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Abstract 
 
Strong coupling between the gas and electricity 

infrastructure introduces new kinds of vulnerabilities 
in energy systems. Identification and assessment of 
these vulnerabilities is a challenging task because of 
the complexity of the system and the non-trivial role 
of the weather, which is inherently random. 
Prolonged periods of cold weather can dramatically 
amplify the negative effect of common failure of the 
equipment. We propose a methodology for 
identification of the most dangerous scenarios that 
combine the outage of individual system components 
with unfavorable weather conditions in a system of 
coupled gas and electricity. The feasibility of the 
approach is illustrated on simulations of a detailed 
model of coupled Gas and Electricity infrastructures 
in Europe.    
 
1. Introduction  

 
The role of natural gas in the global energy system 
has increased dramatically in the recent years. Both 
in US and in many European countries, the share of 
natural gas as a primary electricity fuel has increased 
almost by an order of magnitude in the last two 
decades. The advancements of shale gas extraction 
and liquefaction technologies have also made it one 
of the most attractive primary energy resources. 
Natural gas based energy can play a critical role in 
achieving the ambitious plans on reducing the 
emissions and raising the share of renewable energy 
in the overall generation mix.  Natural gas turbines 
are some of the most maneuverable generators and 
their flexibility allows them to  mitigate the 
intermittency of the renewable wind and solar 
resources. 
Heavy reliance on natural gas as a primary energy 
resource introduces new kinds of risks in the energy 
system. Unlike electric power that transfers the 
energy with the speed of light, the velocity of the gas 
in pipelines is about 5-10 m/s, with a maximum of 20 

m/s allowed for intermittent operation. For a several 
thousand km pipeline between the natural gas 
extraction and consumption sites, this corresponds to 
a several days lag of the global natural gas supply 
control system. This problem is alleviated in the 
energy networks by introducing gas storage sites that 
enable a more rapid response of the system.   
The lack of coordination of operation between gas 
and electricity industries and the lack of gas storage 
capacity increases the risk of power outages in 
scenarios of prolonged periods of anomalously high 
gas consumption.  Without coordination, cold 
weather conditions and/or component outages 
compromising the alternative electricity supply 
sources are dangerous for coupled energy systems 
(see [1] for extensive discussion of the issue). Proper 
assessment of these risks and operational policies that 
minimize them are essential for the resilient operation 
of the energy systems reliant on natural gas.  
The contribution of this work is a  methodology for 
the assessment of risk in interconnected but 
interdependent electricity and gas networks. Our 
approach uses a probabilistic analysis of extreme 
weather patterns, a detailed model of the 
interdependencies between the electricity and gas 
infrastructures, and an optimization approach for 
identifying of the most dangerous weather and outage 
events. Our methodology is computational efficient 
compared to traditional Monte Carlo approaches to 
sampling events, allowing us to explore the 
immensely large space of possible dangerous 
scenarios in relatively short time. The ability to find 
the most dangerous scenarios in a small number of 
operations allows us to use the algorithm for 
arbitrarily sophisticated models of coupled 
infrastructures. 
After describing our algorithm, we propose specific 
ways of implementing the probabilistic weather 
model, modeling the interdependent infrastructures, 
and implementing the optimization algorithm for 
finding the high risk scenarios. We validate the 
approach via simulations of a European energy 
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system model and briefly discuss the results of these 
simulations. We also discuss the potential extensions 
of the approach and ways of integrating its 
implementation in policy, planning, and operation 
decision-making processes. 
 
2. Challenges in risk assessment of interdependent 
infrastructures 
 

Security assessment for power system operations 
has been studied for many decades and resulted in 
well-defined standards enforced by the regulating 
agencies, such as North American Reliability 
Corporation, on the independent system operators 
[2]. System operators are required to operate under 
the conditions where the failure of any individual 
component does not lead to loss of stability or 
violations of technological constraints. Moreover, the 
operators need to maintain a contingency response 
plan and be prepared for any N-2 events that can 
destabilize the system or lead to violation of voltage 
current safety constraints. To our knowledge, the 
operators are only required to consider the 
contingencies associated with the loss of power 
equipment and operate under the conditions of firm 
supply of fuel for the generators.  

