
Systematic Design of Virtual Component Method
for Inverter-Based Microgrids

Po-Hsu Huang1, Petr Vorobev1, Mohamed Al Hosani2, James L. Kirtley1, and Konstantin Turitsyn1
1Massachusetts Institute of Technology

Cambridge, MA 02139
Email: {pohsu, petrvoro, kirtley, turitsyn}@mit.edu

2Masdar Institute of Science and Technology
Abu Dhabi, UAE

Email: mohalhosani@masdar.ac.ae

Abstract—Control design of inverter-based microgrids plays a
significant role in affecting dynamic performance of the system.
Conventional droop control suffers from instability due to higher
X/R ratios and unique network characteristics as compared to
large power systems. While many approaches such as virtual
framework methods, virtual impedance methods, or synchron-
verters have been proposed and proven effective, an intuitive
and fundamental insight into physical sources of instability
has not yet completely disclosed. In this paper, a systematic
approach for enhancing the stability of inverter-based microgrids
is proposed. A simplified system is studied to derive simple
and concise stability criteria based on the proposed Lyapunov
function candidate. It has been discovered that the transient
susceptance B′ is a crucial factor in contracting the region of
stable droop gains. Control schemes to minimize B′ are then
investigated, enabling a different perspective in views of the
virtual component method. Finally, simulation results are carried
out to verify the proposed approach via time-domain analysis.

Index Terms—Droop control, microgrids, Lyapunov function,
small-signal stability.

I. INTRODUCTION

Droop control inverter-based microgrids have gained a lot
of attention recently in development of future power networks
due to increasing penetration of distributed generation. In
contrast to grid-connected modes, droop control islanding
operations require more sophisticated control designs to ensure
system stability [1]. Intense research works in recent years
have provided comprehensive insights into the control and
modeling of the inverter-based microgrid systems [2]–[5].
Since the droop control concept originates from conventional
power networks to achieve proper load sharing, the small-
signal stability was first identified similar to the transmission
level power grids. However, it was later realized that microgrid
dynamics is noticeably different due to a much lower X/R
ratio [6], [7]. That is, both the phase angle and voltage
couple together and contribute to active and reactive power
dependently. Therefore, the P − ω and Q− V droop controls
for low-voltage microgrids suffer from limited gain regions
due to deployment of highly resistive feeders to the point
of coupling (PCC). Without presence of additional coupling
inductors, system stability is significantly compromised.

To address the coupling issues, the concept of virtual in-
ductance has been proposed and widely appreciated due to its

effectiveness [6], [8], [9]. The emulation of inductive dynamics
helps to save bucky and costly inductors with enhancement
of both reactive power sharing and stability. These types of
method, in general, introduce additional terms that reacts to the
output currents into the reference voltages. Thus, the inverters
act like an effectively controlled voltage source connected to
their terminals through the virtual inductances. Also, the idea
of synchronverters is earning a lot of attentions as they are
considered as grid friendly by mimicking the dynamics of
synchronous machines [10]. Similar to the virtual inductance
methods, slower rotor and stator dynamics are emulated by
using high bandwidth two-loop controllers that regulate the
currents and voltages of output LC filters. All of these creative
methods have been investigated and shown to be very effective.
However, more intuitions and insights are to be carried out
from a stability perspective.

This paper focuses on development of virtual components
for enhancing the stability margin of inverter-based micro-
grids. Detailed explanations and clear intuitions are provided
from a different viewpoint than the commonly used eigenvalue
analysis. Although conducting eigenvalue extraction from a
detailed model, in general, is not a computation burden for
a small-scaled microgrid system, its numerical outcomes pro-
vide very limited information for understanding the system.
Moreover, there exists distinct time-scale separation of system
modes, which have been reported in [11]. This leads to a more
straight-forward representation of equations using a reduced-
order model of high accuracy. Without loss of generality to
a network setting, the problem is formulated using a simple
two-bus system. Therefore, Lyapunov function candidates can
be constructed to identify the important parameters that affect
system stability. Based on the derived criteria, a new control
design using the virtual component method is proposed to
further improve the stability margin. Numerical simulation for
a more complicated system is then carried out to verify the
proposed method.

