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ABSTRACT

Vibration energy harvesting has been shown as a promising power source for many small-scale applications
mainly because of the considerable reduction in the energy consumption of the electronics, ease of fabrication and
implementation of smart materials at small scale, and scalability issues of the conventional batteries. However,
conventional energy harvesters are not quite robust to changes in excitation or system parameters, suffer from
narrow bandwidth, and are very inefficient at small scale for low frequency harvesting. In addition, they have
a low power to volume ratio. To remedy the robustness issues, improve their effectiveness, and increase their
power density, we propose to exploit structural instabilities, in particular instabilities in multi-layered composites
which are inherently non-resonant. The induced large strains as a result of the structural instability could be
exploited to give rise to large strains in an attached piezoelectric layer to generate charge and, hence, energy. The
regular high-strain morphological patterns occur throughout the whole composite structure that in turn enable
harvesting at a larger volume compared to conventional harvesters; hence, harvesting via structural instabilities
can significantly improve the harvested power to volume ratio. In this study, we focus on harvesting from
wrinkling type of instabilities.
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1. INTRODUCTION

Maintenance, replacement, and recharging costs, environmental or health-related complexities, and above all
scalability issue of the conventional batteries have convinced researchers to look for other power sources or
mechanisms for electronic devices.1,2 Reduction in power consumption of electronics has made harvesting energy
from ambient vibration, a universal and abundant source of energy, a viable alternative to the bulky and costly
conventional batteries.3 However, conventional linear and nonlinear vibratory energy harvesters (VEHs) are
not very robust to changes in excitation or system parameters and are not very effective for broadband or low
frequency harvesting.

Linear VEHs operating based on linear resonance suffer from narrow bandwidth and are very sensitive to
changes in excitation frequency. At the same time, non-stationary and random vibration are in fact more common
than harmonic excitation in many practical applications.4–7 Furthermore, they are extremely inefficient at small
scale for low-frequency harvesting as it is either hard to realize the low-frequency resonance at small scale, or
the natural frequency of the VEH is bounded from below by an imposed displacement limit.3 To remedy the
issue of narrow bandwidth, purposeful inclusion of nonlinearities, in particular bistability8–11 has been the focus
of many research efforts in the last decade.12 However, it has been shown that these harvesters work effectively
only when the excitation force amplitude is just large enough to trigger interwell oscillations.13

Other techniques including up-conversion technique14–16 and buy-low-sell-high strategy3,17 have been pro-
posed to improve the low-frequency harvesting efficacy. Although all the above-mentioned methods have im-
proved the harvesting process, they have their own drawbacks including lack of robustness to the system or
excitation parameters, being unable to address the two issues of narrow bandwidth and low-frequency harvesting
at the same time, or being difficult to implement at the small scale. In addition, the existing harvesting methods
often rely on relatively large host structures to realize linear or nonlinear resonance which usually results in low
harvested power to volume ratios. For instance, in linear or bistable harvesters, a cantilever beam is often used
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as the host structure and piezoelectric patches for energy transduction are used only close to the clamped end
since high strains take place only at the clamped end and at the beam’s bottom and top surfaces. This inherent
mechanical behaviour consequently results in low power to volume ratios.

In order to overcome the above-discussed issues of the VEHs, one needs to look for a non-resonant mechanism
for robust harvesting, that at same time can induce large strains throughout its entire volume as opposed to a
small area/volume, so as to improve the harvesting power density. To this end, we propose to exploit instabilities
in multi-layered composites or surface instabilities. Unlike classical half-sine buckling of a beam-like structure,
instabilities and buckling in composite structures and soft material could take interesting morphological patterns
such as wrinkles, folds, and creases18 that exhibit large strains at regular patterns throughout the entire structure.

Intriguing morphologies and surface patterns in nature at different scales from wrinkles on skins of mam-
malians, plants and fruits19–21 to crumpled membranes of blood cells22 have inspired a big body of research in
soft matter instabilities. Recent studies in this field have found applications in other disciplines including soft
lithography, metrology, flexible electronics, and biomedical engineering.18 Here, we extend the application of
soft matter instabilities to kinetic energy harvesting.

