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Abstract— Ease of miniaturization and minimal maintenance
are among the advantages for replacing conventional batteries
with vibratory energy harvesters in a wide of range of disci-
plines and applications, from wireless communication sensors
to medical implants. However, the current harvesters do not
extract energy from the ambient vibrations in a very efficient
and robust fashion, and hence, there need to be more optimal
harvesting approaches. In this paper, we introduce a generic
architecture for vibration energy harvesting and delineate the
key challenges in the field. Then, we formulate an optimal
control problem to maximize the harvested energy. Though
possessing similar structure to that of the standard LQG
problem, this optimal control problem is inherently different
from the LQG problem and poses theoretical challenges to
control community. As the first step, we simplify it to a
tractable problem of optimizing control gains for a linear system
subjected to Gaussian white noise excitation, and show that this
optimal problem has non-trivial optimal solutions in both time
and frequency domains.

I. INTRODUCTION

The problem of energy supply is one of the biggest issues
in miniaturizing electronic devices. Advances in technology
have reduced the power consumption in electronic devices,
such as wireless sensors, data transmitters, and medical
implants, to the point where ambient vibration has become a
viable alternative to bulky traditional batteries [1]. In addition
to scaling issues, recharging, replacing and disposing of
batteries is usually cumbersome, costly, and could entail
health-related and environmental complexities [2].

To further miniaturize electronic devices and to remedy
the above-mentioned issues, energy harvesting has been
investigated and considered as a scalable counterpart for
batteries. Among many other sources, ambient vibration has
captured attention in the last decade for its being universal
and widely available. Sources such as waves [3], [4], bridge
vibration [5], [6], walking motion [7]-[9], and the movement
of internal organs [10], [11] are able to provide energy
to a harvester. A typical vibratory energy harvester (VEH)
consists of a vibrating host structure, a transducer, and an
electrical load. A broad variety of different electromagnetic,
electrostatic, piezoelectric, and magnetostrictive transduction
mechanisms have been exploited in VEHs to convert the
vibration energy of the host structure into useful electrical
energy [12].

The literature in inertial energy harvesting could be clas-
sified mainly into two categories: studies with emphasis on
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mechanical domain of the energy harvesters and studies with
emphasis on energy harvesting circuitry (electrical domain).
There are also some studies considering simplified models
of the two domains at the same time, trying to maximize
the harvested power (see for instance [13], [14]). The key
challenges in vibration energy harvesting in both mechanical
and electrical domains are achieving high efficiency or ef-
fectiveness under severe constraints (practical and inherent),
robustness issues of the harvester, and multi-domain design
complexities, to name a few. Practical constraints such as
displacement constraints of the VEH or inherent transduc-
tion mechanism constraints impose upper-bound limit on
maximum harvested energy. Broadband-spectrum or non-
stationary excitations impose serious robustness issues on
both mechanical oscillator and harvesting circuitry designs.

To overcome some of the aforesaid issues in the mechani-
cal domain, researchers have used intentional nonlinearities,
in particular mechanical bistability, in the hope to increase
the energy flow to the system and make the system more
robust to changes in the excitation. Reference [2] provides
a comprehensive review and discussion for various types of
nonlinearities studied in the literature. However, the system
response and efficiency remains to be sensitive to the initial
conditions (co-existing low-energy and high-energy orbits)
[12], [15]-[17], potential shape and acceleration intensity
[18]-[23], and nature of the excitation [24]. Similar studies
have been done in the harvesting circuitry design to increase
the harvesting power available in the mechanical domain.
Refences [25] and [26] provide recent reviews on different
active and passive harvesting circuitry designs for optimal
power conditioning and extraction.

Although there is still much room for improvement in the
power harvesting circuitry, there is larger room for improve-
ment in the mechanical domain of the VEHs. The latter is a
necessary step for effective and sufficient power delivery to
the electrical domain. The linear and the current nonlinear
VEHs cannot pump energy from the excitation sources to
the harvesting circuitry in a very effective and robust way.
The authors believe the powerful machinery developed in the
controls contexts could substantially improve robust design
and analysis of the VEHs in electrical and particularly,
mechanical domains.

