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Abstract

®

CrossMark

Vibratory energy harvesters as potential replacements for conventional batteries are not as robust as
batteries. Their performance can drastically deteriorate in the presence of uncertainty in their
parameters. Parametric uncertainty is inevitable with any physical device mainly due to
manufacturing tolerances, defects, and environmental effects such as temperature and humidity.

Hence, uncertainty propagation analysis and optimization under uncertainty seem indispensable with
any energy harvester design. Here we propose a new modeling philosophy for optimization under
uncertainty; optimization for the worst-case scenario (minimum power) rather than for the ensemble
expectation of the power. The proposed optimization philosophy is practically very useful when there
is a minimum requirement on the harvested power. We formulate the problems of uncertainty
propagation and optimization under uncertainty in a generic and architecture-independent fashion,

and then apply them to a single-degree-of-freedom linear piezoelectric energy harvester with
uncertainty in its different parameters. The simulation results show that there is a significant
improvement in the worst-case power of the designed harvester compared to that of a naively
optimized (deterministically optimized) harvester. For instance, for a 10% uncertainty in the natural
frequency of the harvester (in terms of its standard deviation) this improvement is about 570%.

Keywords: energy harvesting, vibration, optimization, uncertainty, stochastic, piezoelectric

(Some figures may appear in colour only in the online journal)

1. Introduction

The considerable reduction in power consumption of electronics
in addition to the scalability issue of conventional batteries have
made harvesting energy from ambient vibration, a universal and
abundant source of energy, a viable alternative to bulky and
costly conventional batteries [1]. To efficiently harvest energy
from the excitation source, mechanical and electrical parameters
of the harvester should be well optimized and finely tuned.
Finding exact or approximate optimal deterministic parameters
for electromagnetic [2] and piezoelectric [3—7] energy harvest-
ers has been comprehensively studied in the literature for the
linear harvesters. For the nonlinear energy harvesters,
researchers have mainly studied the effects of mechanical

! Author to whom any correspondence should be addressed.
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potential shape [8—12] or the harvesting circuitry [13—15]. All
these studies have assumed deterministic system parameters to
optimize the harvested power; however, manufacturing toler-
ances, wear and tear and material degradation, and humidity,
temperature and environmental conditions among others result
in parametric uncertainty in the system. Uncertainty in the
system usually necessitates two types of analysis: uncertainty
propagation and sensitivity analysis, and optimization under
uncertainty for robust design.

Although researchers have explored the topics of sensitivity
analysis and optimization under uncertainty in other fields like
controls, finance, and production planning, they have not
received much attention in the field of energy harvesting. Ng and
Liao [16] studied voltage and charge sensitivity of three unim-
orph, series triple layer and parallel triple layer cantilever
piezoelectric energy harvesters (PEHs) to vertical tip force for

© 2016 IOP Publishing Ltd  Printed in the UK
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different values of metal layer thickness and Young’s modulus.
Ali et al[l7] studied with the help of Monte Carlo (MC)
simulations, the effect of uncertainty in harmonic excitation fre-
quency, mechanical damping and electromechanical coupling on
the ensemble expectation of the harvested power of a linear PEH.
They optimized deterministic dimensionless time constant and
electromechanical coupling coefficient as a function of standard
deviation in the excitation frequency.

Godoy and Trindade [18] used MC simulations to study
the effect of parametric uncertainties in piezoelectric and di-
electric constants of the piezoelectric layer and the inductance
of the harvesting circuit on the mean and confidence levels of
different output variables of the system. Franco and Varoto [19]
studied the geometric and electrical parametric uncertainty in a
cantilever PEH. They used MC simulations for sensitivity
analysis and used stochastic optimization to optimize the
parameters for the ensemble expectation of the harvested power.