The impact of natural gas infrastructure related 
contingencies on power system operation has been 
addressed in a number of recent studies. For example, 
in [3] and [4] a model of interdependent 
infrastructures that incorporates the gas network 
constraints in the framework of security constrained 
unit commitment  is introduced. Follow-up works 
have explored the impact of gas infrastructure on the 
overall system efficiency and proposed a number of 
market based coordination strategies. Other relevant 
studies have addressed the influence of natural gas 
infrastructure on planning future electric power 
generation [4-7], the impact of natural gas networks 
on power system reliability [8,9], and the optimal 
operation of integrated energy systems through 
power studies [10,11]. 

Although security constrained operations can 
dramatically reduce the frequency of service 
interruption, they cannot completely prevent the 
failure scenarios. Further mitigation of  risks is 
possible only when the specific scenarios and most 
vulnerable elements of the grid are identified and 
operation planning accounts for those vulnerabilities. 
The process of the contingency identification is 
extremely challenging because of the enormous 
number of factors that affect the energy system 
operation and the large number of individual failure 
scenarios that can lead to violation of key constraints.  
Weather can directly impact the operations, but it is 

usually not incorporated in the security assessments.  
Like component failure, weather events can trigger 
blackouts.  For example, prolonged cold can lead to 
the exhaustion of local gas storage facilities, causing 
a fuel shortage for electric generators.  Without 
enough generation, the system could destabilize and 
blackouts could occur.   

In normal operation, the electricity and gas 
utilities adjust their operations to account for weather 
patterns and maintain reliable service. However, a 
combination of extreme weather and an outage of a 
critical system element can cause a situation where a 
feasible solution meeting all system requirements for 
optimal system operation doesn’t exist. Analysis 
contingencies that arise from a combination of gas 
and electricity infrastructure failure and unfavorable 
weather events is not currently incorporated either in 
planning or in operation decision-making processes.   
Management of these risks requires both the 
adjustment in existing policies and regulations as 
well as the development of assessment tools capable 
of rapidly identifying these contingencies. 

Unlike contingencies created by the failure of grid 
components, the inherently dynamic nature weather 
patterns and response of the energy system to bad 
weather makes the direct enumeration of 
contingencies practically infeasible and invalidates 
the standard approaches to system reliability based on 
fault trees analysis. We propose a more appropriate 
approach  based on Monte-Carlo sampling from the 
statistical weather pattern models and random 
component outages coupled with simulations of 
energy system response to the events. However, a 
Monte Carlo approach is also difficult to use in 
practice, due to high complexity of power system 
models and the relatively low probability of major 
contingencies. Therefore, we use a type of 
importance sampling to find the contingencies that 
are most probable and most likely to cause blackouts 
in the grid.    By sampling for the most important 
events, we can reduce the computational time of 
running simulations.    This is especially important 
because full simulations of a week of time evolution 
of the interconnected system could take 10 minutes to 
run.   By selectively choosing scenarios of interest, 
we avoid wasting computational time simulating 
scenarios where no blackouts occur.   

The approach proposed in this paper provides a 
computationally efficient way of finding the most 
dangerous scenarios.   The method we propose can 
provide lower bounds on the probability of system 
failure. Our approach relies on the existence of prior 
probabilistic distributions for weather patterns in the 
system and an energy system model capable of 
simulation of the system response to given weather 
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conditions. In the following sections we describe in 
more details our approach to modeling of weather 
pattern probabilities, simulation of interconnected 
gas-electricity infrastructures and, finally provide 
more details on the sampling method described 
above. 