To this end, we present in this paper a general elec-
tromechanical architecture of energy harvesting system and
discuss several key challenges in details. Then, we will
present a reduced model of a VEH with capacitive (piezo-
electric) harvesting circuitry with additional passive control
forces in both mechanical and electrical domains. On top of
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Fig. 1. A generic energy harvesting architecture. F'(¢) denotes the excitation
force of the energy source. x(¢), and f(¢) represent the mechanical domain
states, and the electromechanical coupling force, respectively.V(¢) and v(t)
denote electrical voltage states, and I(¢), and i(¢) show the input current
to their respective blocks. o, (t) and oe(t) represent control signals to the
mechanical and electrical actuators, and Up, (¢) denotes the force applied
on the mechanical domain by the actuator.

this model, we formulate the optimal control problems for
maximizing the energy harvested. This problem generally
involves maximizing a quadratic cost function over all the
passive controls of a time-invariant linear system perturbed
by Gaussian white noise. Though its structure is similar to
that of the standard LQG problem, this control problem is not
a LQG problem due to the passive constraint on the control
and the lack of control penalty in the cost function. It is
therefore challenging to solve this problem. In this paper,
we outline possible ways to simplify and solve this problem.
Our simulations show that there are many opportunities for
improvement in the control design to maximize the harvested
energy.
The main contributions of this paper include:

1) We mathematically model the energy harvesting archi-
tecture;

2) We explicitly formulate the optimal control problem
to maximize the energy harvested. This new optimal
control problem is challenging and requires new tools
from control systems theory; and

3) We simplify this optimal control problem to tractable
problems and outline possible ways in both time and
frequency domains to obtain the optimal control design.

The paper is organized as follows. In Section II, the
general architecture of the vibration energy harvesting system
is introduced. Section III presents the detailed mathematical
model of a simplified energy harvesting architecture. In Sec-
tion IV, the general optimal control problem is formulated
for maximizing energy harvesting, and then is simplified to
tractable optimal control problems. Section V numerically
illustrates the optimal control obtained by direct calculation
and simulations on frequency domain. Finally, in Section VI
we conclude the paper and discuss possible ways in the future
to improve the model and the proposed control techniques,
as well as suggesting several aspects where control expertise
is necessary to leverage the energy harvesting industry.

II. ENERGY HARVESTING ARCHITECTURE

Figure 1 depicts a generic architecture for vibration energy
harvesting. The architecture is composed of four different
sections: a mechanical domain which is usually a mechanical

oscillator, an electrical domain which is usually a harvest-
ing circuitry, a transduction mechanism which couples the
mechanical and electrical domains (usually a piezoelectric,
electromagnetic or electrostatic mechanism), and a control
part which is usually not introduced or analyzed in detail in
the vibration energy harvesting context. For better readability
and for the sake of clarity these domains and their related
signals are drawn with different colors in Fig. 1.

The energy flows to the mechanical domain from the
energy source e.g. vibration of a bridge or wave motion, and
then through the electromechanical coupling to the electrical
domain, and is then harvested through the harvesting cir-
cuitry. The controller based on its logic derives mechanical
and electrical actuators to increase the energy flow to the
mechanical oscillator, to the electrical domain, and ultimately
to the electrical load, in an active, passive or a hybrid
fashion. The electrical actuator is absorbed in the harvesting
circuitry block in Fig.1. If properly designed, the controller
can improve the robustness and efficiency (effectiveness) of
the harvester. Next, the architecture is realized with a simple
model and the problem of maximizing the harvested energy
is formulated as a control problem.

III. MATHEMATICAL MODELLING

In this section we present a simple lumped model of an
energy harvester with one mechanical and one electrical
degrees of freedom mounted on top of a structure that is
also modeled as a single-degree-of-freedom (sdof) system
(representing the first mode of a real structure such as a
bridge or a building) that is excited by an arbitrary force
(see Fig.2).

The first structural mode usually carries most of the kinetic
energy of the structure (the dominant mode) and hence the
structure acts as a low-pass filter between the excitation input
and the harvester. Also, in practice, the harvester mass is
usually negligible compared to the structure mass (m;, <
ms); consequently, the dynamics of the structure is not
affected by the dynamics of the harvester. Thus, dynamics of
the structure could be effectively described by its first mode
as,

B+ 20 AT, + N2z, = £(t), (1)

where, zg, (5, and A are dimensionless displacement of the
structure, modal damping ratio of the structure, and ratio
of the natural frequency of the structure to that of the
harvester, respectively. £(¢) is exogenous excitation acting
on the structure.