To sum up, key contributions of this paper are as follows: 1)
detailed analysis of the system dynamical behaviors that pro-
vides insights into physical sources of instability; 2) derivation
of simple and concise criteria to ensure system stability via
the proposed Lyapunov function candidates; 3) development



of the virtual component method for enhancing the stability
region of the system.

II. PROBLEM FORMULATION

In this paper, we begin from a commonly used compre-
hensive model with detailed control structures from [11]. In
general, the detailed model includes controller states of the
voltage and current loops, resulting in higher system order.
In fact, distinct time-scale separation of droop and controller
modes can be easily seen; particularly, the time constant of
droop modes is at around 100 ms, which is far greater than the
controller modes. Therefore, by omitting the internal controller
states, a simplified full model that enables the terminal voltage
and frequency effectively controlled can be obtained.

A. Two-Bus Model

To simplify the problem, a two-bus scenario is utilized for
illustration. One can assume that the inverter is connected to
a stiff bus (PCC) regulated by a group of inverters. Then,
the ODEs of the system with three inverter and two current
(aggregation of coupling and line inductances) states are given:

θ̇ = ω − ω0 (1)
τ ω̇ = ωref − ω − kpω0P (2)

τ V̇ = Vref − V − kqQ (3)

Lİd = V cos θ − Vs −RId + ω0LIq (4)

Lİq = V sin θ −RIq − ω0LId (5)

where kp and kq are the P − ω and Q − V droop gains in
percentages, V and Vs are the inverter and stiff bus voltages,
and τ = w−1c is the time constant of the low-pass filter for
the power measurement.

B. Reduced-order Model

For large power systems, it is convenient to apply the
quasi-steady state approximation, allowing one to treat (4) and
(5) as algebraic equations by setting the derivative terms to
zero. Consequentially, the system order reduces to only three.
However, for the inverter-based microgrids this assumption
is no longer valid due to faster inverter states as compared
to inertia and excitation time constants of the generators.
Particularly, the quasi steady-state assumption fails when the
X/R ratio of the microgrid becomes slightly larger. Therefore,
a proper reduction technique has been proposed to account
for the electromagnetic transients, which play a critical role
in the onset of instability [arvix]. To derive a reduced-order
model, consider the dynamics of inductive line current being
expressed in the complex form:

I = Id + jIq =
V ejθ − Vs

R+ jX + sL
(6)

where X is equal to ω0L and ω0 indicates the nominal fre-
quency. Applying the Taylor series expansion on the Laplace
operator s, the line current can be approximated by neglecting
the high-order terms:

I ≈ I0 − L

R+ jX
sI0. (7)

where I0 = (R + jX)−1
(
V ejθ − Vs

)
and supersrcipt {0}

denotes the zeroth order term. Therefore, active and reactive
power can be expressed as:

P = Re[V I∗] ≈ P 0 −G′V V̇ −B′V 2θ̇ (8)

Q = Im[V I∗] ≈ Q0 −B′V V̇ +G′V 2θ̇, (9)

where

P 0 = BV Vs sin θ +G(V 2 − V Vs cos θ), (10)

Q0 = B(V 2 − Vs cos θ)−GV Vs sin θ, (11)

G = R/(R2 +X2), B = X/(R2 +X2) (12)

G′ =
L(R2 −X2)

(R2 +X2)2
, B′ =

2LXR

(R2 +X2)2
. (13)

and G′ and B′ stand for the transient conductance and
susceptance. Subsituting eqs. (8) and (9) into eqs. (1)-(3),
the linearized model at the nominal operating point can be
obtained:

λpτ θ̈ + (λp −B′) θ̇ +Bθ +Gυ −G′υ̇ = 0 (14a)

(λqτ −B′) υ̇ + (λq +B)υ −Gθ +G′θ̇ = 0 (14b)

where λp = (kpω0)−1 and λq = k−1q . For simpler expressions,
we abuse the notation of defining θ = δθ and υ = δV . Also,
the assumption is made that the operating points are close to
the nominal condition as θ ≈ 0, and Vs = V = Vn ≈ 1 pu,
which is valid as the capacity of the lines in microgrids is
normally greater than the rating of the inverters.