 
 
 

3. Methodology 
3.1 General System Model 
 
The instant state of the system in our model is 
described by the state vector, ��� , which represents 
the flows of power, gas, and amounts gas stored in 
different locations in discrete time. The system 
behavior depends on the weather pattern, described 
by the vector�����, which  incorporates the nodal 
information about the local temperatures, wind 
velocities, solar irradiance and other factors relevant 
for the local energy consumption and generation. The 
sequence of outage events that may lead to collapse 
may be described by the vector�����, representing the 
locations and timings of failures. We use the 
underscore notation to refer to the whole histories of 
state, weather, and outage vectors, i.e. � � �

�� � �� � � �������� 
The model of the system establishes a functional 
relation between the exogenous factors like weather 
pattern ����, the system outage events ����, and the 
response of the system, characterized by the vector 
function ����, 

� � � ��� � 
The function F incorporates the physical and 
operational models of the system, including unit 
commitment, economic dispatch and planning 
optimal power flow, and transforms the whole history 
of weather �  and history of outages �   into the 
history of state evolution�. We describe F in more 
detail in Section 3.4.    
As long as the weather patterns and outages are 
modeled as some stochastic processes, the system 
state �  is also a stochastic process. The risk 
assessment problem can be posed as evaluation of 
expectation of the cost function � �  with respect to 
the probability measures defined of the weather and 
outage histories. The cost function represents the 
economic or other losses incurred because by the 
system during its evolution. The overall risk can be 
evaluated as the following integral over stochastic 
process realizations: 

� � � � ����������������������� 

Here the functions �� � ������  represent the 
probability density functions of the weather and 
outage histories.  For discrete time, we use a 
summation over all possible scenarios instead of the 
integral formulation.   
We focus on the conditional expectation defined 
individually for each outage scenario: 

� � � �� � ���������������� 

This conditional expectation represents the risks of 
system associated with specific outages. The same 
outage of a single power line or generator can have 
drastically different effect on the system depending 
on the state of gas storage facilities because the future  
electricity and gas consumption levels both depend 
on the weather before and after the outage.  
Evaluation of this conditional probability is a much 
simpler task because it does not involve a search or 
summation over outage types.  However, it can be 
computationally prohibitive to evaluate F over all 
weather scenarios in real life situations when the 
function F represents a sophisticated evolution of 
energy system involving complex decision-making 
and physical processes.  Therefore, instead of looking 
for the average risk, we define a problem of finding 
the most probable weather pattern which results in 
high impact I on the system. Formally, we define the 
following optimization problem: 

� � ���� �� � �

������������ � ��� � ������ 
The function � assigns a quantitative indicator for 
specific outage scenario � and impact severity����� , 
which represents the probability of the most probable 
weather pattern that can cause such a severe impact. 
The transformation from total risk to unction 
��reduces the problem of averaging over all possible 
weather patterns to an optimization problem over 
weather patterns of finding the most probable pattern 
that results in an outage of a critical size. For simple 
N-1 type outages representing the failure of a single 
component of the system, the function �  can be 
thought of as a risk indicator that shows how 
vulnerable is the system is to failure of a given 
component.  There is no direct relation between � 
and the actual risk defined by � � � �� , but the 
value of � can be used as a substitute for the actual 
risk in the system. For certain probability 
distributions the Markov inequalities allow one to 
link the value of � to a lower bound on the actual risk 
expectation. The exact conditions for existence of 
such relations will be discussed in forthcoming works 
on the subject. 
3.2. Probabilistic model of the weather 
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One of the most critical steps in the optimization 
problem described above is the construction of the 
probability measure function describing the 
stochastic realization of the weather patterns. Our 
weather model describes the weather for each zone of 
the model as a spatially averaged temperature. We 
construct our model from historical measurements, 
accessed through the public domain with the 
WeatherData database interface in Wolfram 
Mathematica. The database provides the time-series 
of daily averaged temperature for all major cities.  
We use the daily averages from major European 
cities from the years 2000 -2013 to construct our 
model.  
The physical nature of atmospheric processes 
responsible for weather patterns introduces seasonal 
trends and strong spatio-temporal correlations of 
weather in nearby geographic areas. The stochastic 
model mimicking the actual weather has to 
incorporate both of these effects. The seasonal trends 
are reasonably slow in comparison to the timescales 
relevant for the evolution of interdependent gas-
electricity infrastructures. The easiest way to remove 
the seasonal trends is to construct a separate model 
for each month of the year. More sophisticated and 
mathematically rigorous approaches could be based 
on Seasonal ARIMA or other types of similar 
statistical models, but have not been used in this 
work because we only simulate two weeks of system 
behavior and therefore do not expect seasonal trends 
to be a strong contributing factor to the results.   
It is challenging to incorporate the spatio-temporal 
correlations of the data in the stochastic weather 
model. We propose to use the multivariate ARMA 
models to represent the random variations of weather 
that occur on day-to-week time scales.  
We first find the average temperature in every zone 
of interest and denote it as the vector �. The random 
fluctuations superimposed on this average 
temperature profile can be decomposed into fixed 
spatial modes each represented by the vector ��. The 
full temperature profile can be then represented with 
the Karhunen-Loeve expansion as  