The induced instability results in large local strains that could be exploited for energy harvesting which is the
focus of this paper. The unconventional instabilities are common to the structures that have both stiff and soft
components such as a multi-layer composite structure consisting of stiff layers embedded within a soft matrix or
a bi-layer structure of a stiff layer sitting on a soft foundation. The large local strain as a result of instability in
such structures is the result of two mechanisms: i) when the stiff layers go unstable, they take almost no more
load resulting in lower composite stiffness. This consequently leads to large macroscopic strain. ii) the nonlinear
geometric pattern of the stiff layer (e.g. sinusoid in wrinkling) locally amplifies the strain. A key advantage of
these types of instabilities is that they are independent of the excitation (compressive force) frequency.

In this paper, we focus on wrinkling as the most common instability pattern in composite layers. We derive
the state/strain states in a multi-layer composite of a soft matrix containing stiff layers that is subjected to
periodic compressive force. We then feed the calculated stresses to piezoelectric patches attached on the troughs
and peaks of wrinkling instabilities of the stiff layers and derive the dynamic equation of the electrical domain
when the piezoelectric patches are connected to a simple external resistive load. We finally conclude the paper
with simulation results and conclusion.

2. MATHEMATICAL MODELING

Surface instabilities are grouped into five main categories: wrinkle, crease, fold, period-double∗, and ridge.23

Based on the phase diagram developed by Wang and Zhao,23 wrinkling is the most common surface instability
if there is no delamination in the layers; hence, we focus on the wrinkling instability in this study. Based on the
classic beam theory, a clamped beam buckles under axial compressive force in its first mode (with a mode shape
similar to a half sine) before any other modes take place. In fact other modes never take place because they
posses larger potential energy than the first mode. However, if the beam is sitting on a softer elastic foundation or
embedded in an elastic softer matrix, the beam buckles in higher modes which is usually referred to as wrinkling.
The unconventional higher mode buckling occurs simply because the system always seeks a configuration with
the lowest potential energy; and above a critical stiffness of the foundation/matrix the higher modes of buckling
posses lower potential energy than the classic half-wavelength buckling mode.

When compared to classical buckling, soft matter buckling such as wrinkling has a major advantage of delayed
instability. The soft foundation or matrix delays the instability i.e. the structure buckles at a larger critical load.
This greatly improves the energy harvesting process by significantly increasing the power inflow to the system.
This is because the external force displacement as a result of instability occurs at a larger value of the force;
hence, more energy is pumped into the structure. This is in accordance with the buy-low-sell-high strategy where
displacement is allowed only at the maximum excitation force magnitude.3,17

Figure 1 illustrates schematically how energy is harvested via wrinkling instability. Piezoelectric patches are
attached at two sides of the interfacial layers at the peaks and troughs of the wrinkles. Here we assume the

∗sometimes period-double or even period-quadruple are categorized under wrinkling, e.g. in18
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Figure 1. Energy harvesting via wrinkling phenomenon. The figure on the left shows a representative element of a soft
matrix containing three stiff interfacial layers/films with piezoelectric patches attached on two sides of the films at the
peaks and troughs. The figure illustrates the stiff layers once they have wrinkled. The stiff interfacial layers are straight
before wrinkling takes place. The figure on the right depicts larger view of a segment (one wavelength) of the interfacial
layer with attached coordinate system where direction x or 1, and z or 3 are aligned with and perpendicular to the
interfacial layer, respectively. Wiring and electrical interconnections could be mainly embedded within the soft matrix
and the harvesting itself could take place outside the whole structure.

coupling between the piezoelectric patches and the interfacial layer is weak and hence, the piezoelectric effect on
the wrinkling phenomenon is negligible; in other words, there is one-way coupling or feedback from the wrinkling
layer to the piezoelectric layer. This allows us to study the wrinkling mechanics independent of the piezoelectric
layer and then feed the interfacial layer response as the input to the piezoelectric layer. We also assume a plane
strain condition. The strains at any point along the interfacial layer are then given by:24

ε1(x, z, ε̄) = ε̄cr +
4πz

λ(ε̄)

√

|ε̄| − |ε̄cr| sin
(

2πx

λ(ε̄)

)

,

ε3(x, z, ε̄) = − νf
1− νf

ε1(x, z, ε̄), (1)

ε13(x, z, ε̄) ≈ 0, ε2(x, z, ε̄) = ε12(x, z, ε̄) = ε23(x, z, ε̄) = 0.

