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Lagrangian and Eulerian descriptions of inertial particles

in random flows
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We study how the spatial distribution of inertial particles evolves with time in a random flow. We
describe an explosive appearance of caustics and show how they influence an exponential growth
of clusters due to smooth parts of the flow, leading in particular to an exponential growth of the
average distance between particles. We demonstrate how caustics restrict applicability of Lagrangian
description to inertial particles.
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1. Introduction

Random compressible flows generally have regions where contractions accumulate and density
grows. Small volume elements expand or contract exponentially which can be characterized
by the set of Lyapunov exponents. Since the sum of the exponents is non-positive [1–5],
density tends to a singular multi-fractal set with moments growing exponentially. Both the
evolution and the final state of density in spatially smooth random flows have been described
recently within some models [4–7]. The flow of inertial particles is compressible even when
the flow of ambient fluid is incompressible [8] so particles participate in the fractalization
and have some of their concentration moments growing exponentially [5]. On the other hand,
every time there is a negative velocity gradient exceeding the inverse viscous response time
of particles, faster particles from behind catch slower ones creating folds in distribution and
caustics [9, 10]. Such breakdowns of distribution lead to finite-time singularities and explosive
growth of some density moments. The goal of the present paper is to describe the statistical
evolution of concentration from a uniform one to a set of clusters and voids and, in particular,
to describe the role of folds in this evolution.

Because of inertia, the velocities of particles are not completely determined by the local
velocity of the fluid. In the same small portion of the fluid one can find particles moving
with substantially different velocities so that one cannot characterize the motion of droplets
in continuous (hydrodynamic) approach which presumes velocity a single-valued function
of coordinates. Therefore, the problem of inertial particles in a flow is kinetic rather than
hydrodynamic [9, 11, 12]. Analytic approach to a realistic kinetic description does not seem
to be feasible yet. On the other hand, the significant progress of analytic Lagrangian methods
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[4] makes it tempting to use them: to follow, for instance, a couple of close particles and
to account only for a local velocity gradient. The question is: what can we learn from the
Lagrangian approach about the statistics of particle concentration? To answer that, one needs
a model that allows us to compare numerical data from kinetics with an analytic Lagrangian
solution. For that end we consider here the motion of inertial particles in a one dimensional
random flow, which is appropriate for our main goal to describe the role of breakdowns that
are one-dimensional in any space dimensionality. This model is a subject of much interest
from different perspectives [13, 14].

Here we briefly review what is known and derive new results, in particular, describe the
statistics of the inter-particle distances R. We also carry out direct numerical simulation of
kinetics in this model and find the growth rates of the moments of concentration n. It is only
for smooth flows that one can immediately convert R into n (in 1d simply taking n = 1/|R|).
Since the flow of inertial particles has discontinuities, any given interval between two chosen
particles does not contain the same particles all the time. Particles can enter and leave the
interval, i.e. numerous folds appear in particle distributions making nonlocal even the problem
of describing single-point density statistics. We show that indeed the growth rates of density
moments and inter-particle distances are different.

Particle coordinate q and velocity V change according to

dq/dt = V(q, t) , dV/dt = [u(q, t) − V]/τ , q(r, 0) = r . (1)

Here the viscous (response) time is τ = (2/9)(ρ0/ρ)(a2/ν) with a particle radius and ρ0, ρ are
particle and fluid densities, respectively. We treat the fluid velocity u as a given random function
of time and smooth function of space coordinates. When the product of a typical velocity
gradient and τ (called Stokes number, see below) is small, inertia is negligible and V ≈ u.

Let us briefly recall some relevant properties of smooth compressible random flows [4].
The behavior of a small volume is governed by the local matrix of derivatives (called strain
matrix) taken in the Lagrangian frame sik = ∂ui/∂xk . Considering the distance between two
fluid particles, R(t, r1 − r2) = q(r1, t) − q(r2, t) one finds 〈Rm〉 ∝ exp(Emt) with Em being
a convex function of m. Angle brackets mean Lagrangian averaging (i.e. over the ensemble of
fluid trajectories), unless otherwise specified. Such quantities naturally appear in theoretical
description. However, straightforward space averages (called Eulerian) are more accessible
experimentally. The relation between the two averages comes from the fact that every trajectory
comes with the weight n−1 where the density is n(t) = det−1 ∂ Ri (t, r)/∂r j (provided that
the initial distribution is uniform n0 = 1). Therefore, the Lagrangian moments 〈n−m〉 are
related to the Eulerian moments via 〈n−m〉 = 〈n1−m〉E ∝ exp(�mt). Therefore, �0 = 0 = �1

which correspond to conservation of mass and volume (Lagrangian and Eulerian measures),
respectively. In one-dimensional (1d) smooth flows, �m = Em .