���� � � � ��
�

������� 

Here, the ����� represents the random amplitude of a 
given mode, and �� represents its contribution to 
the overall temperature profile. We choose the 
vectors ��  and the factors ��  to be the singular 
vectors and singular values of the spacial covariance 
matrix of the temperature  estimated from the 
historical data. This approach allows us to use only 
few modes to represent accurately the temperature 
fluctuations across the whole region. In particular for 
the Europe model, using only the 10 highest singular 

vectors of the covariance matrix allows us to 
approximate the temperature full temperature 
fluctuations with the accuracy of about 90%. 
The temporal correlations are incorporated via the 
stochastic model of the mode amplitudes �����. We 
use the standard ARMA model to generate the 
random amplitudes �����  and estimate the 
parameters of each process individually for each of 
the modes k. Formally, this corresponds to the 
following stochastic model for the amplitude �� � : 

�� � � ��

�

���

�� � � �

� �� � � ��

�

���

���� � �� 

Where the numbers ����� are independent normally 
distributed generators of the process. The coefficients 
�� , ���  parameterize the banded covariance matrix, 
that can be used to generate random samples of 
temperature profiles.  
The process parameters have been estimated using 
the FindProcessParameters available in Wolfram 
Mathematica Statistics toolbox. This process allows 
us to generate the 1 day resolution time series of the 
weather profile, creating the spatio-temporal 
correlations observed in historical data with 
reasonable accuracy. To increase the temporal 
resolution of the model and interface the weather 
generation model with the energy system simulation 
software we downscale the data using a simple linear 
interpolation of the hourly profiles of temperature 
variations. These interpolation schemes could be 
fitted to represent the historical daily profiles of 
temperatures available through other data sources. 
The proposed stochastic model of temperature 
variations represents the temperature as a Gaussian 
random vector. The probability of a given vector can 
be found using the standard Gaussian function: 

� ����� � � � � �� � �������� � �� 
where K is the covariance matrix of the random 
process, that can be evaluated via linear 
transformations of the ARMA process covariance 
matrices. The constant c corresponds to the 
normalization of the probability density function and 
does not affect any calculations. 
In practice, the optimization should be performed 
over the lower dimensional time series of amplitudes 
�� �  that can be further transformed into the 
temperature variations using the formulas presented 
above. It is more convenient to use the logarithm of 
the probability as an optimization objective. For 
Gaussian models, this logarithm is a simple quadratic 
function with explicitly defined Jacobians and 
Hessians that could be naturally used in first and 
second order optimization algorithms.  
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3.3. Impact function  