In Eq.1, ε̄cr is the critical macroscopic strain at which wrinkling starts, and ε̄ is the applied macroscopic post-
buckling strain. λ(ε̄) is wavelength of the wrinkle and z is the distance from the neutral axis of the interfacial
layer/film in the z or 3 direction. The Poisson ratio of the interfacial layer is denoted by νf . Assuming the
overall contour length of the interface is preserved, the kinematics enforce that λ(ε̄) = λcre

−|ε̄| with λcr being
the initial wrinkle wavelength.24 The critical macroscopic strain ε̄cr and the initial wrinkling wavelength λcr are
given by:25,26

ε̄cr = −3
2
3

(

3−4νm

(1−νm)2

)

−2

3
(

Ef

Em

)− 2
3

,

λcr = πt
(

1
3

)
1
3

(

3−4νm

(1−νm)2

)
1
3
(

Ef

Em

)
1
3

, (2)

where, νm is the Poisson ratio of the matrix, and Ef and Em are Young’s moduli of the interfacial layer and
the matrix, respectively. Thickness of the interfacial layer is designated by t. It should also be noted that for
the wrinkling to take place the spacing between interfacial layers cannot be arbitrary. In fact, for a given ratio
of the Young’s moduli of the soft matrix and stiff layer, spacing between the layers (D) has a lower bound that
could be calculated as:24

t

D
< 0.5−

√

0.25− 0.24(3− νm)
2
3 (1 + νm)−

1
3 (

Ef

Em
)−

1
3 . (3)

As mentioned earlier, the advantage of exploiting instability for increased local strain is twofold: first, just
based on kinematics, the nonlinear instability pattern e.g. Eq. 1 in this study, induces larger local strain than
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the macroscopic strain; but more importantly, the macroscopic strain itself is greatly amplified as a result of the
instability. This is due to the fact that once the interfacial layer buckles (i.e. wrinkling is initiated), it takes no
more load which consequently results in decreased overall stiffness of the composite. The macroscopic strain ε̄
could be mathematically formulated as:27

ε̄(t) =







σ̄(t)
Ei

comp

; |σ̄(t)| < |σ̄cr|
ε̄cr +

(σ̄(t)−σ̄cr)

Ef
comp

; |σ̄(t)| ≥ |σ̄cr|
, (4)

where, σ̄cr = Ei
compε̄cr is the critical stress at the onset of the wrinkling. Ei

comp and Ef
comp denote the effective

plane-strain Young’s modulus of the composite before and after the wrinkling instability, respectively. Effective
Young’s modulus of the composite before wrinkling could be calculated as Ei

comp = ηmĒm + ηf Ēf where, ηm
and ηf represent volumetric ratios of the matrix and the interfacial layer respectively. Also, Ēm = Em/(1− ν2m)
and Ēf = Ef/(1−ν2f ) define the plane-strain Young’s moduli of the matrix and the interfacial layer respectively.
Once the interfacial layers wrinkle, the effective stiffness of the composite drops with a good approximation to
Ef

comp = ηmĒm.

Having the full description of the strain states in the interfacial layers which are assumed to be the same as
those in the piezoelectric layer, we look into the piezoelectric layer. Polarization direction of the piezo layer is
placed along the 3 (z) axis. For plane strain deformation (ε2 = 0), the strains and the electrical field E3 along
the polarization direction 3(z) satisfy the constitutive relation28–30 D3 = ks33E3+e31ε1+e33ε3, where the electric
displacement D3 is to be found. eij and kij are the piezoelectric and the dielectric constants, respectively. In
view of Eq.1, ε3 could be replaced in the piezoelectric constitutive relation, and hence, it could be simplified as:

D3 = ks33E3 +

(

e31 −
νf

1− νf
e33

)

ε1 ≡ ks33E3 + ēε1. (5)

The current running through a piezoelectric layer is calculated by time-differentiating the integral of the electric
displacement over the piezo surface as i = d

dt

∫

Ap
D3dA = ApḊ3, where overdot denotes differentiation with

respect to time and Ap is the total area of each piezo layer. The last expression is derived assuming that D3

along the wavelength of the wrinkles is almost constant. This assumption holds for relatively large lengths of
piezoelectric layer. The strain gradient along the piezo layers i.e. in x (or 1) direction and hence variability of D3

in this direction are reflected in Eq.1 in the term: sin( 2πx
λ(ε̄) ). This x dependence is absorbed in surface integration

when calculating the current i. If the piezo length is not too long relative to the wrinkling wavelength, the
sin(.) term could be considered constant over the length and so will be D3. For simulations in this study, the
piezo length is assumed to be 1/6 of the initial wrinkling wavelength i.e. lp = 1/6λcr. For this case the exact

integration yields i = C
∫ λ/3

λ/6
sin(2πx/λ)dx† = C λ

2π while the approximate integration yields C λ
6 . This results in

less than 5% discrepancy for a piezo length as large as 1/6 of the wavelength.

