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Abstract

An immense body of research has focused on nonlinear vibration energy harvesting systems mainly because of the

inherent narrow bandwidth of their linear counterparts. However, nonlinear systems driven by harmonic excitation often

exhibit coexisting periodic or chaotic attractors. For effective energy harvesting, it is always desired to operate on the

high-energy periodic orbits; therefore, it is crucial for the harvester to move to the desired attractor once the system is

trapped in any other coexisting attractor. Here we propose a robust and adaptive sliding mode controller to move the

nonlinear harvester to any desired attractor by a short entrainment on the desired attractor. The proposed controller is

robust to disturbances and unmodeled dynamics and adaptive to the system parameters. The results show that the

controller can successfully move the harvester to the desired attractor, even when the parameters are unknown, in a

reasonable period of time, in less than 30 cycles of the excitation force.
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1. Introduction

The narrow bandwidth of linear vibratory energy
harvesters has convinced researchers to exploit nonli-
nearity to broaden the harvesting bandwidth
(Hosseinloo and Turitsyn, 2015a; Hosseinloo et al.,
2015). However, nonlinearity often brings with it coex-
isting chaotic or periodic attractors, which are, in gen-
eral, undesired. In the context of energy harvesting,
monostable and bistable quartic potentials are by far
the most common type of nonlinearity explored in the
literature.

Nonlinear monostable harvesters driven by periodic
excitation often exhibit coexisting low- and high-ampli-
tude orbits, usually referred to as low- and high-energy
orbits, over a wide range of excitation frequencies.
Bistable harvesters give rise to even richer dynamics
where low- and high-energy periodic and chaotic
attractors could coexist in a wide range of excitation
parameters (Daqaq et al., 2014; Hosseinloo and
Turitsyn, 2015b). For the purpose of energy harvesting,
it is always desired to surf the high-energy periodic
orbits. If the motion is chaotic, in addition to its

low-energy output relative to high-energy orbit
motion, the chaotic response requires a more compli-
cated harvesting circuitry (Erturk and Inman, 2011).
Therefore, control of the motion between the coexisting
attractors in vibratory energy harvesters is extremely
important for effective harvesting.

In a seminal studies in controlling chaos, Ott et al.
(1990) showed that one can convert a chaotic attractor
to any one of the possible but probably unstable
time-periodic motions by making only small time-
dependent perturbations to an available and access-
ible system parameter. This approach is known as the
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Ott–Grebogi–Yorke method. Later, Pisarchik and
Goswami (Pisarchik and Goswami, 2000; Pisarchik,
2001; Goswami and Pisarchik, 2008) used a slow-peri-
odic modulation with properly adjusted frequency and
amplitude, instead of just a small perturbation, to move
to an adjacent attractor via boundary crises and
destruction of the original attractor.

However, the parameters of the system are not
always accessible; hence, the Ott–Grebogi–Yorke
method is not always practical. Periodic driving is
another technique for the control of coexisting attrac-
tors. Pecora and Carroll (1991) used what they called
pseudoperiodic signals, i.e. periodic signals augmented
with a small chaotic component, to control the coexist-
ing attractors. Yang et al. (1995) used a combination of
noise and a bias periodic signal with a properly chosen
phase to move the attractor to a desired limit cycle.

Feedback-type control is another method of control-
ling coexisting attractors. Jiang (1999) showed that the
main feature of the latter two aforementioned methods
is the periodic component of their signals and that both
approaches have limitations in selecting a desired tra-
jectory from arbitrary initial conditions. Jiang used
feedback-type periodic drivers containing dynamical
features of the desired attractors to control the attrac-
tors and switch to the desired cycle. Martinez-Zerega
et al. (2003) also demonstrated that multistability
can be efficiently controlled in autonomous systems
by modulating feedback variables. More recently, Liu
et al. (2013) proposed a feedback controller with inter-
mittent control force based on Lyapunov analysis to
drive the system to a desired attractor.