In 1d, one has for the distance R(t) and velocity difference v(t) between two close inertial
particles

Ṙ = v , τ v̇ = s R − v ⇒ τ R̈ + Ṙ = s R . (2)

Note in passing that the substitution R = � exp(−t/2τ ) turns (2) into Schrödinger equation
with a random potential (Anderson localization), with space replacing time and localization
length replacing the Lyapunov exponent.

2. Appearance of folds

Consider the quantity σ = v/R which satisfies the Langevin equation driven by the random
noise s(t):

σ̇ = −σ 2 − σ/τ + s/τ ≡ −dU/dσ + s/τ, (3)
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where U is some effective potential. Let us describe the probability of finite-time singularity
(explosion) σ → −∞ which corresponds to crossing of particle trajectories. Such probability
can be written as a path integral over trajectories with σ (0) = σ0, σ (T ) = −∞ [15–17]

P(T ) =
∫

DσDpDsP{s} exp

{∫ T

0
ip

[
σ̇ + W − s

τ

]
dt ′

}
. (4)

Here P{s} is the probability functional for s and W = U ′ = (σ 2 + σ/τ ). When T is much
less than the average time between explosions (defined below), P(T ) is given by the single
trajectory (optimal fluctuation [18–20]) which maximizes the probability and can be found by
a saddle-point integration of (4).

First, consider T which is much less than the correlation time of the air velocity gradient s.
Then the optimal fluctuation corresponds to s = s0 which does not change during T because
of the long correlation time. In this case, the path integration over the processes s(t) is reduced
to the integration over a single parameter s0 with the measure Ps(s0), which is a single time
statistics of velocity gradient s. The saddle-point integration over the fields p, σ is reduced to
solving equation (3) with constant s(t) = s0 and the boundary conditions σ (0) = σ0, σ (T ) =
−∞. Straightforward integration yields the following relation:

T = τ

∫ −∞

σ0

dσ

s0 − σ − τσ 2
(5)

= τ (−1 − 4s0τ )−1/2

[
π − 2 arctan

(
1 + 2σ0τ√−1 − 4s0τ

)]
,

which formally gives a relation between the optimal value of s0 and the collapse time T . It
is not possible to find the analytic expression for s0(T ) for an arbitrary value of σ0, however
the situation greatly simplifies for σ0 = +∞. In this case, P(T ) can be interpreted as the
probability of having time interval T between consequent collapses. It is also a lower bound
estimate for a general σ0: P(T ; σ0) > P(T ; +∞) ≡ P(T ). Substituting σ0 = +∞ in (5) one
obtains

T = 2 πτ√−1 − 4s0τ
, (6)

or equivalently

s0 = − 1

4τ
− π2τ

T 2
. (7)

In this case the probability of a collapse is given by

P(T ) = Ps(s0)

∣∣∣∣ds0

dT

∣∣∣∣ = 2π2τ

T 3
Ps

(
− 1

4τ
− π2τ

T 2

)
. (8)

One can see from this expression that collapses occur only if there is a finite probabil-
ity of having sufficiently negative flow gradient, s0 < −1/4τ . In particular for Gaussian
gradients, Ps(x) = (α/π )1/2 exp(−αx2), the short-time asymptotics is as follows: P(T ) ∝
T −3 exp(−απ4τ 2/T 4).