We now consider a case where N of the piezo patches are connected in series to an external resistive load
characterised by the resistance R. Let’s also assume that the electric field E3 across the thickness of each piezo
layer is constant; hence, the voltage across each layer equals tpE3 with tp being the piezo layer thickness. Then
equating the current running through the resistive load and the piezoelectric layers and substituting D3 from
Eq.5, the governing dynamic equation is derived as:

v̇ +

(

Ntp
ks33ApR

)

v = −Ntpē

ks33
ε̇1. (6)

Equation 6 is a first order differential equation that could be solved both analytically and numerically given
the input ε̇1. ε1 is equal to the macroscopic strain before buckling, but will follow Eq.1 once the buckling takes
place. Assuming that the piezo patches are not relatively large in length and are placed at the peaks and troughs,
as discussed above, we can approximate sin( 2πx

λ(ε̄) ) ≈ 1 in Eq.1, and hence the excitation strain rate ε̇1 in the

†C contains all the other constants.
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Figure 2. Time history of the induced macroscopic strain ε̄(t) and the local strain in and along the interfacial layer ε1(t).
The black dotted line shows the macroscopic and the interfacial layer strain if there was no wrinkling phenomenon. The
red dashed-dotted and the blue solid lines represent the macroscopic strain in the composite and the local strain in the
interfacial layer in the presence of the wrinkling, respectively.

interfacial and the piezo layers will take the form:

ε̇1(t) =







˙̄ε(t); |ε̄(t)| < |ε̄cr|

− 4πz
λcr

(

|ε̄(t)|−|ε̄cr|+0.5√
|ε̄(t)|−|ε̄cr|

)

sign(ε̄(t))e|ε̄(t)| ˙̄ε(t); else
(7)

Now given the external forcing i.e. σ̄(t), Eq. 6 could be solved for the electrical state v(t) in view of the Eqs.4
and 7. Once v(t) is solved, harvested power could be easily calculated. Simulation results are presented and
discussed in the next section.

3. NUMERICAL RESULTS AND DISCUSSION

The material properties and the geometric dimensions of the matrix, interfacial layer, and the piezoelectric
patches are given in Table 1. bp in this table denotes the depth of the piezoelectric patches in y (or 2) direction.
The length of the piezoelectric patches lp is set to one sixth of the initial wrinkling wavelength i.e. lp = 1/6λcr.
For the parameters in table 1, the critical macroscopic strain ε̄cr, and the initial wavelength λcr are equal to
-0.0384 and 0.8027 mm, respectively.

In this study, we consider a slowly-varying sine-squared compressive macroscopic stress σ̄(t) = −σ̄amp sin
2(0.5ωt)

with amplitude σ̄amp = 30 MPa, and frequency ω = 2π(0.5) rad/s. Figure 2 shows the induced macroscopic
strain (ε̄) and the local strain along the interfacial layer (ε1) for z = −t/2 in Eq.1 and at the peak of the wrinkle
i.e. sin( 2πx

λ(ε̄) ) = 1. It could be seen that when the critical strain (ε̄cr=-0.0384) is exceeded, wrinkling takes place

and both the magnitude and the rate of the induced strain in the interfacial layer are increased. To have a fair
comparison between two cases of harvesting with and without the wrinkling phenomenon, we first optimize the
average harvested power with respect to the external load. The average harvested power is defined as the time-

average of the dissipated power in the external load: Pave = 1
T

∫ T

0
v(t)2

R dt for a large value of T . As illustrated
in Fig.3, the optimal resistive loads are found to be 2.0× 1011Ω, and 2.3× 1011Ω for the cases with and without
the wrinkling, respectively. These optimal loads are used for the rest of the simulations.