Although some of these methods could be theoretic-
ally applied to nonlinear energy harvesters, they do not
take into account the control energy, which is crucial
in designing the controller for the vibratory energy
harvesters. Also most of these approaches use some
type of crisis that changes the existing structure of the
solutions. This is, in general, not preferred because not
only could it be hard to achieve for some nonlinear sys-
tems but it could also result in the emergence of new
complex basins of attraction (Liu et al., 2013). There
are very few studies in the context of energy harvesting
dealing with the control of coexisting attractors, a ubi-
quitous phenomenon in nonlinear energy harvesters.

Erturk and Inman (2011), in one of the earliest
research studies, showed that a disturbance could
push the vibratory energy harvester from a low-
energy orbit to a high-energy orbit. Masuda et al.
(2013) proposed an electrical circuitry for an electro-
magnetic vibratory energy harvester that combined a
conventional load resistance with a negative resistance
that could pump energy into the system. In their pro-
posed approach, when the amplitude drops below a
threshold, the circuit switches to the negative resistance

for a given period of time to push the system back to
the high-energy orbit. This was later validated experi-
mentally by Masuda and Sato (2016). This approach
will not be effective when the structure of the coexisting
attractors is more complex than two periodic orbits,
mainly because it cannot select between many chaotic
or periodic attractors in a controlled fashion. In
another study, Geiyer and Kauffman (2016) applied
the intermittent control law proposed by Liu et al.
(2013) to a piezoelectric vibratory energy harvester to
drive the system from a chaotic attractor to a high-
energy periodic motion. However, the control energy
was not considered in this study. In a more recent
study, Kumar et al. (2016) applied a linear quadratic
regulation controller to a bistable piezoelectric energy
harvester linearized about an operating point corres-
ponding to a chosen high-energy orbit. The linear
quadratic regulation control force was applied intermit-
tently to the system based on a proximity threshold
with respect to the desired trajectory. The required con-
trol energy was not compared with the harvested energy
in this study either.

In addition to the already-mentioned shortcomings
of the proposed methods for driving nonlinear vibra-
tory energy harvesters to their high-energy orbits, these
methods are in general neither robust nor adaptive.
In practical applications of the vibratory energy har-
vesters, there are always disturbances or unmodeled
dynamics on the system, such as wind disturbance on
a bridge-motion-excited vibratory energy harvester or
unmodeled higher-order nonlinearities in the system.
Also, it is usually the case that some system parameters,
such as damping or coupling factors, are not accurately
or deterministically known or that they may change
over time due to wear and tear or environmental con-
ditions (Hosseinloo and Turitsyn, 2016a,b). Therefore,
it is very advantageous if the controller is robust to
external disturbances and unmodeled dynamics and,
of course, if it is adaptive, i.e. it works even when the
system parameters are unknown. In this study, we pro-
pose a generic robust and adaptive sliding mode control
that can drive the system from any attractor to any
other stable attractor of interest. It is shown that the
control energy budget is recovered by the harvested
energy within a reasonable period of time.

2. Mathematical modeling of the
nonlinear harvester

In this section, we present a simple formulation of
piezoelectric and electromagnetic energy harvesters
with generic nonlinearity. Here, we consider a vibratory
energy harvester with a second-order mechanical oscil-
lator and a first-order electronic circuitry (capacitive or
inductive). The governing dynamics equations could
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be written as