Consider now the case when the correlation time of s is much shorter than T . In this case,
the noise can be effectively considered as white Gaussian, 〈s(t)s(0)〉 = 2Dτ 2δ(t), and

P(T )=
∫

Dσ exp

{
− 1

4D

∫ T

0
[σ̇ + W ]2dt ′

}
. (9)

For small enough T (the exact conditions will be found later), it follows from the saddle-point
approximation that the probability is given by the optimal fluctuation (also called ‘instanton’
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trajectory [18–20]) which satisfies σ̈ = W (σ )W ′(σ ) with the boundary conditions σ (0) =
σ0, σ (T ) = −∞. After one integration one obtains the following equation:

σ̇ = −
√

E + W 2, (10)

where E is an integration constant, characterizing the trajectory. This constant is determined
by the boundary conditions

T =
∫ σ0

−∞

dσ√
E + W 2

. (11)

The probability of such fluctuation is given by P(T ) ∝ exp(−A), where

A =
∫ T

0
dt

(σ̇ + W )2

4D
=

∫ σ0

−∞

dσ

4D
(
√

E + W 2 − W )2

√
E + W 2

. (12)

Unfortunately, integrals (11), (12) cannot be expressed through known special functions, so
we are able to get analytical results only in some limiting cases. We will consider the case
σ0 = +∞ following the same arguments as in the preceding analysis. First, we consider the
limit Eτ 4 � 1. In this case, the main contribution to integral (11) is given by the neighborhood
of σ = 0 where one can neglect the nonlinear term in W (σ ):

T ≈
∫ σc

−σc

dσ√
E + σ 2/τ 2

= 2τarcsinh

[
σc√
Eτ 4

]
. (13)

The value of cut-off σc is determined by the nonlinear terms in W (σ ) and can be estimated
as σc ≈ τ−1 This yields the following estimation: T ∝ τ log(1/Eτ 4) � τ . From expression
(12) we obtain

A =
∫ ∞

−∞

(|W | − W )2dσ

4D|W | =
∫ 0

−1/τ

|W |dσ

D
= 1

6Dτ 3
. (14)

We see that in the main approximation the action does not depend on T , which has a simple
interpretation: the collapses are produced by universal tunneling processes, each having a
probability exp(−1/6Dτ 3) and characteristic time-scale τ . In order to find the T dependence
of the total probability, we should study the fluctuations around this instanton [23] which
would involve some bulky calculations. Note that the average time between tunneling events
(an analog of half life for radioactive decay) is exponentially large T̄ = τ exp(1/6Dτ 3). For
short times T � T̄ one can treat the sequence of tunneling events as a Poisson process and
predict the constant behavior P(T ) ∝ ∂T [1−exp(−T/T̄ )] ≈ 1/T̄ . Let us stress again that this
expression is true only for weak inertia Dτ 3 � 1 when the action A is large and the saddle-
point approximation is applicable. Another limiting case, which can be studied analytically,
corresponds to the very high ‘energies’ Eτ 4 � 1 where one can neglect the linear σ/τ terms
in (11), (12), so that one has

T = �(1/4)2

2
√

π E1/4
, A = �(1/4)8

96π2 DT 3
≈ 31.5

DT 3
, (15)

which corresponds to T � τ . The crossover between the two regimes happens at T ≈ τ . To
summarize, for the white s(t) one gets

P(T ) ∝
{

exp(−c/DT 3), T < τ,

exp(−1/6Dτ 3) τ < T < τ exp(1/6Dτ 3),
(16)

where c = [�(1/4)]8/96π2 ≈ 31.5.
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The gradient σ changes the sign after the explosion as the fast particle passes the slow one
(we study one-dimensional flow but particles are generally in a three-dimensional space). That
is the flux of probability that goes to σ → −∞ returns from σ → +∞. That allows for the
steady-state probability density function (PDF) having constant probability flux F equal to
the number of breakdowns per unit time. Such PDF must have P(σ ) ≈ Fσ−2 at σ → ±∞.
If, as is usually the case, the initial P(σ, 0) does not have power tails, they appear at t = +0
according to P(t, σ ) ∝ P(t)σ−2 and (8), (16). When σ → −∞, R → 0. This means that
negative moments of particle distance blow up in a finite time. Appendix A gives the relevant
estimates for the parameters.

