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Abstract—Propagation of a light pulse through a weakly inhomogeneous optical fiber is analyzed. The non-
linear envelope equation describing the evolution of polarized pulses is determined by statistical properties of
inhomogeneities in the optical fiber. The isotropic Manakov system of equations is shown to be applicable in
the presence of high-frequency small-scale defects in the fiber. In the presence of only large-scale inhomoge-
neities, the signal dynamics are described by an anisotropic system of equations. © 2004 MAIK “Nauka/Inter-
periodica”.
Currently, fiber optic communication systems are
considered the most promising in information transfer
over long distances. Such a system is a sequence of
optical fibers and amplifiers. The amplifiers are
required to compensate for losses inside a fiber. In the
linear regime (when pulse power is low), the channel
capacity is primarily limited by the noise generated by
amplifiers. Since the amplitude of spontaneous emis-
sion noise is independent of signal power, considerable
effort is applied to develop soliton systems, where a
sequence of digits is encoded into high-power soliton
pulses. These systems are characterized by essentially
nonlinear signal dynamics. In the case of an ideal fiber,
the dynamics are described by the nonlinear
Schrödinger equation [1]. In this study, we analyze the
more realistic case of a fiber with random fluctuating
index profile and polarization-dependent evolution of
electric-field energy density. We show that the form of
an averaged large-scale equation describing this system
strongly depends on the statistics of fluctuations and
their scale distribution.

The light pulses used in information transfer have
narrow spectral widths δω compared to the carrier fre-
quency ω0. They can be described in terms of the enve-
lope defined by a two-component complex vector y =
(ψ1, ψ2):

(1)

Here, E is the electric field of a pulse; z is the longitu-
dinal coordinate in a fiber; and t is the retarded time
related to the physical time tphys as t = tphys – z/c, where
c is the group velocity of the packet. The evolution
equation for the vector y is obtained by averaging
Maxwell’s equations for the electromagnetic field in
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the fiber medium over the fast-oscillation period 2π/ω0.
Taking into account the Kerr nonlinearity in chromatic
dispersion and choosing appropriate units of y, z, and t,
one can reduce this equation to the following form [2]:

(2)

The matrix (z) describing birefringence effects is a
random function of z because the fiber shape is irregu-
lar. This irregularity can be caused by static stresses,
technological defects, etc. In what follows, we assume
that Vαβ @ 1 unless stated otherwise. Physically, this
means that the effects due to nonlinearity and chro-
matic dispersion are much weaker than birefringence
for optical pulses of typical width ∆ and amplitude A.
This condition is satisfied in real communication lines
[1]. In the units of measure used in Eq. (2), ∆ ~ 1 and
A ~ 1.

In Eq. (2), we omit the terms containing time deriv-
atives due to the same inhomogeneities, such as

(z)∂ty and ξ(z) y, where (z) and ξ(z) are random
matrix and scalar functions, respectively. These correc-
tions for random dispersion are small (about δω/ω0) as
compared to the terms retained in Eq. (2), and their con-
tribution is significant only at large z. The effective
deterministic equation describing unperturbed evolu-
tion (if this equation exists, see below) is determined by

the statistical properties of the matrix (z) at z ≤ 1. The
form of this averaged equation may depend on the
parameters of the problem. In this paper, we refine the
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applicability conditions both for specific effective
equations and for deterministic description in general.

The term V(z)y in evolution equation (2) is respon-
sible for strong dependence of the vector y on z. This
dependence is eliminated by the transformation

(3)

The equation of motion for the field Y(z, t) contains
rapidly oscillating functions of z. However, their ampli-
tudes do not exceed unity, which means that the oscil-
lation scale (about 1/V) is much smaller than the scale
of significant variation of signal amplitude (about 1).
Therefore, an averaged description of the system’s
dynamics is possible.

The matrix (z) is treated as traceless (this can be
achieved by a phase transformation of the field y). Fur-
thermore, we consider fibers that do not exhibit natural

optical activity. Therefore, (z) can be represented as

(see [3]), where b(z) is the difference of the wave vec-
tors for different polarizations and the angle θ(z) char-
acterizes the orientation of these polarizations with
respect to fixed coordinate axes. It is easy to check that
the ordered exponential in Eq. (3) can be represented as

(4)

with

(5)

where  ≡ dθ/dz. The matrix (z) is the evolution
operator for spin 1/2 in the varying magnetic field

h(τ) = (0, , b). Therefore, the explicit form of (z)
strongly depends on the ratio of the amplitude h to the

characteristic scale l of its variation ( /θ ~ /h ~ 1/l).

If the fluctuating amplitude h =  is much larger
than 1/l (which is analogous to the characteristic fre-
quency of the field h(τ)), then the following estimate

for the operator (z) holds up to values of z that are
exponentially large in hl @ 1 [4, 5]:

(6)
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Here, Γ is the first correction in the adiabatic expansion
for the spinor phase (which is sometimes called the

Berry phase [6]) and  = (  ± i )/2. Indeed, the
varying profile h(τ) can be represented in this case as a
superposition of inhomogeneities of characteristic
size l. First, consider one such fluctuation localized
near the point z = 0. For z ≤ l, the off-diagonal elements

in the matrix (z) are determined by the “instanta-

neous” values (z), h(z), (z), (z), … and are on the

order of (z)/h(z) ~ (hl)–1. It is easy to see that this
parameter is an adiabaticity parameter: the first correc-
tion to the adiabatic approximation of W(z) is pro-

portional to (z)/h(z). For z @ l, all derivatives (z),

(z), … vanish and the off-diagonal elements γ are on
the order of exp(iChτs), where the singular point (or
zero) τs of the analytic continuation of h(z) into the
upper half-plane is nearest to the real axis (for details,
see [4, 5]). If this function has no scales other than l,
then Imτs ~ l and γ(z @ l) ~ exp(–const · hl). When
inhomogeneities are repeatedly encountered by a pulse
propagating along the fiber, such exponentially small
corrections add up. Therefore, the applicability of esti-
mate (6) is limited with respect to z. The inequality
hl @ 1 means that the scale of variation of h is much
larger than the length 1/h. Since h @ 1, we can average
over 1/h-scale oscillations after substituting Eqs. (4)
and (6) into Eq. (2). The resulting system of equations,

(7)

was used in [7] to analyze the effects of small noise
terms ξ1, 2 having a relative order of magnitude h–1.

