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Abstract— Stochastic variations and unpredictability of wind
energy are the major concerns of power industry and hinder
the wide scale adoption of wind power. Compensation of
short term variability is one of the major challenges that
the industry will face in the coming years. We analyze the
potential impact of advanced control and storage technologies
in reducing the intermittency of wind power. Using the convex
optimization techniques we study the theoretical limits on the
performance of storage technologies. Specifically we analyze the
interplay between the variations of electric power fluctuations
and the technical characteristics of storage available in the
system. We quantify the trade-off between the reduction in
power intermittency, storage capacity, power rating, and overall
system efficiency.

I. INTRODUCTION
Penetration of intermittent and non-dispatchable power

generation resources is expected to increase by at least
an order of magnitude in the coming decade. Much of
this generation will be deployed at the distribution grid, in
form of distributed generation. Although these trends will
likely increase the overall security of the power system, they
will also significantly complicate the problem of local and
global power balancing, and more generally maintaining the
grid stability. New balancing mechanisms will need to be
introduced to mitigate the problem of intermittency [1], [2].
The most promising technologies expected to alleviate the
balancing problems are the fast gas-fired generation units
capable of quickly adjusting their output, responsive power
consumption technologies, and finally stand-alone energy
storage units [2], [3]. Rapid advances in storage technologies,
as well as relative simplicity of introducing this balanc-
ing technology, makes it especially attractive for managing
fluctuations of intermittent renewables in autonomous or
weakly coupled grids that have to balance the generation
and consumption levels locally.

Modern power systems have several mechanisms of bal-
ancing the generation and consumption levels. These mech-
anisms operate on several time-scales and work almost
independently of each other. On shortest time scale second
to minute time scale the balance is restored via primary
and secondary frequency regulation. Most of synchronous
generators, and some loads participating in ancillary service
program, adjust their power generation and consumption
level based on the deviation of the frequency from its nomi-
nal level. This way the inertia of the large turbines plays the
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role of the energy storage buffer. Primary frequency control
loop stabilizes the dynamics of frequency in situations where
the generation output setting are not balanced with the overall
consumption level. The secondary frequency control loop
returns the frequency to its nominal level (60Hz in US).
On longer time-scales, ranging from tens of minutes to days,
the fluctuations are suppressed by real-time market operation
and optimal dispatch of generators produced by solving the
unit commitment problem. The grid operators find optimal
resource allocation using the existing demand/generation
forecasts and update the allocation plan when better forecast
data becomes available.

Most of the existing power systems compensate for the
fluctuations of the uncontrollable renewable sources with
the help of fast ramping generation units, that are used
to fill the gap between electricity supply and demand [4],
[5]. Increasing the penetration of wind power increases the
demands on the fast ramping generators. [2] The limited
ramping capacity of the generators, the cost of cycling
them, and the additional emissions they produce prevents
fast ramping generation alone from being the solution to the
power intermittency problem. [2], [4]–[7] Other solutions,
such as introducing curtailment of the wind power or trans-
mission of extra power to other grids, have a limited capacity
for regulating variability as they waste power and rely on
other grids being flexible. Electrical energy storage systems
can efficiently lessen variability without generating harmful
emissions.

Choosing the best storage solution and assessing its ef-
fectiveness in frequency regulation or load following is by
no means a simple problem. There are at least dozen of
multiple energy storage technologies, each characterized by
several important constraints, such as power rating, roundtrip
efficiency, self-discharge rate, etc [8], [9]. The most cost-
effective solution depends also on the temporal statistics of
the fluctuations that are mitigated by the distributed storage
system. The statistical properties of typical loads are poorly
understood, and have not been systematically studied to our
knowledge. The statistical properties of the wind fluctuations
and associated output of wind turbine are much better under-
stood. Power spectrum of these fluctuations is characterized
by the well-known Kolmogorov 5/3 law [10], [11]. However,
the probability distribution of the velocity field is highly non-
Gaussian, with high-order correlation functions characterized
by anomalous exponents, phenomenon known as intermit-
tency in fluid dynamics community [12]–[14]. Analytical
studies attempting to assess the effectiveness of storage in
mitigation of wind intermittency have to rely either on the
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time series data or on sophisticated stochastic model that
incorporate at least some features of real wind fluctuations.

Finally, the cost of an actual storage system will include
the cost of sensing devices to create wind forecasts, auto-
matic control systems employed by the local grid operators
and the storage system itself. Many possible approaches have
been proposed in the literature that address all the above
problems, which make the problem of storage effectiveness
analysis even more complicated.