3. Short-correlated fluid flow

In this section, we approximate the flow gradient s(t) in the particle reference frame by a white
noise, which is quantitatively good for fast-falling heavy particles and gives a qualitatively
correct description in other cases. In the white case, a variety of analytic results can be obtained,
some translated from the localization theory and super-symmetric quantum mechanics [21, 23]
and some original that we derive here. The steady-state PDF can be found explicitly [21]

P0 = F
D

exp

[
− U (σ )

D

] ∫ σ

−∞
exp

[
U (σ ′)

D

]
dσ ′ , (17)

with the flux F = D∂ P0/∂σ +(
σ 2 + σ/τ

)
P0 ≈ (2πτ )−1 exp[−1/(6Dτ 3)] for Dτ 3 � 1 (the

dimensionless Stokes number Dτ 3 = St measures the inertia of the particle). At St � 1, F ≈
0.2D1/3 [13, 14], note that the average time between breakdowns is much smaller than τ in this
limit. The Lyapunov exponent 〈σ 〉 changes the sign at St∗ ≈ 0.827 [13, 14]: 〈σ 〉 ≈ −Dτ 2/2
at St � St∗ and 〈σ 〉 ∝ D1/3 at St � St∗. That means that small particles cluster while large
ones mix uniformly.

Note that the Gibbs state exp(−U/D) is non-normalizable in this case. The flux state (17)
minimizes entropy production [25]. It can be shown that it is indeed the asymptotic solution
at t → ∞ [26].

To describe the joint statistics of σ and R we introduce the generating function Zk(σ, t) =
〈δ [σ (t) − σ ] Rk(t)〉, which must be normalizable with respect to σ (because ∂σ Zk = 〈Rk〉
is finite) and satisfy the equation

∂ Zk

∂t
= kσ Zk + ∂

∂σ

(
σ

τ
+ σ 2 + D

∂

∂σ

)
Zk . (18)

Substitution Zk = �(σ, t) exp[−U/2D] turns it into the Schrödinger equation in a double
well, which has been a subject of numerous works related to tunneling and instantons (see e.g.
[23, 24, 27, 29, 30]. Following [23, 27], we first find (non-normalizable) solutions exp(γk t/τ −
U/D) fk(σ ) with fk being polynomials and then the conjugated solutions by the method of
variable constants. For example, there are steady states Z0 = P0 and

Z1(σ ) = (1 + στ ) exp

[
U (σ )

D

] ∫ σ

−∞
exp

[
U (σ ′)

D

]
dσ ′

(1 + σ ′τ )2
.

In particular, this solution allows one to obtain the mean velocity difference between two
particles at the distance a: a

∫
σ Z1(σ, t) dσ . The growth rates of the moments of inter-particle

distance can be obtained from (18) or in a straightforward way by writing

Ṙl,k = −l Rl,k/τ − (l − k)Rl+1,k + l(l − 1)DRl−2,k (19)

Rl,k = 〈Rkσ l〉. (20)



6 S. A. Derevyanko et al.

This allows one to calculate the growth rates of the distance moments for positive integer k
since the equations for the higher moments are expressed only via lower ones. Assuming that
for a given k all Rl,k ∝ exp(γk t), we get for γk the (k + 1)st-order equation

det

⎡
⎢⎢⎢⎢⎢⎢⎣

γk −k 0 0 0 . . . 0
0 γk + τ−1 1 − k 0 0 . . . 0

−D 0 γk + 2τ−1 2 − k 0 . . . 0
0 −3D 0 γk + 3τ−1 3 − k . . . 0
. . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . −k(k − 1)D/2 0 γk + kτ−1

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0 . (21)

It is a three-diagonal matrix. We need its largest eigenvalue. For the second moment, the
equation on the eigenvalues,

det

⎡
⎣ γ2 −2 0

0 γ2 + τ−1 −1
−D 0 γ2 + 2τ−1

⎤
⎦ = γ2

(
γ2 + τ−1) (

γ2 + 2τ−1) − 2D = 0 , (22)

gives 〈R2〉 ∝ exp(γ2t) with γ2 ≈ Dτ 2 for Dτ 3 � 1 and γ2 ≈ (2D)1/3 for Dτ 3 � 1.
For arbitrary k, we find asymptotics. If Dτ 3k2 � 1, then γk � τ−1 so that γk can be

neglected in (21) everywhere except the first element. That gives γk ≈ Dτ 2k(k − 1)/2. When
Dτ 3k2 � 1, the determinant of (19) is approximately γ k+1

k − γ k−2
k Dk(k − 1)

∑
, where∑ = ∑k

i=1(k − i) ∝ k2 and γk ∝ (Dk4)1/3. Let us compare the growth rates of the distance
moments for the inertial particles with those for smooth compressible short-correlated flow.
For the latter, Gaussianity of the stretching rates is translated into γk ∝ k(k − 1) (see e.g. [4]),
while for the former the dependence is parabolic only for low-order moments in the low-inertia
limit Dτ 3k2 � 1. High moments correspond to high inertia and have γk ∝ (Dk4)1/3 even for
St � 1. Note that conservation requires γ0 = γ1 = 0 for inertial particles as well.