m �x00 þ �f ð �x, �x0, �y, �tÞ ¼ �Fð�tÞ þ �d1ð�tÞ þ �umð �tÞ

Cp �y0 þ �gð �x, �x0, �y, �tÞ ¼ �d2ð�tÞ þ �ueð �tÞ ðpiezoelectricÞ

L �y0 þ �gð �x, �x0, �y, �tÞ ¼ �d2ð�tÞ þ �ueð �tÞ ðelectromagneticÞ

ð1Þ

where, m, Cp, and L are the oscillator mass, the inher-
ent capacitance of the capacitive circuit, and the induct-
ance of the inductive circuit, respectively. ð:Þ0 denotes
the derivative with respect to time �t. �x and �y are the
oscillator displacement and electrical state (voltage for
capacitive and current for inductive circuitry). �Fð �tÞ rep-
resents external excitation on the system, and �d1ð �tÞ and
�d2ð �tÞ denote unmodeled dynamics or disturbances in the
mechanical and electrical domains, respectively. �umð �tÞ
and �ueð�tÞ represent the control forces on the mechanical
oscillator and the electrical circuit, respectively. All
other dynamics in the mechanical and electrical
domains are embedded in �f ð:Þ and �gð:Þ, respectively.
This includes all the system nonlinearities and electro-
mechanical couplings. For instance, for a vibratory
energy harvester with linear damping (c) and generic
potential function �Uð �xÞ coupled with a linear piezoelec-
tric or electromagnetic circuitry (with linear electro-
mechanical coupling �) connected to a load resistance
R, the �f and �g functions will be

�f ¼ c �x0 þ d �Uð �xÞ=d �xþ � �y

�g ¼
�y

R
� � �x0 ðpiezoelectricÞ

�g ¼ R �y� � �x0 ðelectromagneticÞ

ð2Þ

To unify the analysis for the capacitive and inductive
circuitry and to reduce the number of the parameters,
we nondimensionalize the governing equations. A
meaningful nondimensionalization usually depends on
the parameters of the system. Assuming that we have a
dimensional parameter � with units of newtons per volt
(newtons per ampere) for a capacitive (inductive) har-
vester, we can nondimensionalize equation (1) using the
following dimensionless quantities

x ¼
�x

ls
, t ¼ �t!s,

y ¼
Cp

�ls
�y ðpiezoelectricÞ

y ¼
L

�ls
�y ðelectromagneticÞ

ð3Þ

where ls and !s define length and time scales, respect-
ively. Then the governing equations in equation (1)

could be nondimensionalized as

€xþ f ðx, _x, y, tÞ ¼ FðtÞ þ d1ðtÞ þ umðtÞ

_yþ gðx, _x, y, tÞ ¼ d2ðtÞ þ ueðtÞ
ð4Þ

where the overbars are dropped to designate the cor-
responding dimensionless variables and functions. ð:Þ

:

denotes the derivative with respect to the dimensionless
time t.

3. Robust and adaptive sliding mode
control

Its inherent robustness and adaptation capability
makes sliding mode control a suitable candidate for
many control applications where there are unmodeled
dynamics and disturbances, and when the system
parameters are unknown. For these reasons, we will
use adaptive sliding mode control here to control the
attractors of a nonlinear vibratory energy harvester or,
in particular, to drive the harvester to a high-energy
attractor. Since the energy budget for the controller is
important for energy harvesting purposes, and since the
desired trajectories are always attractors, we do not
need the controller to act for all time. In fact, we use
the controller to entrain the system along the desired
trajectory for a short period of time to make sure that
all the transients are settled and that the system is in the
new desired basin of attraction before we turn off the
controller.

To this end, we first transform the higher-order
dynamics to first-order dynamics by a change of
variable. The new variables, often referred to as sliding
surfaces, should have two important properties:
(i) their derivatives should contain the control
forces, and (ii) the new variables going to zero should
imply that the actual states of the system converge to
the desired states. Then we design the controller
to push the sliding surface to zero, and hence make
the system track the desired trajectory, i.e. the high-
energy orbit.

We first define the sliding surface vector s ¼

½s1, s2�
T
¼ ½ _~xþ l ~x, ~y�T, where l4 0, ~x ¼ x� xd and

~y ¼ y� yd. xdðtÞ and ydðtÞ are the desired displacement
and electrical state trajectories. Also let a denote
the vector of unknown parameters and ba represent
the vector of estimated parameters. We also assume
that each of the functions f and g could be written as
the product of a row matrix and the parameters vector
i.e. f ¼ Y1a and g ¼ Y2a. The elements of Y1 and Y2

will be linear or nonlinear functions of the states of the
harvester and the time. We can also safely assume that
the disturbances or the unmodeled dynamics are
bounded, that is jd1j5 dmax