There are even fewer studies on uncertainty propagation
and optimization under uncertainty when it comes to non-
linear vibratory energy harvesters (VEHs). Mann et al [20]
studied the uncertainty propagation in the harvested power of
a nonlinear electromagnetic energy harvester with respect to
the uncertainty in different mechanical and electrical para-
meters. Using harmonic balance method they derived and
used the approximate nonlinear frequency responses for
monostable hardening and softening harvesters in addition to
bistable harvester for uncertainty propagation analysis. More
recently Madankan et al [21] studied the uncertainty quanti-
fication in a nonlinear mono-stable PEH with the help of
conjugate unscented transformation quadrature points. With
this technique they approximated the system statistics in
terms of power and maximum deflection moments (up to
fourth order) which were then used to approximate joint and
marginal probability density functions of power and max-
imum tip deflection using maximum entropy principle.

Most of the studies about uncertainty in the context of
energy harvesting discussed above are about uncertainty
quantification [16, 18, 20, 21]. Only two of the above-men-
tioned studies explored optimization under uncertainty [17, 19].
Approaches to optimization under uncertainty have followed a
variety of modeling philosophies, including expectation mini-
mization, minimization of deviations from goals, minimization
of maximum costs, and optimization over soft constraints [22].
The two optimization studies mentioned here are of the
expectation-minimization type (minimization of the negative of
the ensemble average of the harvested power).

Maximizing expected power is an appropriate approach
when a large number of harvesters are to be used together
(uncertainty in harvester parameters) to power up a device or
when one harvester is to be used in an uncertain environment.
Imagine 100 harvesters are to be used to power up a device or
charge a battery, then maximizing the expected power over
parametric uncertainties makes perfect sense as the expected
power of the ensemble is a good measure of the total delivered
power. Now consider a case where a single harvester powers up
a device which requires a minimum power to operate properly.
This would be a common setup for self-powered medical
implants, wireless sensors and many other applications of

energy harvesters. For instance, suppose a hospital decides to
purchase medical devices say pacemakers, powered by energy
harvesters. In this case it is crucial that for each single device, its
harvester delivers a minimum power; otherwise, it will cause
serious health-related complexities. In this case, the customer,
i.e. the hospital will be interested in a batch of devices with the
maximum number of devices fulfilling the minimum power
requirement or alternatively, in a batch of devices with the lar-
gest minimum power for a given percentage of the total number
of devices. It is obvious that the expected power of the batch
will be of minimal interest in this case; hence, optimizing the
harvesters for the maximum expected power is not practically
helpful. This type of demands and problems requires another
optimization philosophy: optimization of minimum power
(worst-case scenario) and not expectation optimization. This
paper addresses this type of optimization which is of great
importance in the field of energy harvesting and has not yet been
addressed.

In this paper we formulate two problems in a generic form:
(i) propagation of parametric uncertainty in terms of the worst-
case (minimum) power and (ii) optimization of the worst-case
power in presence of parametric uncertainty. The later is cast as
a min-max optimization. The former analysis provides infor-
mation about the minimum power delivery of a specific
percentage (depending on the confidence-level) of a batch of
harvesters. Parametric uncertainties are modelled as Gaussian
random variables. Optimization in (ii) is done over deterministic
parameters and the mean values of the uncertain parameters
which are assumed to be controllable in a mean-value sense to
maximize the worst-case performance of the harvesters for a
given confidence level and parametric uncertainty. Finally these
two problems are applied to a PEH and the results of uncer-
tainty propagation and min-max optimization are presented.

2. Mathematical modeling

A cantilever beam with attached piezoelectric patches is the
most common VEH design. Since most of the energy is
carried by the lowest excited harmonic of the vibratory
structure, the cantilever beam PEH is usually modeled as a
single-degree-of-freedom (SDOF) oscillator coupled with an
electrical circuit as shown in figure 1. Assuming that the
piezoelectric patches are directly connected to a load resist-
ance, and that the harvester is base-excited the governing
dynamic equations of the system could be written as [23, 24]

mi + cxX + kx + Ov = — mx,

. v .
Cyv + R 0x, )
where m, k, and c are the oscillator’s mass, linear stiffness and
damping coefficient, respectively. C,,  and R are the inherent
capacitance of the piezoelectric layer, electromechanical
coupling coefficient, and the load resistance, respectively. x,
X, and v are the oscillator’s displacement relative to its base,
base displacement, and the voltage across the load resistance,
respectively.