Since R is sign-changing for inertial particles, the statistics of |R| deserves separate study,
particularly for comparison with the concentration. The equation for the time derivative of
R̃lk = 〈σ l |R|k〉 for odd k differs from (19) by the extra term 2〈σ l+1 Rk+1δ(R)〉, which is
nonzero for l = k. As a result, the growth rates γ̃k ≡ R̃−1

lk dR̃lk/dt may differ from γk . The
most dramatic new effect can be readily appreciated since γ̃k are related to the Lyapunov
exponent via 〈σ 〉 = (dγ̃k/dk)k=0. At high inertia, when St > St∗ and 〈σ 〉 is positive, it is thus
evident that γ̃1 > 0 as seen from the sketch in figure 1. The nonzero growth rate of 〈|R|〉 is a
remarkable qualitatively new effect with a clear physical meaning: in every breakdown, extra
particles enter the interval between the two particles that we follow; the interval length must

St>St∗

1

St<St

k

γ~
k

∗

Figure 1. Growth rates of distance moments for a smooth flow (broken line) and inertial particles for different
Stokes numbers (two solid lines).
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grow to ensure conservation of the total number of particles. From this interpretation, it is
clear that the growth rate must be nonzero at low inertia as well, when it must be proportional
to the exponentially small rate of explosions: γ̃1 ∝ F ∝ exp(−1/6St). Luckily, one can also
establish asymptotically an exact pre-exponential factor. From the dynamical point of view
the only difference between R and |R| is in the effect of breakdown events. In order to obtain
the explicit expression for γ̃1, we first analyze the dynamical equation d|R|/dt = σ |R| on the
stages between the breakdowns, which formally coincides for both R and |R| and then account
for breakdowns explicitly.

First we introduce the Green function Pt (R, v; R0, v0) which is the transition probability,
i.e. the joint probability of having v(t) = v, R(t) = R provided the initial conditions R(0) =
R0, v(0) = v0. For delta-correlated velocity field it obeys the Chapman–Kolmogorov relation

Pt (R, v, R0, v0) =
∫

dR′dv′ Pt−T (R, v; R′, v′)PT (R′, v′; R0, v0), (23)

where 0 < T < t . This property allows to separate the dynamics between the breakdowns.
It is possible to average the transition probability over all possible trajectories which had
N = 0, 1 . . . breakdowns at moments t1, . . . , tN :

Pt (R, v; R0, v0) = P̃t (R, v; R0, v0) +
∫

dv1dt1 P̃t−t1 (R, v; 0, v1)
(t1, v1; R0, v0)

+
∫

dv1dv2dt1dt2 P̃t−t2 (R, v; 0, v2)
(t2 − t1, v2, 0, v1)
(t1, v1; R0, v0) (24)

where P̃t (R, v; R0, v0) is the probability of a trajectory R(t) = R, v(t) = v given R(0) =
R0, v(0) = v0 without any breakdowns in the time interval (0, t). Formally, P̃t (R, v; R0, v0) =
P{R(t) = R, v(t) = t, (R(s) �= 0, s ∈ [0, t])|R(0) = R0, v(0) = v0}. It obeys the following
Fokker–Planck equation[

∂t + ∂Rv − ∂vv − DR2∂2
v

]
P̃t (R, v; R0, v0) = 0, (25)

with the initial condition P̃0(R, v; R0, v0) = δ(R − R0)δ(v − v0), absorbing boundary condi-
tions at R = 0, v < 0 and no-flux condition at R = 0, v > 0. 
(t, v; R0, v0) is the joint prob-
ability of the first breakdown time t and the value of the velocity at the breakdown v(t) = v.
Breakdown moment corresponds to R = 0, so 
(t, v; R0, v0) can be expressed through P̃t in
the following way:


(t, v; R0, v0) = lim
R→0

∣∣∣∣∂(R, v)

∂(t, v)

∣∣∣∣ P̃t (R, v; R0, v0) = v P̃t (0, v; R0, v0). (26)

It is convenient to pass to the Laplace transform of all the Green functions: Fs =∫ ∞
0 dt exp(−st)F(t). In this case, equation (24) turns into