The harvester oscillator is also modelled as a sdof sys-
tem whose dynamics are driven by the base excitation via
the structure, the control force, and the electromechanical
coupling force. The dynamics of the harvester oscillator is
governed by,

B+ 20pdn + xp + K2 = —F U (1), )

where, 23, (j,, and k2 are dimensionless displacement of the
harvester relative to the structure, modal damping ratio of
the harvester, and dimensionless electromechanical coupling,
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respectively. w,,(t) is the dimensionless control force, and
v is dimensionless electrical voltage whose dynamics are
described by,

U+ av = Zp + ue(t). 3)

In Eq.(3), u.(t) is the dimensionless electrical current and
« is the ratio between the mechanical and electrical time
constants.

In the above equations, the displacements, voltage and
time are non-dimensionalized by the quantities [, 0l./C,,
and 1/wy,, where [, is a scaling length, C,, is the capacitance
of the piezoelectric element, 6 is the linear electromechanical
coupling coefficient, and wy, is the undamped nominal natural
frequency of the harvester and is defined as \/ky /my,. Note
that overdot represents differentiation with respect to the
dimensionless time.

Also, in Egs. 1-3, the parameters are defined as,

P T e S
2V ksmyg Mg Cpkh
s 1
Ch = ch A= Y «

24/ khmh Wh - Rprh ’

“4)

where, m, k and c represent mass, linear stiffness and
damping, respectively and the subscripts h and s refer to the
harvester and the structure as depicted in Fig.2. R represents
the electrical load resistance.

Now the objective here is to maximize the average di-
mensionless output power (or energy) harvested through the
resistance load,

_ 1 (7
maximize P = — / v(t)?dt!. 6))
T 0

Here we have assumed that the controllers are passive;
otherwise for an active system, the net energy injection to
the system should be reflected in Eq.5. Passivity constraint
for the mechanical and electrical controllers could be written
as,

U (B)En < —Vim (2(t),  we(t)o < —Vi(z(t))  (6)

where V,,, and V. are differentiable state-dependent storage
(potential) functions in the mechanical and electrical control
systems, respectively. The controller is called lossless (con-
servative) if the equality holds, otherwise the controller is
said to be strictly passive (dissipative).

Also, in practice, we usually have constraints on the
magnitude (maximum and/or minimum) of the control inputs
as well. Moreover, due to volume constraints or to prevent
mechanical failure, there is usually constraints on the maxi-
mum displacement of the harvester x,.

In the next section, we cast the problem into an optimal
control problem and with some simplifying assumptions, will
optimize the control forces u,,, and wu.

. . = . . . —di
The dimensionless power P is related to the dimensional power P e
. =di -
by the relation P*™" = (mpwil2ak?®)P

R C Ox, +u,
p
Fig. 2. a simplified model of a piezoelectric energy harvester with

mechanical (u,,) and electrical (ue) control inputs, mounted on a sdof
structure subjected to arbitrary excitation force &(t)

IV. OPTIMAL CONTROL PROBLEM FORMULATION

In this section, we particularly formulate the optimal
control problem for maximizing the harvested energy. Define
the state vector z = [r7...v5)]7 where z; = z4,70 =
Tg, T3 = Tp,Tq = Zp,x5 = v. Then, the overall system
(1)-(3) is expressed as

T1 =T
1‘2 = f(t) — QCS)\J}Q — /\2.1‘1
3'?3 = X4

T4 = Um(t) — () + 2¢s Ao + Nxy — 20pxs — 23 — K225

i’5 = ’U,e(t) + x4 — axs

Equivalently, this set of equations can be written in the
compact form:

& = Az + Byu+ Be&(t), (7
where
0 1 0 0 0
—AZ —2¢A 0 0 0
A= 0 0 0 1 0 |,
A2 26N =1 —2¢, —k?
0 0 0 1 -—a
[0 0
0 0
B,=|0 0]|,Be=[010 —10"
1 0
0 1

Here, u = [u,,(t) uc(t)]? is the control input. Assume that
the excitation force £(¢) is modeled as a Gaussian zero-mean
white noise with variance W > 0.

