t
passive approach.
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APPENDIX: PAIR CORRELATION FUNCTION

The eddy diffusion operatorÂ is given by the last terms
of Eq. ~1.7!. It can be rewritten as

Â5Di j
]

]Xi

]

]Xj
1S ]Di j

]Xi D ]

]Xj
. ~A1!

Here Xi is an extended set of variables~coordinates!,
$q1 ,r 11,r 12,q2 ,r 21,r 22%, and the tensorD is
1-9
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4 0 0 H3q1

2q2
2 mq1

2q2~r 112r 21! mq1
2q2~r 122r 22!

0 H10q1
2 0 mq1q2

2~r 212r 11! H1q1q21d11 d12

0 0 H10q1
2 mq1q2

2~r 222r 12! d21 H1q1q21d22

H3q1
2q2

2 mq1q2
2~r 222r 12! mq1q2

2~r 212r 11! mq2
4 0 0

mq1
2q2~r 112r 21! H1q1q21d11 d12 0 H10q2

2 0
D ,
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mq1
2q2~r 122r 22! d21 H1q1q21d22 0 0 H10q2

2

~A2!
H15H102~m13H20/2!@~r 112r 21!
21~r 122r 22!

2#,
~A3!

H35m1H30@~r 112r 21!
21~r 122r 22!

2#, ~A4!

di j 5H20q1q2~r 1i2r 2i !~r 1 j2r 2 j !. ~A5!

Now we turn to the new set of variablesYi

5$Q,q,R1 ,R2 ,%,f%, where Q5(q11q2)/2,q5q12q2 ,Ri
5(r 1i1r 2i)/2,% cosf5r112r 21,% sinf5r122r 22. Then
the eddy diffusion operatorÂ is transformed to
03630
Â5Di j Ti
kTj

l ]

]Yk

]

]Yl
1Di j Ti

kS ]Tj
l

]YkD ]

]Yl
1S ]Di j

]Xi D Tj
k ]

]Yk

[D̃ i j
]

]Yi

]

]Yj
1 f i

]

]Yi
, ~A6!

whereTj
i 5]Yi /]Xj is the Jacoby matrix,
s
ng
T5S 1/2 0 0 1/2 0 0

1 0 0 21 0 0

0 1/2 0 0 1/2 0

0 0 1/2 0 0 1/2

0 cosf sinf 0 2cosf 2sinf

0 2sin~f!/% cos~f!/% 0 sin~f!/% 2cos~f!/%

D . ~A7!

After some algebraic manipulations one can easily obtain the new tensorD̃ i j and the first order termf i . The exact expression
are rather bulky. However, if the initial distribution of scalar depends solely onq, the only relevant terms are those precedi
]Q ,]q ,]% . Therefore one can reduce the final variables set to$Q,q,%%. In the limit Q@q,z→0 one obtains

D̃5S Q4~m1H30%
2/2! 2mQ3q 2mQ3%

2mQ3q 4mq2Q222H30Q
4%2 2mQ2q%

2mQ3% 2mQ2q% ~2m1H20!Q
21H10q

2
D , ~A8!
f Q54Q3~m1H30z
2/2!, f q50,

f %5
H10q

2

%
24~m13H20/2!Q2%. ~A9!

Then we obtain the following expression for the operatorÂ:
Â5~m1H30%
2/2!]QQ4]Q14mQ3q]Q]q22mQ3%]Q]%

1~4mQ2q222H30Q
4%2!]q

222mQ2q%]q]%1@~2m

1H20!Q
2%21H10q

2#]%
214Q3~m1H30r

2/2!]Q

1FH10q
2

%
24~m13H20/2!Q2rG]% . ~A10!

This leads to the expression~2.20!.
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