The risk assessment procedure defined in this work is 
based on the optimization to find the most likely 
scenario to result in a threshold level of impact. The 
impact function represents the economic costs 
incurred by the society due to the critical situation in 
energy system. Constructing the realistic economic 
impact of the contingency is an extremely 
challenging problem, due to high levels of model 
uncertainty and high computational cost of realistic 
blackout propagation modeling. Instead, we propose 
to use computationally simple substitutes for the 
economic cost that represent the dangerousness of the 
situation and the expected outcome of the cascade 
dynamics given the initially overloaded state. These 
functions can be validated in the future on existing 
data on blackouts or detailed models of emergency 
dynamics of energy systems in ways similar to the 
validation of other phenomenological cascade impact 
models [12].  
This work focuses on the impact of gas shortage on 
the quality of service provided by the energy system, 
so we construct the impact function representing the 
amount of storage available in the system. Assuming 
that the amounts of stored gas in every zone are 
denoted by the vector � and the instant rate of change 
of the stored gas by ����� � � � � ��� � �� , we 
can introduce the exhaustion rates as the vector �
with each component defined as �� � �����

���

��
� ��

with a being the index of the zone. The inverses of 
the exhaustion rate �� � ��

��  is an estimate of the 
time it would take to exhaust the local storage of gas 
if no changes are made in operation. The natural 
impact function in this case is simply a norm of the 
vector � averaging the exhaustion rates over many 
sites: 

� � ��� � 
For example, for � � � this norm corresponds 
simply to the maximal value of the exhaustion rates 
over many sites. Other natural extensions of this 
impact function include the temporally filtered 
expression for the exhaustion trend estimate and a
weighted norm that accounts for the importance of 
different gas storage sites and their overall effect on 
the system. After the impact function is constructed, 
we optimize over possible weather patterns and 
component failures for the scenarios of highest 
probability that exceeds the chosen level of impact.  
In the optimization, we consider the weather before 
and after the component outages because both affect 
the response of the system to the component outage.   

3.4 Energy system model  

The energy system model we simulate uses standard 
DC electricity flow models and flow models for gas.  
The connections between European countries were 
modelled as described in [24]. 42 zones, shown in 
Figure 1, are characterized by the energy gas and 
power demand profiles. Demands comprise a mix of 
national electricity consumption and the requirements 
for imports and exports for storage systems. The 
instant demand levels for gas and electricity depend 
on the ambient temperature, taken to be uniform
across the whole zone. The zones are linked to each 
other by a  one pipeline which summing up the 
capacities of all pipelines connecting the zones.   

The general approach towards modeling the coupled 
gas electricity and other forms of networks was 
described in [21,22, 24]. In this work, the power 
flows are modeled with DC approximation with one 
of the buses chosen as a slack bus.  The DC flow 
equations make sure that the sum of electric 
generation and imports minus exports at each node 
equal the demand minus any shedding at that node.   
Busses between nodes are modeled as lossless in this 
DC approximation. The demand for power and gas 
on every node is calculated using the temperature 
dependent consumption model that was validated on 
the historical data. The dispatch of generation in each 
zone is modeled via a heuristic algorithm that 
accounts for the local demand and supply curves as 
well as availability of gas storage. The generators are 
dispatched via a simplified version of optimal power 
flow that ensures that the power line capacity limit 
constraints and physical constraints on the ramping of 
the generators are satisfied while minimizing the 

Figure 1 Illustration of zones and inter-connected 
nodes together with the flows  [24] 
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overall cost of the energy. Once the values of 
generation and consumption are defined, the power 
flows are calculated via the admittance matrix 
defined for the effective power grid.  
The electric and gas networks are coupled to each 
other via gas fired generator units that are modeled as 
energy converters and are described by a simple 
relation  

�� � ������, 
where ���  is the thermal efficiency of the gas 
turbines, ��� is the gas heating value and �  is the 
local consumption of gas by the generator unit. The 
gas pipeline network is modeled as a graph of 
branches connected to individual zones. The mass 
flow of gas through each individual pipeline is 
modeled via a traditional constitutive relation of the 
form 