Average power is the measure of the performance of the
harvester. Since the system is linear a closed-form solution for
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Figure 1. A base-excited PEH modeled as an SDOF oscillator
coupled with an electric circuit modeling a load resistance and the
inherent capacitance of the piezoelectric layer.

the power could be easily found by applying the Fourier
transform to equation (1). Power is conventionally normalized
by the square of input acceleration for the harmonic excita-
tion. The normalized peak power” could then be written as

1% 2

where j = \/—_1 .

For a deterministic harvester equations (2) and (3) could be
used to study the effect of different parameters on the harvested
power and to optimize them. Here we assume that some of the
parameters are random. This uncertainty in parameters could be
a result of manufacturing tolerances or defects, material
degradation, or environmental effects such as temperature or
humidity. Random parameters & are modelled as Gaussian
variables with mean value of &, and standard deviation of o

3. Uncertainty propagation and optimization
formulation

In this study we investigate the effect of uncertainty on the
minimum harvested power, i.e. the worst-case performance,
and then optimize the mean uncertain parameters to maximize
the minimum power, i.e. optimization for the best worst-case

RO%W?

P(w)
Xpw?)?

1
R ‘ Xpw?

where X;,(w) and V(w) are the Fourier transforms of the base
displacement and load voltage, respectively, and w is the
excitation frequency. Also, by convention natural frequency
w, and damping ratio ( are introduced which are defined as
wp = Jk/m, and ¢ = ¢/2-Jkm.

We also consider the case where excitation is wideband
random excitation. In this case we use Parseval’s identity
which relates the average energy in a signal to its finite
Fourier transform as [25, 26]:

T 4,2 )
Py = tim+ [ Y Oq, f 53@Wa, 3
T—oo T Jo R 0 R

where S, (w) is the power spectral density of the voltage across
the load and is related to the input acceleration power spectral
density Sy, (w) by the relation [27, 28]

Sy (W) = |Hg, (W) PS, (). “4)

In equation (4) S, (w) is one-sided power spectral density
of input acceleration and Hy, (w) is the transfer function from
input base acceleration X, to the load voltage v and could be
derived based on governing dynamics equations in
equation (1) as

Hi @) =

((Rprﬁ + 2¢w, + RO
m

2 ’ (2)
)w - Rpr3) + (—w2 + (1 + 2RC,w,wH)w?)?

performance. The random parameters are modeled as Gaus-
sian with a mean and a standard deviation. Here we assume
the mean value of the parameters (&,,;) are controllable. Hence
we write the ith random parameter as §; = &,; + 6¢; where 6§,
is the variation from the mean value. We know that for ran-
dom variables with Gaussian distribution this variation
extends from —oo to +o0; however, the closer it gets to the
tails the smaller gets the probability of the parameter in that
range. Therefore, to make the optimization tractable and non-
trivial we have to limit the variation ¢, for a desired con-
fidence level. For example for a 99.7% confidence level,
—30¢, < o < +30¢, and for a 95.5% confidence level we
should limit 6¢; as —20¢, < 6§; < +20%.

Suppose a manufacturer mass produces a batch of har-
vesters with parametric uncertainties. It is important for the
customer to know that a certain percentage of the harvesters
(defining the confidence level), say 95.5% of the harvesters,
deliver a minimum required power. To answer this question,
the manufacturer should be able to quantify the effect of
uncertainties on the worst-case performance (minimum
power) for a given confidence level. Moreover, it is clear that
the larger the confidence level fulfilling a minimum power
requirement or the larger the minimum power for a given

ROw )

2 For a harmonic excitation the average power is simply half the peak power;
hence, we simply use the peak power as a performance measure.

((Rc,,wﬁ + 2w, + %)w — Rpr3) + (—w? + (1 + 2RCywe) )
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confidence level is, the better is the quality of that batch.
Assuming that the mean value of the uncertain parameters are
controllable in the manufacturing process, then the optim-
ization should be carried over the mean values of the random
parameters in addition to the deterministic parameters to
maximize the worst-case power for a given confidence level
or to maximize the confidence level for a given worst-case
power. For the optimization in this study we do the former i.e.
maximizing the worst-case power for a given confidence
level.