1 and jd2j5 dmax
2 .
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Theorem 1. For the nonlinear vibratory energy har-
vester with the governing equations stated in equation
(), the harvester will converge to the desired attractor,
i.e. x! xd and y! yd if the control law is chosen as

um ¼ �FðtÞ þ €xd � lð _x� _xdÞ þ Y1ba
� ð�1 þ dmax

1 Þsignðs1Þ

ue ¼ _yd þ Y2ba� ð�2 þ dmax
2 Þsignðs2Þ

ð5Þ

and the adaptation law is chosen as

ba
:

¼ �PYTs ð6Þ

where �1 4 0 and �2 4 0 are two positive real gains,
and P is a symmetric positive definite matrix defining
the adaptation gains. Y is simply ½Y1,Y2�

T.

Proof. As is typical for most sliding mode control
problems, the proof is based on Barbalat’s lemma for
stability analysis. Let us consider the lower-bounded
Lyapunov-like energy function Vðs, tÞ as

Vðs, tÞ ¼
1

2
sTsþ

1

2
eaTP�1ea ð7Þ

whereea ¼ba� a. In view of Barbalat’s lemma, if _Vðs, tÞ
is negative semi-definite, and uniformly continuous in
time, then _Vðs, tÞ ! 0 as t!1 (Slotine and Li, 1991).
We will show that with the choice of control and adap-
tation laws as in equations (5) and (6), not only is
_Vðs, tÞ ! 0 but it also implies that the sliding surface
vector goes to zero (s! 0), which consequently means
that the harvester converges to the desired trajectory or
attractor. To do so, let us differentiate the function
Vðs, tÞ and substitute the sliding surface and also the
dynamics €x and _y from equation (4)

_Vðs, tÞ ¼ s1 _s1 þ s2 _s2 þea
: T

P�1ea
¼ s1ð €x� €xd þ lð _x� _xdÞÞ þ s2ð _y� _ydÞ

þba
: T

P�1ea
¼ s1ðum þ F þ d1 � €xd þ lð _x� _xdÞ � f Þ

þ s2ðue þ d2 � _yd � gÞ þba
: T

P�1ea

ð8Þ

Now we substitute the control law (equation (5))
into equation (8) and rewrite the functions f and g as
the product of their corresponding row matrices and
the vector of parameters. Hence

_Vðs, tÞ ¼ s1ðd1 � ðd
max
1 þ �1Þsignðs1Þ þ Y1eaÞ

þ s2ðd2 � ðd
max
2 þ �2Þsignðs2Þ þ Y2eaÞ

þba
: T

P�1ea
ð9Þ

Finally, we substitute the adaptation law (equation (6))
into equation (9) to get

_Vðs, tÞ ¼ s1 d1 � dmax
1 signðs1Þ

� �
� �1s1signðs1Þ

þ s2ðd2 � dmax
2 signðs2ÞÞ � �2s2signðs2Þ

� ��1js1j � �2js2j � 0

ð10Þ

We have shown that the lower-bounded function
Vðs, tÞ has a negative semi-definite derivative.
Technically, we still need to show that this derivative
is uniformly continuous in time. A very simple sufficient
condition for a differentiable function to be uniformly
continuous is that its derivative be bounded. Therefore,
it is sufficient to show that €Vðs, tÞ is bounded to complete
the proof. This second derivative includes s

:
and so we

need to show that s
:
is bounded. Notice that Vðs, tÞ is

the sum of two positive numbers and its derivative is
negative; hence, it is bounded by its initial value, which
implies that s andea are bounded, which means that the
system states are bounded. s

:
being bounded requires that

_~y, _~x, and €~x be bounded, which consequently implies that
_y, _x, and €x be bounded, assuming that the desired trajec-
tories are bounded. Having the states of the system
bounded, and in view of the system dynamics (equation
(4)), it can be seen that _y and €x are bounded.