Ps(R, v; R0, v0) = P̃s(R, v; R0, v0) +
∫

dv1 P̃s(R, v; 0, v1)
s(v1; R0, v0)

+
∞∑

N=2

∫
dv1 . . . dvN P̃s(R, v; 0, vN ) . . . 
s(v2; 0, v1)
s(v1; R0, v0). (27)

Equation (2) requires self-similarity of the Green functions

α2 P̃s(αR, αv; αR0, αv0) = P̃s(R, v; R0, v0) (28)

α
s(αv; αR0, αv0) = 
s(v; R0, v0). (29)

Using this relation it is possible to simplify greatly the expression for the moment 〈|R|k〉 =∫
dRdv|R|k Pt (R, v; R0, v0). After turning to the variables x = R/vN , y = v/vN , x1 =
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v1/R0, x2 = v2/v1, . . . xN = vN /vN−1 multidimensional integrals in (27) are factorized into
the product of one-dimensional integrals. This yields the following result:〈∣∣∣∣ R

R0

∣∣∣∣
k
〉

=
∫

ds
2π i

exp(st)
[

Y s
k (1, σ0) + Y s

k (0, 1)Ms
k (1, σ0)

∞∑
N=0

{Ms
k (0, 1)}N

]

=
∫

ds
2π i

exp(st)
[

Y s
k (1, σ0) + Y s

k (0, 1)Ms
k (1, σ0)

1 − Ms
k (0, 1)

]
, (30)

where σ0 = v0/R0 and the new functions are defined as follows:

Y s
k (a, b) =

∫
drdv|r |k P̃s(r, v; a, b) (31)

Ms
k (a, b) =

∫
dv|v|k
s(v; a, b) =

∫
dv|v|1+k P̃s(0, v; a, b). (32)

Note, that the function Ms
k (a, b) can be interpreted as the average value of |v|k of the probability

current flowing through the line R = 0, v < 0. The integration in (30) is performed over the
contour which lies on the right of all the singularities in the integrated function. Long-time
asymptotics of (30) is determined by the rightmost pole of the integrated functions. Since all
four functions Y s

k , Ms
k are constructed from P̃s(R, v; R0, v0) they have the same singularities.

One can show that these singularities are simple poles s = −Em,k < 0, m = 0, 1 . . . . Indeed,
as follows from the analysis in previous sections there is a finite probability of breakdown in a
finite time, therefore the solution of (25) should monotonically decrease with time. Therefore,
the long-time asymptotic is determined either by E0,k or the rightmost s solving the equation
Ms

k (0, 1) = 1. Let us show that the second possibility is realized. As long as the Green functions
P̃, 
 are determined by the trajectories without breakdowns, it is convenient to use the variable
σ = v/R. One can introduce the new joint PDF Zt (σ, R; σ0, R0) = R P̃t (R, σ R; R0, σ0 R0)
which obeys the following Fokker–Planck equation equation:[

∂t + ∂Rσ R − ∂σ (σ/τ + σ 2) − D∂2
σ

]
Zt (R, σ, σ0) = 0, (33)

where the boundary and initial conditions are the same as in (25). We impose the no-flux
boundary condition at σ = +∞ and absorbing boundary conditions at σ = −∞. The function
Ms

k ≡ Ms
k (0, 1) is given by

Ms
k = lim

σ→−∞,σ0→∞ |σ |2+k |σ0|−k
∫ ∞

0
dt exp(−st)Zt,k(σ ; σ0), (34)

where Zk
t = ∫

dR Rk Zt (R, σ, σ0). Formally, it is the expectation value of exp(k
∫ t

0 σ (t ′)dt ′)
averaged over the continuous functions σ (t ′) satisfying σ (t) = σ, σ (0) = σ0:

Zt,k(σ ; σ0) =
〈

exp

(
k

∫ t

0
σ (t ′)dt ′

)
δ(σ − σ (t))

∣∣∣σ (0) = σ0

〉
c
. (35)

Here the index c indicates that the averaging is performed over continuous trajectories σ (t ′).
Using (33), one can show that the Laplace transform of Zt,k obeys the following equation:

[s + L̂k]Zs
k(σ ; σ0) =

[
s − ∂σ

(
σ

τ
+ σ 2

)
− D∂2

σ − kσ

]
Zs

k(σ ; σ0) = δ(σ − σ0). (36)