Since matrix A is naturally stable and the control is
required to be passive, the closed-loop system is sta-
ble. Therefore, the processes in the system are ergodic.
Hence, the cost function in (5) can be rewritten as J =
lim; o E[vT(¢)v(t)]. Formally, our objective is to design
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the control law u to maximize the energy harvested described
by the cost function
— 1 T
J = Jim B[ (o0 ®

where v = Cz,C = [0 0 0 0 1]. Hence, we have the
following optimal control problem:

(P1): Optimal control for energy harvesting: Given the
system (7), design the optimal and passive control u =
[t (t) ue(t)]T to maximize the cost function J defined
in (8) subject to the constraints on the state x.

We note that though the considered system (7) is a linear
system with Gaussian white noise and the cost function (8)
is quadratic, the general optimal control problem (P1) is not
a typical LQG problem because there is no strict penalty
on the input in the cost function and the control here need
to be passive. Also, while the LQG control minimizes the
cost function with little control effort, the problem (P1) tries
to maximize the output E[vT (t)v(t)] over all the passive
controls.

Therefore, the optimal control problem (P1) is a new con-
trol problem. It is challenging and needs tools from control
and optimization community. Having its similar structure
with the LQG problem, we may use the similar technique
to solve this general problem. Another possible way to
solve this problem is to utilize the Pontryagin’s maximum
principle. This approach may be complicated when we use
higher order models for the structure and harvester.

In the following, we simplify the optimal control problem
(P1) and outline the way to obtain the optimal control u, even
for higher-order model. Basically, due to the noise £(t) there
is no perfect prediction for the state x of the system and the
control law u should be in the form of a filter-based control.
In this paper, we assume that we have perfect prediction
for the state # and the control law w is just a function of
z. In addition, to satisfy the passivity requirement of the
controllers, we will choose conservative (lossless) control
inputs of the following simple form:

Um (t) = =K xh, Ue(t) = —K 0 9)

where K,, > 0 and K. > —1. This type of controller
guarantees that the control forces are passive (conservative
in this case) and also practically implementable. In fact,
Uy, in Eq.(9) represent a spring with dimensionless spring
constant K, connecting the harvester to the structure, and
u, represents a capacitor in parallel (K. > 0) or in series
(-1 < K. < 0) with the inherent piezoelectric capacitor.?
For simplicity, we do not consider the constraints on the state
x.

Finally, we simplify the considered optimal control prob-
lem (P1) into the following problem:

(P2): Optimal control gains: Find the optimum values for the
control gains K,, and K. to maximize the cost function

2They could be implemented even when K, and K. are variable with
variable spring and capacitor.

J:
* : T T
J* = Km>r(r)1,&}()§>_1tli>rroloE[x ()t Cz(t)], (10)
where the dynamics of x(t) is described by
a’::AKx—FBff (11D
and
0 1 0 0 0
A2 90 0 0 0
Ao | O 0 0 1 0
AN 1K 20, -2
—o
0 0 0 1+ K., 1+ K,

To solve this problem, we can directly calculate J using
the Controllability Gramian of the system (7):

J =Tr(CTCP), (12)

where P is positive definite solution of the Lyapunov equa-
tion A% P + PAg + B¢W B{ = 0. Therefore, we have the
following optimization

J* = max Tr(CTCP), (13)

st. Kp>0,K,>—1,
P >0,
A} P + PAg + BeWB{ =0.

By solving this optimization using some Optimization Tool-
Boxs, we can obtain the optimum values for the control gains
K., and K.. We note that the constraint AL P + PAg +
BgWBET = 0 leads to a stable closed-loop system with the
optimum control u = [—K} z;, — KX0].

V. FREQUENCY-DOMAIN APPROACH

An alternative approach to the optimization problem for-
mulated above to find the optimum gains, is a brute-force
optimization in the frequency domain. The latter is substan-
tially easier for the problem at hand in (P2), mainly because
of the simple form of the excitation in the frequency domain
(white noise Gaussian) and simple form of the control force
and current considered in Eq. (9).