As discussed we have two types of problems here for
both harmonic and random excitations:

(P1): Uncertainty propagation: given the confidence level,
find the worst-case (minimum) power as a function of
parametric uncertainties (standard deviations o),
deterministic parameters, and mean values of uncer-
tain parameters &,,,;:

P (&, 06, €5 = min {P (&, €5 :

§; € (€, — max(6¢)), &, + max(6¢) }. (©)

(P2): Optimization for the worst-case scenario under
parametric uncertainty: given the confidence level,
find the optimum mean value of the uncertain
parameters ¢&,,;, and the deterministic parameters
fj“‘t to maximize the worst-case (minimum) power:
P (0¢) = max

mgin{F (& €5 :

& € (€, — max(8§)), &,,; + max(6§))}, (7

where 5‘}“ is the jth deterministic parameter. P2 is also
known as min-max optimization problem. To study PI,
deterministic parameters and mean values for the uncertain
parameters i.e. &,,; are selected and fixed; then, a search over a
grid of §,; — max(6;) < § < &,; + max(d¢;) is conducted
to find the minimum power. If the grids are fine enough, the
grid search algorithm finds the global optimum point in the
region of interest. However, if the number of decision
variables are relatively large the algorithm slows down.
Depending on the confidence level, max(é§;) can adopt
different values in terms of the standard deviation og. For
instance, for a confidence level of 95.5%, max (6§;) = 2%. In
addition, depending on the number of simultaneous uncertain
parameters (decision variables) being studied ( = 1, 2,...,n)
the search grid will be on a line, surface, or in an n-
dimensional hypercube in general. Also, optimum parameters
for a deterministic harvester are used as mean values for the
uncertain parameters (§,,;) and the deterministic parameters in
P1°. This is what we would refer to as naive optimization i.e.
the optimization of the parameters without considering
uncertainties. P1 shows how uncertainty in parameters affects
the worst-case power of a naively optimized harvester.

3 If there is no optimum value a practically reasonable value is selected.

To study P2, the same procedure as described above for
P1 is carried out over feasible deterministic parameters 53"‘
and the mean values of the uncertain parameters &,,; to find
the optimum values for the said parameters to maximize the
worst-case power. In the next section numerical results are
presented and discussed.

4. Numerical results and discussion

We explore the effects of uncertainty in three parameters
namely, natural frequency w,, load resistance R and electro-
mechanical coupling coefficient 6 on the worst-case harvested
power for different confidence levels (P1). Then considering
these uncertainties, we optimize the deterministic parameters
and the mean value of the uncertain parameters to maximize
the worst-case power (P2). To be able to visualize the effects
we consider two uncertain parameters at a time and optimize
over the mean values of those two parameters unless other-
wise specified.

Figure 2 shows the normalized worst-case power as a
function of normalized uncertainty in natural frequency and
load resistance when subjected to harmonic base excitation.
Uncertainties are applied to the harvester optimized for
deterministic parameters (naive optimization). Worst-case
power is normalized by the maximum power of a determi-
nistic harvester and the uncertainties in parameters are nor-
malized by their deterministic optimum values. In all the
simulations m = 0.001 kg, ¢ = 0.02, and C,, = 100 nF. Also,
w="70rads' for harmonic excitation. According to
figure 2(a), the worst-case power is very sensitive to the
natural frequency but not much to the load resistance. Sharp
resonance peak and wide peak for the optimum load resist-
ance in linear harvesters explain this sensitivity. Figure 2(b)
depicts this dependence on uncertainty in natural frequency
for two different uncertainty levels in the load resistance i.e.
zero and 20% uncertainty for different confidence levels of
68%, 95.5%, and 99.7%. According to the figure the larger
the confidence level the smaller the worst-case power. This is
because the larger confidence level simply means the larger
deviation in the parameter from its optimum value.