In this study we attempt to answer some of the questions
raised above. In order to obtain results that are universal in
the sense of their applicability to a maximal broad range of
systems we focus on the analysis of the fundamental limits
that can be achieved by the energy management system with
perfect forecast of the wind fluctuations. In this setting the
problem can be analyzed in the setting of infinite horizon
model predictive control and solved easily with convex
optimization approaches. The resulting solutions allow us to
relate the technical characteristics of the storage systems with
various performance objectives, such as efficiency of the sys-
tem, variability reduction, etc. This approach also decouples
the problem of forecasting from the control problem, and
permits independent assessment of the forecast information
value. Although not addressed in this paper, this problem is
of utter importance and is actively studied by the authors of
this manuscript.

II. ENERGY STORAGE AND CAPTURE SYSTEMS

In our work we focus on modeling and analysis of a
simple system consisting of a single turbine attached to
storage device and external power grid. This setting, although
simplistic, captures the essential features of large wind farms.
It can be also directly applied to the important problem of
stabilizing micro-grids and, more generally, future systems
with strong penetration of distributed renewable generation.
In our model we assume that the energy captured to the
wind can be transferred either directly to external grid or
routed to storage system and transfered to the grid at later
times. To model this simple setting we use the following set
of equations defined on the discrete time interval set where
each unit of time corresponds to dt = 1 minute:

Pg(t) = Pw(t) + ηPd(t)− Pc(t)− Pl(t) (1)

E(t+ 1) = E(t) + (ηPc(t)− Pd(t))dt (2)

Here Pg(t) represents the average power delivered to grid
during the time interval [t, t + dt], whereas Pw(t) is the
average power produced by the wind turbine on the same
time interval. The process of storage charging is represented
by the average charging power Pc(t) and discharging power
Pd(t) and the roundtrip efficiency represented by coefficient
0 < η2 < 1. In our model we ignore the self-discharge
rate, assuming that the energy lost to self discharge is small
compared to the amount of energy flowing through our
system. Finally, we introduce the effect of curtailment in
the system through the variable Pl(t) which represents the
average power that has been “lost” during the time interval

t. This curtailment can happen either at wind turbine control
level, by angling the blades to intentionally reduce their
performance, or at the point of interconnection of the grid
in consideration with the outer power system.

In order to model the intermittent wind power Pw(t) we
used the real wind speed data from the National Weather
Service’s ASOS data sets [15]. These data sets are time-series
of real wind speed averaged over one minute time intervals,
measured with one knot (.514 m/s) resolution. Better time
resolution of data is not required because the inertia of the
blades smooths out fluctuations that occur on the seconds
timescale. We have processed these data sets, and analyzed
only the intervals where the 10 minute average wind speed
exceeded the cut in speed of the turbine. The maximum
power available from the wind from the turbine’s energy
conversion process was modeled by [16]

Pw(t) =
1

2
ρCpAv(t)3 (3)

where ρ is the density of air, A is the swept area of the
turbine blades, Cp is the coefficient of power and v(t) is the
speed of the wind, capped at the turbine’s maximum power
rating. The turbine parameters are shown in Table I and were
taken from [17].

The ASOS wind data represented several US locations and
months. Intervals ranging from 15-4000 minutes of sustained
windspeed were considered separately in the optimization
procedure. Between consecutive intervals, the initial charge
on the storage system was set to be the final charge state of
the previous interval. Otherwise, the initial charge was set to
zero, the worst possible case.

TABLE I
WIND TURBINE PARAMETERS

Parameter Value

Maximum rated power 2 MW
Blade radius 35 m
Coefficient of performance Cp 0.48
Wind cut in speed v 3.5 m/s
Air density ρ 1.225 kg/m3

We have incorporated several characteristics of storage
technologies in our model via constraints on the functions
entering in the main equations (1,2). The most important
one is the energy capacity Emax which restricts the total
amount of energy that can be stored in the storage system
at any moment of time: 0 ≤ E(t) ≤ Emax. Next, we
have used the realistic power ratings of the storage tech-
nologies, that limited the amounts of power that could be
transferred to and from the storage at any moment of time:
0 ≤ Pc(t), Pd(t) ≤ Pmax. Excessive cycling of storage
technologies causes them to degrade and eventually become
useless. The total cycled power was limited to ensure the
storage technologies could achieve a reasonable operating
lifetime: dt