 �� � ��� ���
��� 

where ���is the flow through the branch, ������is the 
pressure drop between the nodes connected by the 
branch and �� � �  are some numerical coefficients 
different for different types of pipelines. The pressure 
plays a role of effective potential in gas flows and the 
compressor stations along the pipeline act like 
transformers that increase the pressure in the pipeline 
by some fixed factor.  
The gas pipeline network is described by a branch 
nodal incidence matrix �� , so that the mass 
conservation law can be written as  

� � ��, 
with �  being the vector of nodal loads and �  the 
vector of pipeline flows. An additional unit nodal 
matrix � describes the interconnection of pipelines to 
the storage or other units. The third matrix � models 
the interconnection of generators to the specific 
nodes. Using these definitions, the overall mass 
balance equation can be rewritten in the following 
form: 

� � � � � � � �� � �, 
where we have introduced an additional gas injection 
vector ��  for every node and the vector of gas 
generator unit fuel consumption � . The flows 
through each pipeline are constrained to be lower 
than the local pipeline capacity limit. This limit is 
ensured by solving an optimal allocation of gas 
storage flows that attempts to minimize the 
exhaustion of the gas while maintaining the branch 
flows within their limits.   
Gas production, gas consumption, storage capacity, 
gas withdrawal from storage, and cross-border flows 
are modeled in aggregated way [24]. We assume 
there is only one facility per country with aggregated 
capacity and flow rate. 

When solving for the time evolution of the state x(t) 
of each node in the European model, a cost 
optimization is performed to minimize the 
operational costs of responding to demand and 
weather.  Each country is characterized by local time 
varying demand profile. Energy demand is calculated 
from annual demand and adjusted to the local 
temperature profile. The supply is calculated by an 
iterative solution of the optimal power/gas flow 
problems, where the optimization procedure attempts 
to adjust the node import/export rates within the 
acceptable constraints until the lowest supply cost 
solution is found. The cost of electricity based on 
demand and weather is calculated from a historically 
validated supply cost curve and data on generation 
capacity, marginal costs and emissions. The cost of 
energy supply is found at the intersection of the 
supply curve with the net node demand curve, 
defined as the difference between overall 
consumption level and the aggregate import of the 
energy (negative if the node exports the energy). The 
optimization procedure incorporates minimizing the 
rates of storage exhaustion as part of the cost, and 
generally results in solutions that maximize the 
utilization of pipelines. Small amounts of 
randomization are introduced to model by the market 
and decision-making imperfections.  
The simulation of the gas electricity system relies on 
hybrid optimization module described in [15]. It is 
based on a combination of genetic algorithm, particle 
swarm and downhill with three major operators: 
enhancement, crossover and mutation. In 
combination these methods are more likely to find 
the global optimum. By running the optimizer with 
different starting points, the probability of finding the 
global optimum is increased. The key advantage of 
this approach  is its ability to avoid single local 
minima, as initialization with multiple starting points 
allows the system to explore the non-trivial extrema 
of the cost function.  
 
4. Scenarios and results  
 
4.1 Base scenario and model validation 
 
We consider scenarios spanning 14 days with the 
outage of the component happening right between 
days 7 and 8. The model is validated on the base 14 
days winter period scenario without any outages 
happening during the period. We use 14 days in 
February of 2012 as our base scenario. 
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Figure 2 Gas flows for the 20 highest volume pipelines

Figure 3 Electricity flows for the 20 highest volume lines

Figure 4 Temperature profile for the most populous of
the 42 European zones for the 14 day base scenario. 

The average gas consumption was 27,644 GWh/d 
during the 14-day period, an increase of 12% over the 
same period over the previous winter.   The European 
peak-day demand (29,141 GWh) for the winter 2011-
12 was recorded on the 7th of February 2012. At the 
country level the differences vary from -26% 
(Ireland) to +28% (Germany) [16]. The demand peak 
period was 31/01/2012-13/02/2012.  Historical 
publicly available data for gas and electricity flows 
are taken from ENTSOG and ENTSOE.  