Figure 3 shows dependence of the normalized worst-case
power on uncertainties in natural frequency and electro-
mechanical coupling. According to the figure the sensitivity
of the worst-case power to the electromechanical coupling
coefficient is considerable and larger than that of the load
resistance. Next, sensitivity to the same parameters are stu-
died when the harvester is subjected to wide-band random
base excitation. The random excitation considered here is
stationary and Gaussian with flat power spectral density of
Sy, = 1073 g2 Hz~! over frequency range of [2, 50] Hz. This
profile results in excitation root-mean-square acceleration of
0.22 g and is very similar to the ASTM D4169 standard
profile (level 2) for railroad shipment [29].

Figures 4 and 5 show effect of uncertainty in natural
frequency, load resistance, and electromechanical coupling
coefficient on the worst-case power. According to the figures,
worst-case power is not very sensitive to uncertainty in



Smart Mater. Struct. 25 (2016) 055023

A H Hosseinloo and K Turitsyn

il

\\\\\\“\\\\“ ﬁ““\ “\‘\\“\“‘\
gt
it

. ‘\w\\\e\\m\Q\\m\\\\\\\\\\\\\\\\\\\\\\\

! \

1
\\e
\\\\\\\\\\\\\\\\\\

\
I

max

det

/P,
o
<)

5 20

det ©
T/ Wnopt /o 10

JR/Rgfft %

10
15 0

(b)

100 ‘ ‘
N\ —cl = 68%, 0% = 0%
N = -cl = 68%, 0% =20%
8ok \ —cl = 95%, 0% = 0%
\ “ \ - -cl =95%, 0% = 20%
1 \ —cl =99.7%, 0% = 0%
AR r
W\, W\ = el =99.7%, 0% = 20%
X 60p ! \ \ |
= B \ \
2z \
[ "\ v
o W\, \
£ L \
. 40 ‘\ \ N
\ \
v\ | N
\ \ ~ ~
201 \ s
\ \\ =~ ~ =
» ~ N S T =3
O —_— o,
0 5 10 15

det ©
Ow, /wnopt 0

Figure 2. Dependence of normalized worst-case power on normalized uncertainty in natural frequency and load resistance for harmonic
excitation: (a) dependence as surface plot for confidence level of 99.7%, (b) dependence on uncertainty in natural frequency for two different
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Figure 3. Dependence of normalized worst-case power on normalized uncertainty in natural frequency and electromechanical coupling
coefficient for harmonic excitation: (a) dependence as surface plot for confidence level of 99.7%, (b) dependence on uncertainty in
electromechanical coupling coefficient for two different normalized uncertainty values in natural frequency of 0% (solid line) and 20%
(dashed line), and for three confidence levels of 68% (blue), 95.5% (red), and 99.7% (green).

natural frequency. The reason is two-fold: one is that in
general when excitation changes from one harmonic to wide-
band, the narrow peak in the harvester power transforms into
a wide peak and hence becomes less sensitive to changes in
natural frequency. This is because the narrow peak of reso-
nance will be captured over a wider frequency range whereas
in the harmonic excitation this peak is captured only at one
frequency. Second, the optimum natural frequency is 1 Hz*
that is a relatively small number; hence an uncertainty of say
15% will change the natural frequency in the worst case (in

* This was the lowest limit for the search for optimum natural frequency;
natural frequencies smaller than this result in large vibration displacements.

30 sense) by only 0.45 Hz which is not a big enough variation
to cause a significant change in the harvested power. Since the
worst-case power is not very sensitive to uncertainty in nat-
ural frequency for random excitation, we study the effect of
uncertainty in load resistance and electromagnetic coupling at
zero uncertainty in natural frequency in figures 4(b) and 5 (b).
According to the figures, uncertainty in electromechanical
coupling coefficient has larger effect on the worst-case power
than that of the load resistance.