Therefore, s
:
is bounded. Fulfilling the three require-

ments of Barbalat’s lemma, the proof is completed and
we can conclude that _Vðs, tÞ ! 0. In view of equation
(10), this means that s! 0, i.e. the system converges to
the desired attractor.

3.1. Bistable energy harvester

Here, we consider a more specific design of the non-
linear vibratory energy harvester; a bistable energy har-
vester, one of the most common nonlinear vibratory
energy harvesters in the literature. If we use the bistable
potential �Uð �xÞ ¼ 1=2k1 �x2 þ 1=4k3 �x4 for the potential
function in equation (2), substitute equation (2) into
equation (1), and nondimensionalize using the quanti-
ties in equation (3), we arrive at the dimensionless gov-
erning equations as

€xþ 2� _x� xþ x3 þ �2y ¼ FðtÞ þ d1ðtÞ þ umðtÞ

_yþ �y ¼ _xþ d2ðtÞ þ ueðtÞ
ð11Þ

where � ¼ c=2m!s is the dimensionless damping ratio.
The electromechanical coupling coefficient �2 and the
time ratio (mechanical to electrical time constants) � for
piezoelectric and electromagnetic harvesters are defined as

�2 ¼
�2

m!2
sCp

, � ¼
1

RCp!s
ðpiezoelectricÞ

�2 ¼
�2

m!2
sL

, � ¼
R

L!s
ðelectromagneticÞ

ð12Þ
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The dimensional coefficients k1 and k3 for the potential
function are chosen such that the derivative of the
potential function in the dimensionless form is �xþ x3.

To design the sliding mode controller, we assume
that the two parameters � and �2 are unknown, i.e.
a ¼ ½�, �2�T. Also, we choose P, a diagonal matrix, as
P ¼ diag½ p1, p2� with positive entries p1 and p2. Then
applying equation (5) yields the control forces as

um ¼ �FðtÞ þ €xd � lð _x� _xdÞ � xþ x3 þ 2�̂ _xþ �̂2y

� ð�1 þ dmax
1 Þsignðs1Þ

ue ¼ � _xþ �yþ _yd � �2 þ dmax
2

� �
signðs2Þ

ð13Þ

and the adaptation law forms into

_̂� ¼ �2p1 _xs1

_̂�2 ¼ �p2ys1
ð14Þ

We would also like to nondimensionalize the har-
vested and the controller power and their correspond-
ing energies. The power is made dimensionless by the
quantity mw3

s l
2
s as

PhðtÞ ¼
�Phð �tÞ

mw3
s l
2
s

¼ ��2y2ðtÞ

PmðtÞ ¼
�Pmð�tÞ

mw3
s l
2
s

¼
�umð �tÞ �x

0ð�tÞ

mw3
s l
2
s

¼ umðtÞ _xðtÞ

PeðtÞ ¼
�Peð�tÞ

mw3
s l
2
s

¼
�ueð�tÞ �yð�tÞ

mw3
s l
2
s

¼ �2ueðtÞ yðtÞ

ð15Þ

In equation (15), the dimensional harvested power
�Phð�tÞ is �y2ð�tÞ=R for a capacitive harvester and R �y2ð �tÞ for
an inductive harvester. All the corresponding energies
are nondimensionalized by the quantity mw2

s l
2
s . In the

next section, the sliding mode control is applied to the
bistable harvester described by these equations to move
the harvester from a low-energy orbit or low-energy
chaotic attractors to a high-energy orbit, and simula-
tion results are presented.

4. Results and discussion

In this section, we apply sliding mode control with and
without adaptation to the bistable system described
earlier. For all the simulations we consider harmonic
excitation of the form FðtÞ ¼ 0:08 sinð0:8tÞ with no dis-
turbances. The low- and high-energy orbits for the
uncontrolled system are achieved by initial conditions
½x, _x, y�T ¼ ½1, 0:5, 0�T, and ½1, 1:3, 0�T, respectively.
The damping ratio and time constant ratio are set as
�¼ 0.01 and �¼ 0.05. For the system without adapta-
tion, we use parameters l ¼ �1 ¼ �2 ¼ 1; for the system
with adaptation, these parameters are set to
l ¼ p1 ¼ p2 ¼ 1 and �1 ¼ �2 ¼ 0:1.