After simulating our zoned DC flow model with the 
historical demand and temperature profiles, we find 
good agreement between the model prediction and 
the actual cross border flows of gas and electricity.   
Figures 2 and 3 present the differences from the 
model prediction and the actual flow data, showing 
an agreement with only 9.5% error.  The temperature 
profiles for the base scenario are shown on Figure 4. 

4.2 Disruption scenario: loss of a gas pipeline in 
Ukraine

To illustrate the effectiveness of our model and 
impact function, we consider one scenario. In this 
scenario, we optimize for high impact weather 
conditions by considering a cold two week period in 
winter for all zones in the model. This cold period is 
accompanied by the failure of one of the key 
pipelines that is used to supply fuel and heating gas 
to most of the zones. The motivation behind the 
scenario was driven by the previous disputed 
situations between Russia and Ukraine. In 2009 
January the 1st , deliveries of 90 mmcm of natural gas 
per day were fully cut and a volume of 300 mmcm 
per day cut for transit deliveries to EU [26].  
Currently, there are three main suppliers of pipeline 
gas to the EU – Russia, Norway, and Algeria – along 
with several other suppliers of liquefied gas, most 
notably Qatar. Russia is the largest single supplier to 
the EU in 2012, providing 36.5% of the EU gas 
imports. Both the EU and Russia are dependent on 
fixed pipelines for the transit of gas.  
There are four main routes for Russian gas exports to 
the EU – direct pipelines to Finland and the Baltic 
States, the Nord Stream pipeline under the Baltic Sea 
to Germany and transit pipelines via Belarus and 
Ukraine.  
In the proposed scenario, we assume at the same time 
that there is high demand due to low temperature that
is accompanied by an outage of the major gas 
pipeline due to loss of structural integrity 
(mechanical damage, corrosion, overpressure, etc.) 
on the Ukraine route which shutdown the Ukrainian 
transit, producing serious shortages in numerous 
countries in Europe. For this scenario we generate the 
samples of low temperature profile using the 
stochastic model described in the previous sections 
and run the simulations for different scenarios until 
the scenario with a high level of impact is found.  
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Our simulations have shown that the amount of gas 
stored in the system was rapidly decreasing for most 
of the sites in the system. To quantify the effect of 
gas shortage we have used the risk indicator similar 
to the exhaustion rate defined in previous sections, 
but adopted to the details of the model of the energy 
system. The risk indicator accounts for the capacities 
of all gas sources of a given node (storage and 
pipelines) as well as the consumption rates observed 
during the simulations and accounts for the inherent 
randomness incorporated in the model via Monte-
Carlo averaging over possible flows for a given 
temperature profile. We observe that in comparison 
to the base scenarios, the number of the high risk 
zones is quite dramatically increased in comparison 
to the base scenario. Figure 5 shows the color coded 
map of the system in the disruption scenario, while 
Figure 6 qualitatively shows storage decay curves
during this scenario.   

 
Figure 7 Proposed temperature profile for 14 day 
scenario with pipeline disruption 

 
Figure 8 Storage capacity during the disruption and 
cold weather in the most affected countries 

We observe that the countries facing the highest 
levels of imbalance and storage depletion are:  
Hungary, Romania, Slovakia, Poland with the follow
rates: 54 Mcm/day, 29 Mcm/day, 26 Mcm/day, 9
Mcm/day. The effect of low temperature profiles in 
these countries, shown in the Fig. 7, together with the 
limited supply from the failed Ukrainian pipeline 
results in rapid exhaustion of the gas storage, shown 
in the Fig. 8.  
This effect also propagates to other countries: 
Austria, Italy, Greece, Germany all rely on the gas 
from Russia. However, the effect on the storage in 
those countries is less severe due to existence of 
alternative routes and higher flexibility in supply 
options. Historically, these countries also were 
affected by the change in policy between Russia and 
the Ukraine.  When the Russia-Ukraine dispute took 
place in January 2009, various countries were 
affected.  For example Austria 66% cut, Bulgaria 
100%, Croatia 40%, Czech Rep 71%, Germany 10%, 

Figure 5 Visualization of the system in the 
disruption scenario.  