The above analysis is applicable when the Fourier
components of the field h(z) with k ~ h @ 1/l are sup-
pressed. For a random field θ(z), these conditions are
satisfied when the correlation function Q(z) =

〈 (z) (0)〉  is decreasing at z @ l and analytic at z 
0. If there exist regions of rapidly varying θ(z) (sharp
bends, defects of structure, etc.), then the form of the

matrix (z) is determined by their statistical proper-
ties. For example, expression (6) is applicable at mod-
erate distances z when the amplitudes of inhomogene-

ities are not too large, but with γ ~ . Here, n is the
number of such microscopic defects per unit length
estimated as the asymptotic value of the Fourier trans-
form Q(z) at k ~ h–1. A similar “Brownian” increase in
γ is characteristic of intervals where the amplitude h(z)
is about 1/l (i.e., regions of nearly circular fiber cross
section). The corresponding n is estimated as the frac-
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tion of these intervals in the total distance z. We define
zc as the distance for which the off-diagonal elements of

(z) are about unity. For a fiber with weak defects,
zc ~ 1/n. For a fiber with sharp bends and jumps in θ, the
length zc is estimated as the characteristic distance
between such defects. After averaging over scales
exceeding zc , only the identity representation of the

group SU(2) in the tensor product (z) ⊗  (z) ⊗  …
is retained. Otherwise, the group SU(2) would contain
a subgroup invariant under multiplication by matrices

(z1, z2) with arbitrary z1 and z2. There is no such
group unless the amplitude of fluctuations of the direc-
tion of h(z) is zero. This obviously follows from the fact
that matrices exp(h1 · ) and exp(h2 · ) with noncol-
linear vectors h1 and h2 do not commute. Reduction to
an identity representation is equivalent to averaging
over an invariant measure on the group SU(2) (e.g.,
see [8]).

Averaging over SU(2) can be carried out in the equa-
tion for varying Y(z, t) if zc ! 1. In this case, the form
of the effective equation is determined by the nonzero
averages

(8)

We conclude that the evolution of a light pulse in a fiber
with a relatively high density of microscopic defects is
described by the Manakov equations [9]

(9)

where x denotes small chaotic perturbations (see
above). Equations (9) were derived by various methods
by Menyuk and Wai (see [10, 11] and references cited
therein). However, these authors erroneously con-
cluded that system (9) is universally applicable as a
model of pulse evolution if the correlation length of
fluctuations of fiber inhomogeneities is much less than
both dispersion and nonlinearity length scales (l ~

1/  ! 1 in the present units). It was shown above that
one must take into account the relative values of b ~ h
and 1/l, as well as the short-wavelength asymptotic
behavior of the correlation function of these fluctua-
tions, which is determined by rare events. The impor-
tance of the value of hl in the linear problem of evolu-
tion of polarization was emphasized in [12].

In principle, an averaged description based on
Eq. (7) of Eq. (9) is applicable if zc @ 1 @ h–1 or zc ! 1,
respectively. If z ~ zc , the signal shape is determined by

the detailed behavior of the functions (z). Indeed, the
averaging over SU(2) can be performed only if the tra-

jectory of (z) has traversed the neighborhood of any
point of the group manifold a sufficient number of
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Ŵ Ŵ
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times. The ratio 1/zc is a good measure of this “covering
density” on the nonlinearity scale (i.e., over lengths of
about 1). When z ~ zc , fluctuations of the moments of

the ordered exponential (z) are also on the order of
unity and there is no self-averaging. In the limit of zc @
zc ~ 1, fluctuating stresses inside the fiber combined
with shape fluctuations destroy the pulse [7, 13]; i.e.,
the maximum amplitude falls well below its initial
value. The values of z and zc can be compared by mea-
suring the ellipticity of a signal that is linearly polarized
along one of the principal axes at z = 0 in the linear
regime.

Finally, we present the basic conclusions of this
work. Since we discuss signal propagation in a random
medium, only statistics of various observables are gen-
erally meaningful. However, the system can be
described by deterministic equations when the zc (char-
acteristic length of change in wave polarization of order
unity) has either of two limit values. If z ! zc , where z
is the fiber length, then polarization adiabatically fol-
lows the variations of the principal axes of the fiber and
Eqs. (7) are applicable. In the opposite limit of z ≥ 1 @
zc , effective self-averaging associated with uniform dis-
tribution of polarization over the Poincaré sphere is
obtained, and pulse evolution is described by the Mana-
kov equations (9). If zc ~ 1, the system cannot be
described by any deterministic model. We note that the
fiber can be deformed intentionally to reduce zc to
zc ! 1 in the soliton regime of information transfer. The
reason is that Manakov system (9) is integrable. This
property is very important with regard to interaction
between solitons via disorder-induced radiation: this
interaction in integrable case (9) is much weaker than
that in nonintegrable cases [7, 13, 14], and the signal
structure is noticeably distorted at much longer dis-
tances.
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