As a result of the increased induced strain and its time rate, the external load is excited by a larger current
source, and hence, the voltage induced at the external load is increased. Consequently, the energy harvesting is
dramatically improved. Figure 4 shows the time histories of the induced voltage and the harvested energy. Based
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Figure 3. Dependence of the average harvested power on the external resistive load R with and without the wrinkling
phenomenon. The optimal load for maximal harvested power is illustrated by hexagrams on each curve. The optimal
loads Ropt for the cases with and without the wrinkling are 2.0× 1011Ω, and 2.3× 1011Ω, respectively.

Parameter Value

Em 50 MPa
Ef 5 GPa
νm 0.48
νf 0.48
t 50 µm
tp 1 µm
ηf 0.0625
bp 0.1 mm
e31 -0.3041 C/m2

e33 -0.4865 C/m2

ks33 0.106 × 10−9 C/Vm
N 1

Table 1. Material properties and geometric dimensions of the matrix, interfacial layer, and the piezoelectric patches

on the figure, the induced voltage is increased, and subsequently, the harvested energy is improved by about 20
times. It should be noted that if the whole volume is made of the piezoelectric material (assumed to have large
stiffness), a comparable level of energy could be harvested even though no instability takes place and that it
compresses uniformly, but at the cost of a much stiffer system which in many applications is not acceptable.

Despite the singularity of ε̇1(t) at the start of the instability, Eq.6 is integrable if e
Ntp

ks
33

ApR
t
is bounded from

above. It could also be noticed that if
Ntp

ks
33

ApR
≪ 1, the induced voltage v(t) is proportional to the induced strain

ε1(t). For the parameters used for the simulations in this study,
Ntp

ks
33

ApR
is not too small (it is about 3.5) so the

voltage response is more involved than just being proportional to the strain.

There is another subtle but substantially important reason to the improved harvesting performance in addi-
tion to the large induced strains: wrinkling helps the system to passively mimic the BLSH strategy3 proven by
the authors’ earlier study to maximize the energy flow into the system. Typical soft matter instabilities occur
after a critical applied stress/strain is exceeded. This means the system is not experiencing a large displace-
ment/deformation until a larger value of the excitation force is reached. The larger displacement as a result of
the instability, at a large input force simply means larger flow of energy to the system.
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Figure 4. Time history of the induced voltage v(t), and the harvested energy across the external load per unit area of the
piezo layer with (solid line) and without (dashed line) the wrinkling phenomenon.

4. CONCLUSIONS

Here we proposed exploiting unconventional structural instabilities for effective kinetic energy harvesting. Struc-
tural instabilities allow for large deflections and strains. Instabilities in soft matter and composite structures
such as wrinkling, folding, and creasing allow the large local strains take place throughout the entire structure
and at regular patterns. Unlike conventional harvesting techniques, this allows to harvest energy from the entire
volume of the structure e.g. by attaching piezoelectric patches at large-strain locations throughout the structure.
This can significantly improve the power to volume ratio of the harvesting devices. In addition, these structural
instabilities are non-resonant that consequently enhances robustness of such harvesters with respect to excita-
tion characteristics. And last but not least, compared to classical buckling, these unconventional instabilities in
composite structures occur at a larger external force that will in turn boost the energy flow into the structure.

In this paper, we have particularly focused on wrinkling type of instabilities in composite structures where
stiff layers are embedded within a soft matrix. Under large enough compressive force, the stiff layers wrinkle.
Energy could be harvested by attaching piezoelectric patches on trough and peaks of the sinusoidal wrinkles
where maximum strain is achieved. Here we have assumed one-way coupling between the host structure and
the piezoelectric patches i.e. the piezoelectricity does not affect the wrinkling phenomenon. Since we are mainly
targeting low-frequency excitation, we assume static stress-strain analysis in the structure which we then feed
as the input to the piezoelectric patches. Under low-frequency compressive stress on the structure, we derive
the first-order dynamic equation of the electrical state of the system, and consequently calculate the harvested
power dissipated in a resistive load connected to the piezoelectric patches. Theoretical and simulation results
show that wrinkling could help to increase the harvested power by more than an order of magnitude. We believe
the proposed approach opens the way to previously uncharted energy harvesting paradigms, and in view of the
recent advances in flexible electronics,29 introduces a promising method to effectively harvest energy for a wide
range of applications.
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