In view of the Parseval’s theorem, instead of maximizing
the average power (Eq. (5)) in the time domain one could
maximize it in the frequency domain, that is [27], [28],

— 1
P= lim —

T—o0

maximize

T “+o0
v(t)?dt = / |V (w)]*dw,
0

(14
where V (w) is the finite Fourier transform of the the voltage
v(t). Since the governing dynamic Egs. (1)-(3) are linear, it
is easy to solve for V(w) in terms of the system parameters
and Fourier transform of the input excitation =(w) (which is
simply the transfer function from from the input £(¢) to the
output v(t) in the frequency domain [29], [30]). It could be
easily shown that,
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Fig. 3. Scaled harvested energy as a function of K. for different values
of K, = 23.0, 23.4, and 23.8. The parameters are set as A=5, (s=0.01,
Cp=0.01, k=0.6, and =10

_ Aw)B(w)D(w) _
V(W) 1 . C’(w)D(w) ‘—‘(w)? (15)
where,
M) — 1
S ¥ B B T Y
w2
BW):1+A%-mﬂ+2@wi
2
A Sy S Tou
D(w) = we (16)

a+ (14 Ke)wi'

To find the optimum gains, one can calculate the integral
in Eq. (14) for a range of K,, and K. gains and look for
the optimum gains. Figure 3 depicts the average harvested
power as a function of K. gain for different values of gain
K,,. This figure shows the optimum gain for K, for given
system parameters and K,,. Figure 4 shows dependence of
the average power on K, for different values of the gain
K.. This figure also reveals optimum gain for K, for a set
of given parameters. Optimum gain for K,, for the simple
control law considered here is equivalent to the well-known
resonance tuning technique. A dimensionless power spectral
density of |=(w)|? =1 is used for the simulations.

The results here prove that there are non-trivial and
optimum solutions to the optimal control problems defined
and formulated in section IV. The frequency-domain analysis
breaks down when more complicated control laws are used,
or more complex constrains are applied on the system or
system and/or controller become nonlinear or when the
excitation is not easily expressed in the frequency domain.
However, the powerful machinery developed in the controls
could still be applied and optimize the harvester designs.

VI. CONCLUSIONS AND PATH FORWARD

This paper was dedicated to bring the fast-growing area
of energy harvesting to the attention of control expertise.
For this purpose, we have sketched a general architecture
of energy harvesting from ambient vibrations, highlighted
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Fig. 4. Scaled harvested energy as a function of K, for different values
of K. = -1, 3, and 7. The parameters are set as A=5, (s=0.01, (;=0.01,
£=0.6, and a=10

the key challenges in this area, and showed how to come
up with the optimal energy harvesting. To facilitate rigorous
approaches tackling these challenges, we presented a simple
yet practically generic and efficient mathematical model
of this architecture and pointed out the control options
to leverage the energy harvesting process. On top of this
mathematical model, we explicitly formulated the optimal
control problem to maximize the harvested energy. It should
be noted that though this optimal control problem possess
similar structure to that of the standard LQG problem, it is
inherently different from the LQG problem in twofolds: (i)
there is no penalty on the control input in the cost function,
which serves to maximize the given output function of the
system (i.e. the energy harvested) (ii) the optimal control
itself needs to be of a particular characteristics e.g. passivity.
As the first step to resolve this challenging problem, we
simplified it to a tractable problem of optimizing the control
gains for linear system subjected to Gaussian white noise
excitation, and outlined possible ways in both time and
frequency domains to come up with the optimal control
design. Our numerical simulations showed that there are
many opportunities to maximize the energy harvesting based
on solving these optimal control problems.

We envision several aspects where control expertise is
indispensable to push the current framework to the practical
level. First, the new optimal control problem introduced
in this paper, even in its simple form, is challenging and
requires sophisticated new tools from the optimal control
theory. Second, a higher-order model should be developed to
capture the complicated dynamics of the system in practice,
while the constraints on the states and controls should be
considered. Finally, we need to investigate the robustness of
the controlled VEH performance when there is uncertainty
in the system model and when more complicated excitation
spectrum or non-stationary excitation is considered.
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