III. STABILITY ACCESEMENT

From eqs. (14a) and (14b), it can be observed that the
quasi-steady approximation is the results of setting G′ and B′

to zeros. However, these two terms have significant impacts
on predicting instability. A simple observation can be made
on the second term (damping) of the eq. (14a) that λp
being less than B′ contributes to instability due to negative
damping. To be more legitimate, the global stability of a
linear system could always be certified by ensuring that the
real parts of all eigenvalues are strictly less than zero. While
the analytical solution exists for such a simple system, their
cumbersome expressions may divert the analysis to straight-
forward numerical trials without much intuition.

A more qualitative way of obtaining stability certificate is
to search for Lyapunov function candidates. That is, one can
certify the stability of a linear system ẋ = Ax by finding a
Lyapunov function, W (x) > 0 for x 6= 0 , being strictly
decaying with respect to time, dW (x)/dt < 0. First, we
multiply eq. (14a) by 2τ θ̇ + θ to obtain:

d

dt

{
λp(τ θ̇ + θ)2

2
+

(2τB −B′)θ2

2
+
τ2λpθ̇

2

2

}
+ τ(λp − 2B′)θ̇2 +Bθ2 +Gθυ −G′θυ̇
+ 2τGθ̇υ − 2τG′θ̇υ̇ = 0.

(15)
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Fig. 1. Stability regions of the system (X = 0.008, R = 0.009)

Similarly, multiplying eq. (14b) by 2τ υ̇ + υ gives:

d

dt

{
(3τλq + 2τB −B′)υ2

2
+ (2τG+G′)θυ

}
+ (λq +B)υ2 + 2(τ2λq + τB′)υ̇2 −Gθυ
−G′θυ − 2τGθ̇υ − 4τGθυ̇ + 2τG′θ̇υ̇ = 0.

(16)

Therefore, the terms inside the curly brackets after the sum-
mation of eqs. (15) and (16) form a simple Lyapunov function
W (x) = 1

2x
TPx, where x = [τ θ̇ + θ, θ̇, θ, υ]T and

P =


λp 0 0 0
0 τ2λp 0 0
0 0 2τB −B′ 2τG+G′

0 0 2τG+G′ 3τλq + 2τB −B′

 . (17)

Whenever ω0τ � X/R and X/R 6= 0, it is safe to assume
that G′ � τG and B′ � τB. Therefore, the criteria for P
being positive definite simplify to:

λp > 0 (18a)

(3τλq + 2τB)−(2τG)(2τB)−1(2τG) > 0 (18b)

For the decay rate, we can then derive ˙W (x) = −yTQy,
where y = [τ θ̇, θ, τ υ̇, υ]T and

Q =


λp−2B′

τ 0 0 0

0 B −2G− G′

τ 0

0 −2G− G′

τ 2λq − 2B′

τ 0
0 0 0 λq +B

 . (19)

The criteria for Q becomes:

λp > 2B′ (20a)

(2λq − 2B′/τ)−(2G)B−1(2G) > 0 (20b)

In fact, eqs. (18a) can be always satisfied and (20b) is stricter
than (18b). Therefore, the stability certificate via the proposed
Lyapunov function can be ensured by the following conditions:

kp <
1

2B′
(21a)

kq <
τB

2τG2 +BB′
(21b)

Although the obtained conditions do not reflect the exact
stability boundary, they illustrate the effect of B′ on the system
stability. Particularly, the active power-frequency mode suffers

significantly from the increase of B′ (analogy to transient
susceptance). Fig. 1 shows the comparison between the exact
and predicted stability regions with the prediction on kp being
approximately 50% accurate (when kq is sufficiently small)
while very conservative on kq . In fact, one can parametrize the
multiplier terms, cτ θ̇ + θ and cτ υ̇ + υ, to obtain a collection
of polytopes in order to certify a wider range of droop gains.
However, this paper aims to focus on the physical origin of
the instability; the dedication to searching of the Lyapunov
candidates is beyond the scope of the work.