∑T
t=1 [Pd(t) + Pc(t)] < 2C̄EmaxT with T as

the simulation time interval and C̄ as the allowed full
charge/discharge cycles per unit time. Finally, we assume
that no power can be drawn from the grid, which was
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formally accounted for with the inequalities Pg(t), Pl(t) ≥
0. We have also constrained the overall levels of sys-
tem efficiency:

∑T
t=1 [Pl(t) + (1− η)(Pd(t) + Pc(t))] ≤

κ
∑T

t=1 Pw(t) where κ is the wind to grid efficiency that
satisfies 0 ≤ κ ≤ 1. The overall system efficiency enforces
that the wind turbine system is supposed to deliver a set
amount of the available power from the wind to the grid. This
forces the turbine to operate efficiently, preventing solutions
where the majority of the power is curtailed to make a
smooth output. Because a turbine can delivery a constant
power output if it only operates at its minimum generation
level, 1−10% of its capacity, κ forced the system to mitigate
the wind fluctuations without wasting available power. An
additional set of simulations removed the cycling and wind
to grid efficiency constraints and instead made them costs in
the objective function to see what pricing conditions made
storage use or curtailment effective in mitigating fluctuations
to show why the constraint was needed.

Performance of real distributed generation and storage
systems depends on multiple factors, including among others
the accuracy of the wind forecast systems and the character-
istic of the control system employed by the turbine/storage
operator. In order to separate the effect of the storage
characteristics from the characteristics of control and forecast
systems we have analyzed the idealistic control system. This
system implemented open loop control that was based on
the perfect forecast of the incoming wind fluctuations. The
control actions represented by Pc(t), Pd(t), and Pl(t) were
found via global optimization over the full time interval.

In order to characterize the effectiveness of the storage in
mitigation of the short term intermittency we have chosen the
timestep variations of the power output,

∑T
t=1(Pg(t+ 1)−

Pg(t))2, to be the objective function of the optimization. This
choice assumes penalizes the high frequency component of
the fluctuations implying that those are the most difficult to
compensate using existing technologies, for example because
of insufficient spinning reserves or lack of fast ramping
generators. On the other hand the objective function does
not penalize slow variations of power, which are easier to
compensate with market and unit commitment type mecha-
nisms. Although our objective function is chosen somewhat
arbitrarily, we believe that it reflects the major properties
of real cost of the system operations. Its quadratic structure
is related to the fact that the system always operates close
to the optimum and the penalization of high frequencies
is motivated by the assumption of relatively high costs of
ancillary services and/or lack of fast generators.

This objective function enforces minimization of short
term power output fluctuations that are especially difficult
to balance with traditional grid control approaches. Although
this setting is rather idealistic, the results of optimization and
consequent analysis provide valuable information about the
fundamental limitation of storage systems associated with
technological constraints. The results provide guidance in
terms of what storage characteristics are most important
for balancing purposes and what is theoretically possible
to achieve with given amount of storage. The results also

provide a benchmark for future analysis of realistic control
and forecast techniques.

The main technical advantage of the proposed approach
is that the associated optimization problem is convex and
quadratic, and can be solved very efficiently with standard
software tools. The above discussion can be summarized in
the following optimization problem performed on an entire
interval of length T:

min
Pc,Pd,Pl

T∑
t=1

[Pg(t+ 1)− Pg(t)]
2 (4)

subject to : (5)
Pg(t) = Pw(t) + ηPd(t)− Pc(t)− Pl(t),

E(t+ 1) = E(t) + (ηPc(t)− Pd(t))dt,

0 ≤ E(t) ≤ Emax,

0 ≤ Pc(t), Pd(t) ≤ Pmax,

dt
T∑

t=1

[Pd(t) + Pc(t)] < 2C̄EmaxT

Pg(t), Pl(t) ≥ 0
T∑

t=1

[Pl(t) + (1− η)(Pd(t) + Pc(t))] ≤ κ
T∑

t=1

Pw(t)

We have used the CVX convex optimization matlab toolbox
[18] to explore the set of solutions and the dependencies be-
tween storage characteristics and the performance indicators
of the system. CVX found the optimal sequence of charging,
discharging and curtailment actions to achieve the lowest step
by step variability. General storage properties were chosen to
measure the effects of each property of the storage system.
The performance of the general system is compared to a
system with the properties of current storage technologies.