It was shown that uncertainty in parameters of a naively
optimized harvester could drastically decrease its worst-case
power. Next we would like to see if optimization of the
deterministic parameters and/or mean value of the uncertain
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95.5%, and 99.7%.

parameters with the knowledge of uncertainties in the system
will help to decrease the effect of uncertainty on the worst-
case power. This could be done by numerically solving the
min-max optimization problem in P2.

Optimization procedure formulated in P2 is applied to the
harvester under harmonic and random excitation. Figures 6
and 7 illustrate how optimization under parametric uncer-
tainty improves worst-case power compared to the naively
optimized system i.e. the system optimized for deterministic
parameters. Figure 6 shows the normalized maximum worst-
case power as a function of normalized uncertainty in natural
frequency and load resistance. Optimization is done over
mean values of the said wuncertain parameters. For

comparison, worst-case power of the naively optimized har-
vester is also plotted. Figure 7 shows the optimized worst-
case power as a function of natural frequency and electro-
mechanical coupling over mean values of which the optim-
ization is applied. As could be seen in figures 6 and 7,
optimization under uncertainty greatly improves the worst-
case power over the naively optimized harvester for harmonic
excitation.

Optimization P2 is next applied to the harvester under
random excitation. Since it was shown the harvester in this case
is quite insensitive to the natural frequency, only load resistance
and electromechanical coupling are considered uncertain and
random. Figure 8(a) shows the results of optimization over
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load resistance) compared to the naively optimized harvester (dashed line) for confidence levels of 68% (blue), 95.5% (red), and 99.7%
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confidence levels of 68% (blue), 95.5% (red), and 99.7% (green).

natural frequency and mean value of load resistance where only
the load resistance is uncertain and figure 8(b) shows the results
where the only uncertain parameter is the electromechanical
coupling coefficient and optimization is carried over natural
frequency and the mean value of the electromechanical cou-
pling coefficient. As seen in both sub-figures there is a con-
siderable increase in the worst-case power when uncertainties
are taken into account in the parametric optimization.

5. Conclusions

In this study, we proposed a new modeling philosophy for
optimization of energy harvesters under parametric uncer-
tainty. Instead of optimizing for ensemble expectation of
average harvested power, we optimize for the worst-case
(minimum) power based on some confidence level over the
deterministic parameters and mean values of the random
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Figure 8. Maximum worst-case power (solid line) compared to the naively optimized harvester (dashed line) for confidence levels of 95%
(blue) and 99.7% (red) as a function of uncertainty in (a) load resistance and (b) electromechanical coupling coefficient for random excitation.

parameters. The proposed optimization philosophy is practi-
cally very useful when there is a minimum requirement on the
harvested power such as those in medical implants and
wireless sensors. We also introduced a different notion of
uncertainty propagation i.e. propagation in the worst-case
power instead of the ensemble expected power. Based on this
new modeling philosophy, we presented a very generic and
architecture-independent formulation for uncertainty propa-
gation (P1) and optimization under uncertainty (P2).

Next, we applied analysis methodologies P1 and P2 to a
simple model of a piezoelectric energy harvester. We have
considered parametric uncertainty in natural frequency, load
resistance, and electromechanical coupling coefficient of the
harvester. Also, both harmonic and wide-band excitation were
considered. Direct application of P1 showed that for harmo-
nically excited PEH, the worst-case power of the harvester is
highly sensitive to its natural frequency and then to its elec-
tromechanical coupling but not very sensitive to the load
resistance. However, when the PEH is excited by the wide-
band excitation, the worst-case power is not very sensitive to
the natural frequency of the harvester but is sensitive to its
load resistance and electromechanical coupling.

For the harmonic excitation, the optimization P2 was
done over mean values of the natural frequency and load
resistance or natural frequency and electromechanical cou-
pling. For the random excitation, since the worst-case power
was not sensitive to uncertainty in natural frequency, the
optimization was done over the deterministic natural fre-
quency and the mean value of the load resistance or electro-
mechanical coupling coefficient. It was shown that for both
harmonic and random excitation, the optimized system taking
into account the parametric uncertainties is much more robust
to parametric uncertainties in terms of its worst-case power
compared to the naively optimized (deterministically opti-
mized) harvester.
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