Figure 6 Depletion of the storage in disruptive 
scenario and effect of the temperature on the risk 
distribution in the system 
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Greece 80%, Italy 25%, Hungary 45%, Poland 33%, 
Slovakia 97%, Slovenia 50% [27]. They have to look 
for alternatives. Austria used the gas in storage for 
several weeks, Bulgaria the same that they had 
enough for only 35% of gas demand which means the 
equaivalent of 2-3 days, Croatia increased the 
domestic production by 43% and storage withdrawal. 
If we look at the current situation in Europe, 
according to IEA Gas Trade Flows in Europe, Nord 
Stream website, in 2012 there was a total of 208.7 
mcm/day of Russian gas flows via Ukraine, this 
represents about 54% of exports from Russia to 
Europe. This indicates clearly that if there is a supply 
shortfall due to a disruption on the Ukraine route 
could cause severe disruptions because the system 
cannot sustain the winter demand under extreme 
temperature conditions of -20oC. In addition, a deficit 
on the gas supply may have impact on both networks. 
In countries producing a lot of electricity from gas, 
such as Italy (with 50% of its electricity produced 
from gas powered turbines) the loss of gas supply can 
be critical.  
The situation may turn more severe if there is 
simultaneous lack of gas and deficit of renewable 
energy. These two factors combined may result in 
even higher stress on the system. However this type 
of propagation of failures is likely to occur only in 
specific countries with significant electricity 
generation from gas but with a lack of power 
connections or lack of gas storage. One natural 
solution to this problem is reallocation of the delivery 
paths that originate in Russia through alternative 
routes through Norway and Netherlands, 
complemented by an increase of gas storage capacity 
in the most vulnerable European countries.   
 
5. Future work  
 
The approach proposed in this work can be extended 
in several directions. Existing reliance on Gaussian 
modeling of the temperature variations is overly 
restrictive and may be inappropriate for some 
characteristics like wind velocity or solar irradiance 
with heavy non-Gaussian probability tails. In the 
future we plan to extend the technique to work with 
advanced stochastic weather generators [17] 
developed by atmospheric research community. 
These weather generators produce random samples of 
weather in a given time period, and could be coupled 
with some stochastic optimization or advanced 
sampling techniques, like importance sampling. In 
this framework the system would be composed of 
three modules: weather generator, energy system 
simulator and sampling/optimization interfaces that 

performs optimization on the space of weather 
samples.  
The energy system model should be also improved to 
incorporate more realistic representation of real life 
decision-making processes implemented by system 
operators. For example, gas market and more general 
contract models are necessary to model the system 
response in deregulated environments. Similarly the 
dispatch of generators should account for security 
constraints imposed by NERC and other regulating 
entities. 
 
6. Conclusions  
 

This paper addressed the problem of resilient 
operation of interconnected and interdependent gas 
and electricity infrastructures. Heavy reliance on 
natural gas introduces additional vulnerabilities in the 
energy system associated with the shortage of fuel for 
gas-fired generators. Assessment of the risks 
associated with these vulnerabilities is especially 
challenging task, as typical dangerous events involve 
both the failure of some system components and 
unfavorable weather conditions. Enormous number 
of possible failure scenarios makes the 
straightforward approaches for reliability assessment 
nearly impractical. 

We have proposed a novel approach that is based 
on the identification of the most probable of the 
dangerous weather patterns and provided specific 
ways of how this approach could be implemented in 
practice. The potential of our ideas was illustrated by 
adaptation of a complex European energy system 
model and preliminary analysis of the risks 
associated with the failure of specific gas pipelines 
combined with unfavorable weather conditions.  
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