Additionally, the effectiveness of storage capacity was
measured when the wind to grid efficiency and cycling
constraints were changed to costs in the objective func-

tion, minPc,Pd,Pl

√∑T
t=1(Pg(t+ 1)− Pg(t))2 +

∑T
t=1A ∗

(Pc(t) + Pd(t)) + B ∗ ((1 − η)(Pc(t) + Pd(t)) + Pl(t)),
where A represents the relative cost of cycling 1 watt of
power compared to a step of 1W in the power output to
the grid and B represents the relative cost of losing 1W of
power compared to the step of 1W of power output. The loss
of power from the storage conversion efficiency as well as
curtailment contribute to power not delivered to the grid. A
comparison of the total capture of wind power and largest
contributing factor to the cost with respect to the factors A
and B are shown in table II. It was found that without the
constraint forcing efficient delivery of power to the grid, it
was cheapest to curtail 70 − 90% of the power available
from the wind. This indicates that the best way to best way
to remove variability in wind is to not use turbines to their
full capacity. Because this result says that the best way to
use wind power is to operate well below turbine ratings, the
wind to grid efficiency was constrained to κ in the following
analysis to show how the power grid must compensate for
regulations that demand wind power be used.
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TABLE II
TOTAL POWER OUTPUT AND MAJOR COST FACTORS

A
B .0001 .001 .01 .1
.01 25% capture, conversion 25% capture, conversion 0.5% capture, curtailment 13% capture, curtailment
.1 29% capture, curtailment 29% capture, curtailment 29% capture, conversion 8% capture, curtailment
1 19% capture, Pg mismatch 19% capture, Pg mismatch 19% capture, Pg mismatch 16% capture, Pg mismatch
10 15% capture, Pg mismatch 15% capture, Pg mismatch 15% capture, Pg mismatch 15% capture, Pg mismatch
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Fig. 1. Variation reduction for a storage system with 33kWh capacity,
charging rate of 100kW, 500 charge cycles/month and 92% efficiency. 95%
of the wind power was delivered to the grid and 20% variation reduction
was achieved.

III. SIMULATION RESULTS AND DISCUSSION

Simulations showed which parameters imposed the
greatest constraints on the storage system’s performance.
They also sized the storage system properties required to
suppress the fluctuations of a single wind turbine. While
the setting of a single wind turbine and storage device is
considered uneconomical, the same methods could be used
to size storage for a wind farm or agregate of wind farms.
A single wind turbine was simulated because of the lack
of data on the minute timescale for wind farms. Figure 1
shows a typical comparison of the fluctuations with and
without storage. The effectiveness of a storage system was
measured by the fraction of wind variability, measured as√∑T

t=1(Pg(t+ 1)− Pg(t))2/
∑T

t=1(Pw(t+ 1)− Pw(t))2.

A. Diminishing returns of storage capacity

We first constrained storage capacity independently of the
other storage parameters. With no restrictions on the magni-
tude of charge rate and number of cycles, the effectiveness
of the storage alone was measured. Since constraints on rate
and lifetime only make the storage system less effective, we
found the required energy capacity first and then matched
the rate and cycle constraints to that capacity. To avoid trivial
solutions where all the power was curtailed, giving a constant
power output, the efficiency of power conversion and total
wasted power were still constrained in the model via the wind
to grid efficiency. . The effectiveness of storage showed a
point of diminishing returns, shown in Figure 2. Introducing
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Fig. 2. Diminishing returns of storage capacity with a 92% efficient storage
system.

storage greatly reduced the measure of variability, but after
about 33 kWh (one minute of the turbine operating at full
power), there was almost no additional variability reduction
with more added storage. The amount of required storage
does not change with the amount of curtailed or wasted
power allowed as long as limits on the wasted power do not
interfere with the charging rate and cycling constraint. In the
5%, and 10% curtailment/waste allowed scenarios, enough
waste is allowed so that the storage is only being constrained
by the storage capacity. However, in the 1% case, the waste
constraint becomes the strictest constraint, and does not allow
the storage to use its full cycling and charging capacity. This
means that the effect of the energy capacity alone is not
seen. The imposed charging and cycling constraints lower
the storage capacity of diminishing returns but also diminish
the overall effectiveness of the storage system. Limiting the
charging rate and cycling does not let the storage system
fully utilize it’s charging capacity.

B. Diminishing returns of charging rate and cycle lifetime

Once the optimal capacity was set, we next constrained the
charging rate while allowing unlimited cycling. A point of
diminishing returns was found, shown in Figure 3, indicating
an optimal charging rate of 200 kW. This charging rate allows
for full charge or discharge in 10 minutes.