Figure 1 shows time histories of the displacement
and the electrical state of the bistable system driven
by the harmonic excitation. The figure shows time his-
tories of the low- and high-energy orbits as well as
the low-energy orbit driven to high-energy orbit by
the sliding mode control. In Figures 1 to 5, we
assume that all the parameters are known and hence
no adaptation is needed. Also, in the said figures a weak
coupling (�2¼ 0.05) is used for the simulations and the
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Figure 1. Time history of (a) the displacement and (b) the electrical state of the weakly coupled bistable harvester under harmonic

excitation for the uncontrolled system in low- and high-energy orbits, as well as the controlled system driven from a low-energy orbit

to a high-energy orbit.

HEO: high-energy orbit; LEO: low-energy orbit.
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entrainment period (i.e. the time the controller is active)
is set to t¼ [57, 58.5]. Figure 2 depicts Figure 1 as a
phase diagram. Based on these figures, sliding mode
control successfully entrains the system on the high-
energy orbit to move the system response from the
low-energy orbit to the high-energy orbit.

To check the feasibility of the implementation,
the magnitude of the control forces should also be con-
sidered. Figures 3 and 4 depict the control force and its
corresponding required power and energy in the mech-
anical and electrical domains, respectively. The magni-
tude of the mechanical control force um is about an
order of magnitude larger than the excitation force.
If the maximum attainable force is less than this, the

control force could be clipped at the limit and applied
for a longer entrainment period if necessary. The mag-
nitude of the control forces could be adjusted and low-
ered by tuning the control parameters �1, �2, l, and P

but at the cost of a slower convergence to the sliding
surface or a slower convergence to the desired trajec-
tory once the system dynamics land on the sliding sur-
face. It should also be noted that limiting the control
force will most probably increase the minimum entrain-
ment period; hence, despite the smaller control force,
it might result in a decrease or increase of the overall
control energy because of the longer entrainment
period. This could be nicely cast as an optimization
problem but is out of the scope of this study.
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Figure 2. Velocity–displacement phase diagram of the weakly coupled bistable harvester under harmonic excitation for the

uncontrolled system in low-energy and high-energy orbits, as well as the controlled system driven from a low-energy orbit to a high-

energy orbit.

HEO: high-energy orbit; LEO: low-energy orbit.
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Figure 3. Time history of (a) the mechanical control force and (b) power and energy for the weakly coupled bistable harvester

under harmonic excitation with sliding mode control entrainment in t¼ [57, 58.5].
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Figure 5. Time history of the harvested power and energy in the weakly coupled bistable harvester with sliding mode control
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Figure 6. Time history of (a) the control and harvested energy and (b) the net harvested energy in the the weakly coupled bistable

harvester with sliding mode control entrainment in t¼ [57, 58.5].
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Figure 4. Time history of (a) the electrical control force and (b) power and energy for the weakly coupled bistable harvester under

harmonic excitation with sliding mode control entrainment in t¼ [57, 58.5].
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Also, it could be seen that the energy required for the
mechanical controller is significantly larger than the
electrical controller. This is because the coupling is
weak and the system response is dominated by the
mechanical oscillator.

Figure 5 depicts the time history of the harvested
power and energy. It can be seen that before the
controller is turned on the system response is in the

low-energy orbit and hence its corresponding harvested
power and energy are significantly low whereas when
the controller is turned on at t¼ 57 (for only 1.5 time
units) the harvested power and energy are significantly
improved. Figure 6(a) illustrates the harvested energy
and the energy required for the mechanical and
electrical controllers while Figure 6(b) shows the net
harvested energy, i.e. the harvested energy minus the
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Figure 8. Time history of (a) the control and harvested energy and (b) the net harvested energy in the the strongly coupled bistable

harvester with adaptive and nonadaptive sliding mode control entrainment in t¼ [150, 165]. Solid and dashed lines correspond to the
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energy consumed by the controllers. It takes about
28 cycles of the excitation to recover the energy spent
on the controllers.