IV. EMULATION OF VIRTUAL COMPONENTS

In the previous section we have shown that the B′ deteri-
orates the damping coefficient, limiting the stability regions
of the droop-controlled inverter system. This transient sus-
ceptance normally increases when the coupling between the
inverter and PCC becomes stronger (decrease of impedance).
It has been reported in [8] that additional coupling inductor
should be placed to enhance the satbility performance; thus
the implementation of additional coupling inductors can be
commonly seen. However, placement of bulky inductors is
not always a desirable solution, so many research works
have proposed the concept of virtual impedances, virtual
inductances or virtual synchronous generators that mimic the
stator windings and rotor dynamics [6], [8]–[10]. All these
methods helps to mitigate the system instability, which will
be investigated in this section.

A. Virtual Inductance

The typical inverter control system utilizes the two-loop
control scheme and feed-forward terms with the inner cur-
rent loop designed to achieve higher bandwidth than the
outer voltage loop so the controller parameters can be tuned
independently. In general, the overall time constant of the
voltage regulation is far smaller than that of the droop mode.
Therefore, effectively we can consider a fast regulation of
the inverter terminal voltage and neglect the LC filters. To
mimic the virtual impedance (or equivalently generators’ stator
windings), we can add additional terms that react to the
output currents to emulate the inductive dynamics. That is,
the modified reference voltages are of the following forms:

V refd =V̄ refd +XmIoq −
sωfLm
s+ ωf

Iod (22a)

V refq =V̄ refq −XmIod −
sωfLm
s+ ωf

Iod (22b)

where Xm = ω0Lm denotes the virtual reactance, Lm and
Rm are the emulated resistance and inductance, ωf is the
cut-off frequency of the high-pass filter, V̄ refd,q stand for the
voltage commands form the reactive power droop, and V refd,q

are the modified reference voltage for the two-loop control
scheme, and Iod,oq are the output currents in d − q axis.
We should highlight that the above mentioned control scheme
may have different equivalent forms that result in the same
dynamic behavior, and here we follow a similar configuration
as proposed in [6]. In addition, the effectiveness of the
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Fig. 3. Predicted stability regions for different X/R ratios

emulation is subject to the closed-loop stability and controller
bandwidth, proper parameter tuning of the two-loop controller
is required but not disclosed in this paper. With the deployment
of the virtual inductance, expansion of the stability region can
be explained by considering B′ = 2RX2

ω0Z4 , whose variation by
X/R ratio is shown in Fig. 2, in which X = ω0(Lm + Lt)
and R = Rm + Rt. It can be seen that the maximum of B′

occurs at X/R = 1, implying that bidirectional perturbation of
X/R away from unity allows expansion of stability range of
kp provided that kq is sufficiently small. However, decreasing
X/R may further lead to shrinkage of the kq range, which can
be shown from the predicted stability regions in Fig. 3. It can
also be observed that B′ has the same value whenever X/R
is equal to 0.5 and 2; that is, the corresponding predictions
of kp coincide. In general, it is more beneficial to properly
select the virtual inductance to ensure X/R > 1 for further
expansion of voltage droop gains.