Cycle lifetime was the last constraint to be sized. Cycling
is the strictest constraint on the performance of the system
because it determines the total amount of power that can be
shifted. Storage systems with a low cycle lifetime burn out
and must be replaced, so storage with long cycle lifetime is
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Fig. 3. The minimum required charge/discharge rate of storage is 200kW,
or 10% of capacity per minute, when capacity is fixed at 33 kWh. Faster
rates are unnecessary as they do not lead to better performance.
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Fig. 4. Cycling shows diminishing returns.

desired. Figure 4 shows 170 cycles per month is sufficiently
effective.

C. Efficiency limits for variation reduction

With the capacity set at 33 kWh and the charging rate at
200 kW, and 170 cycles allowed per month, the tradeoffs
between storage efficiency and wind to grid conversion are
observed in Figure 5. The efficiency of the storage system
is critical if a high wind to grid efficiency is required, with
98% efficient systems able to achieve as low as 1% waste
with an 85% reduction of variations. However, if wastes are
allowed to be greater than 10%, the variation reduction is
the same for all efficiencies of conversion to storage. It is
impossible to reduce variations to zero even if large amounts
of waste are allowed because the limits on energy capacity,
charging rate and cycling were imposed.

D. Technology comparison

While this study sought to find the storage requirements
necessary for creating an acceptable amount of variation
reduction, it is necessary to evaluate technologies that are
currently available. Batteries, flywheels and pumped hydro
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Fig. 5. Storage efficiency and the wind to grid conversion efficiency both
determine how much variation reduction is possible.

of the same capacity are considered. All of the technologies
are capable of charging at faster than the required 200 kW.
Batteries have a slightly higher charging efficiency than
flywheels and both have a huge efficiency gain over pumped
hydro. More importantly, flywheels and pumped hydro are
able to sustain many more cycles per lifetime than batteries.
Approximations of the appropriate parameters for each tech-
nology were made from [11]. Parameters for the systems are
shown in Table III and their effect of the variability is show
in Figure 6. When only very small amounts of power are
allowed to be wasted, the three technologies perform almost
equally and outperform curtailment only. However, because
batteries have a greater limitation on how many cycles they
can handle, their effectiveness is limited, because they have
a stricter cycling constraint in the optimization. Flywheels
and pumped hydro have a greater cycle lifetime, allowing
more cycles per month than the required amount found in
III-B, so their performance is approximately the same as
the general storage system shown in Figure 5. Pumped
hydro offers the cheapest solution, however, the large scale
and geographic requirements of pumped hydro systems may
make them unfeasible to use even for large aggregations of
wind turbines.

TABLE III
STORAGE PARAMETERS WITH 33KWHR CAPACITY

Parameter Batteries Flywheels Pumped Hydro
Charging rate [MW] 0.1 1 1000
Cycles per lifetime 5000 35000 35000
Efficiency 0.95 0.92 0.78
Cost of cycling $132k $162k $16k

IV. CONCLUSIONS

We have presented a computational methodology for as-
sessment of the role of storage technology characteristics
on the effectiveness of wind intermittency mitigation pro-
cess. The methodology is based on conventional convex
optimization algorithms and provides a way of identifying
the fundamental limitations of distributed storage systems.
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Fig. 6. Variation reduction possible with different storage technologies.
The long cycle lifetime of flywheels and pumped hydro explains their good
performance.

In this work we have focused on the effectiveness of short
term fluctuation suppression that happen on the timescales
of order minute.

A relatively small storage capacity is required to smooth
the variability of a single wind turbine system, representing
only one minute of the maximum rated turbine output. The
charging rate does not need to be high either, allowing
10% of the capacity to charge or discharge per minute.
With these properties, storage systems are able to achieve
substantial reduction, up to 95%, of variability in wind power
output. The cycle lifetime of a storage technology is the
most important feature for a storage technology - it must be
enough absorb and deliver the energy that must be displaced
to have a smooth power output.

We have also observed that the regions of non-trivial
trade-offs in the parameter space are relatively narrow and
have well pronounced optimal conditions at which the max-
imum variation reduction is achieved. When properties are
increased beyond this spot, no appreciable gains in perfor-
mance are made, so only this minimal value is required to
size a storage system. Of current technologies, flywheels look
the most promising for suppressing variations. Pumped hydro
offers a cheaper solution, however, the large power capacity
and typical charge and discharge times of these systems make
them more suitable for long term load following.
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