We also consider the case where we have poor know-
ledge of the system parameters. In particular, we feed
the controllers with incorrect information about the
parameters � and �2. We set these parameters to 60%
of their actual values, i.e. �̂ ¼ 0:6� � and �̂2 ¼ 0:6� �2.
We consider a strong coupling with �2¼ 1 in this case
and we entrain the system for 15 time units in the
period t¼ [150, 165]. Figure 7 illustrates the system
response for sliding mode control with and without
adaptation. According to Figure 7, the sliding mode
control with adaptation adapts well to the incorrect
parameters and maintains and entrains the system
well on the high-energy orbit while the sliding mode
control without adaptation fails to do so and, soon
after the controller is turned off, the system con-
verges back to the low-energy orbit. Figure 8 depicts
the individual harvested and controller energy for the
controlled system with and without adaptation as
well as the net harvested energy. It can be seen from
Figure 8(b) that the energy recovery takes place in
about 29 cycles of the excitation force.

It is worth mentioning that with large control par-
ameters, the sliding mode controller should be able to
push the system response successfully from a low-
energy to a high-energy orbit without adaptation
given that the terms containing the uncertain param-
eters are bounded. This is true simply because given
that these terms are bounded, they could be lumped
into the terms pertaining to the unmodeled dynamics,
i.e. d1 and d2. Large control parameters will result in
faster and better convergence to the desired trajectory
but at the same time will increase the consumed energy
by the controllers; hence, at the very least, the adaptive
sliding mode control will be a more energy-efficient
controller than the nonadaptive one.

5. Conclusions

In this study, we proposed a novel robust and adaptive
sliding mode control to control between the coexisting
attractors in nonlinear systems, in particular, in non-
linear energy harvesters. The controller is robust to dis-
turbances and unmodeled dynamics and adaptive to
unknown system parameters. Based on the energy
methods and Barbalat’s lemma, given the desired tra-
jectory, the proposed controller is proven to converge
the system response from any arbitrary attractor to any
desired attractor. The harvester model considered has
generic coupling and nonlinearities in both mechanical
and electrical domains. The external excitation is also
deterministically generic. The control and adaptation
laws are then applied to a specific design of energy

harvesters: a bistable oscillator linearly coupled with a
capacitive or inductive harvesting circuitry with a con-
stant load resistance.

Simulation results show that the controller, via a
short period of entrainment, can successfully push the
system response from a low-energy to a high-energy
orbit, and hence significantly improve the energy
harvesting efficacy. In a weakly coupled harvester, the
controller on the mechanical oscillator plays a crucial
role, compared with the controller on the harvesting
circuitry because of the dominance of the mechanical
domain on the overall response of the system.
Therefore, controlling only the mechanical oscillator
is sufficient for the weakly coupled vibratory energy
harvester. However, a long entrainment period is
needed if the controller is applied only to the mechan-
ical oscillator in a strongly coupled harvester. In a
weakly coupled harvester, the mechanical control
force is about 10 times larger than the excitation force
in amplitude. If this is not realizable, the control force
could be clipped at the maximum realizable force and
instead applied for a longer entrainment period.

Simulation results also show that the sliding mode
control with adaptation adapts well to the system par-
ameters and successfully moves the system to the
desired attractor even when knowledge of the system
parameters is poor and incorrect, whereas the same
controller without adaptation does not achieve the
same with incorrect knowledge of the parameters.
It is also shown that the energy consumed by the con-
trol forces is recovered in a reasonable time (in less than
30 cycles of the excitation). In conclusion, the proposed
control method in this paper could be applied to a wide
range of nonlinear harvesters with nonlinearity in either
or both the mechanical and electrical domains in a very
robust and adaptive fashion to ensure that the harvester
is always operating in the desired high-energy orbit.
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