B. Virtual Reactance

We have identified the advantages of adding the virtual
inductance into the control scheme. Another approach is to
add only reactance Xm without its dynamic part. In this case,
we can simply set Lm in eqs. (22a) and (22b) to zero. Let’s
consider now the original expression of B′ in (13) as 2XRL

Z4

with an intentional separation of L and X implying that they
can be manipulated independently. In fact, increase of X while
setting Lm to zero can further reduce B′. Notice that we
implicitly define X = Xm + Xt, R = Rt and L = Lt. The
resulting stability regions are shown in Fig. 4, indicating that
there is no clear benefits of increasing Lm in stabilizing the
droop modes. In fact, Lm contributes to B′ and further limits
the stability regions. This interesting finding suggests that one
can tune Lm and Xm separately for the virtual component
methods to strengthen the system stability.
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Fig. 4. Predicted stability regions for different Xm
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Fig. 5. Predicted stability regions for different Cs (Rs = 0.0024)

C. Virtual Capacitance

It has been demonstrated that B′ can be manipulated by
changing X and L independently. Although increase of X can
significantly benefit the system stability, while it may reduce
the voltage regulation accuracy. Indeed, one may think about
canceling the inductive effect without increasing the reactance.
A simple method is proposed to add instead the low pass
filters, which mimic a dynamic capacitance Cs in parallel with
a resistance Rs, into reference voltages:

V refd =V̄ refd − 1/Cs
s+ 1/(RsCs)

Iod (23a)

V refq =V̄ refq − 1/Cs
s+ 1/(RsCs)

Ioq (23b)

By choosing 1/(RsCs)� 0, the equation correlating voltage
and current can be linearized as:

δV ≈ RsδI −R2
sCsδ̇I (24)

Eq. (24) shows that the terminal voltage reacts negatively
to the derivative of current, which behaves like a negative
inductance. Therefore the effective B′ reduces, leading to
expansions of stability regions as shown in Fig. 5.

V. NUMERICAL VERIFICATION

In this section, simulation results are carried out to verify
the proposed control method. A system with three inverters
in the cascade configuration is built based on the full model
(eqs. (1)-(5)), as shown in Fig. 6. The system parameters are
given as: base peak phase voltage: 381.58 V; base inverter
rating: 10 kVA; nominal frequency: 2π×50 rad/s; coupling
impedance: 0.03 + 0.11iΩ; line inductance: 0.26 mH km−1;
line resistance: 165 mΩ km−1; line length: [3 2] km; bus load:
[25 + 4.7i 20 + 3.77i 22 + 3.14i] Ω.



Fig. 6. Three inverter microgrid configuration
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The time-domain simulation is conducted to compare the
dynamic responses between the different methods, as shown
in Fig. 7. For the virtual capacitance method, the cut-off
frequency of the low pass filter is set to be 1/(RsCs) =
100 rad/s to capture the unstable modes, and the equivalent
negative inductance R2

sCs is selected to cancel a fraction of the
coupling inductance. Therefore, the overall virtual parameters
in per-unit are chosen with Lm being 3e−4/ω0 and Rs and
Cs being 1.4e−3 and 7.207, respectively. The result clearly
shows that the virtual components play a significantly role in
affecting the system dynamic performance. A more aggressive
case is then demonstrated in Fig. 8 with higher droop gains
of kp = 2%, kq = 2% and a higher virtual inductance of
Lm = 0.006/ω0. It can be seen that the proposed virtual reac-
tance and capacitance method can achieve better performance
compared to the case when only the virtual inductance is
applied, verifying the effectiveness of the proposed approach.

VI. CONCLUSION

Proper control design for droop-based inverters is crucial
for enhancement of dynamic performance. Particularly, the
transient suscepntacne B′ deteriorates the damping coefficient
of the embedded phase angle oscillator. Based on the proposed
Lyapunov function candidate, the contribution of B′ to the
system instability has been clearly identified. A new concept
of developing the virtual component method is then proposed
to provide further enhancement of system performance against
unstable droop modes. The results suggest that increase of
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Fig. 8. Time-domain results (kp = 2%, kq = 2%)

only the reactance Xm can achieve a wider stability region as
compared to the conventional methods. Moreover, cancellation
of inductive dynamics is further exploited with the proposed
virtual capacitance method. The effectiveness of the proposed
approaches is verified by both theoretical analysis and time-
domain simulation. Although the case study employs a simple
two-bus system, the system formulation with the proposed
approach of constructing the Lyapunov function candidates
enable possible generalization to a network setting, which is
of interest for the future work.
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