The operator L̂k can be turned into a Hermitian one with the rotation L̂k =
exp[−U (σ )/2D]Ĥk exp[U (σ )/2D], where U (σ ) = σ 2/(2τ ) + σ 3/3 and Ĥk is the
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Hamiltonian of one-dimensional quantum mechanics with asymmetric double-well potential

Ĥk = −D∂2
σ + σ 2(τ−1 + σ )2

4D
− 1

2τ
− (1 + k)σ. (37)

Therefore, L̂k, Ĥk have a bounded from below discrete spectrum Ĥk�m,k(σ ) = Em,k�m,k(σ )
corresponding to normalizable Zk . The quantity Ms

k can be represented as

Ms
k =

∑
m

�m,k

s + Em,k
(38)

�m,k = lim
σ→−∞,σ0→∞ |σ |2+k |σ0|−k exp

[
U (σ0) − U (σ )

2D

]
�m,k(σ )�m,k(σ0). (39)

For arbitrary values of St = Dτ 3 it is not possible to find analytic expressions for Em,k

and �m,k . However, for St � 1 the situation is greatly simplified. As we will show below
in this case both E0,k and �m,k are exponentially small in comparison to Em,k for m > 0.
Therefore, one can leave only the first term in (38) and solve the equation Ms

k = 1 explicitly:
s = −E0,k +�0,k . As we will check a posteriori, �0,k ≥ 0, so this solution indeed corresponds
to the most right singularity in (30). Spectral properties of operator (37) in the limit St � 1
have been extensively studied in [23]. It was shown there that the ground-state energy can be
represented as follows:

E0,k = E P
0,k + E N

0,k = E P
0,k + τ−1 cos(πk)

�(1 + k)Stk

2π
exp

(
− 1

6St

)
, (40)

where E P
0,k is the perturbative contribution to the energy which vanishes for k = 1 and is given

by the solution E P
0,k = −γk , where γk is the solution of (21) for integer k. In order to find the

difference γ̃k −γk = �0,k − E N
0,k , we have to find the asymptotics of �0,k(σ ). For small Stokes

numbers this can be done by the semiclassical analysis. The details of these calculations are
presented in appendix B. The final result �0,k = (2πτ )−1�(1 + k)Stk exp(−1/6St) yields

γ̃k − γk = −E N
0,k + �0,k = τ−1sin2

(
πk
2

)
�(1 + k)Stk

π
exp

(
− 1

6St

)
. (41)

Note, that this difference vanishes for even k as one could expect. Elsewhere it is exponentially
small and is negligible with comparison to γk . However, for k = 1 we have γ1 = 0, and γ̃1 is
fully determined by (41).

4. Numerical simulations

We now present the results of numerical simulations of the growth of particle separation 〈|R|k〉
in the Lagrangian frame and of negative moments of density 〈n−k〉 in the Eulerian frame. The
method used to obtain the growth rates is the Multicanonical Monte Carlo [31], a technique of
adaptive importance sampling which boosts the probability of rare events that determine large
negative moments. The Lagrangian results were obtained solving (2). The results presented in
figures 2 and 3 confirm an exponential growth of 〈|R|k〉. We also observe an exponential growth
of the particle separation, 〈|R|〉. Figure 4 shows a good agreement between the numerics and
the theoretical prediction (41) for k = 1 up to a fairly large St � 0.35.
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Figure 2. The moments 〈|R|k〉 for k = 2, 3, 4 for St = 0.2. Time is normalized by τ .
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Figure 3. Inertia-caused growth of the modulus of particle separation 〈|R|〉 (St = 0.2).
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Figure 4. The growth rate γ̃1 versus the Stokes number. The solid curve represents the theoretical prediction.
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For the 1D Eulerian simulations, the density field is given by the following expression:

n(x, t) =
∫

dx0n0(x0)δ(x(t |x0) − x), (42)

where n0(x0) is an initial Eulerian density distribution (which we assume uniform) and x(t |x0)
is a Lagrangian trajectory of a particle.

This trajectory is obtained from the system of the ODEs (characteristic equations):

d

dt
x(t |x0) = v(t), x(0|x0) = x0, (43)

d

dt
v(t) = −v(t) − u(x(t |x0), t)

τ
, (44)

where u(x, t) is the Eulerian Gaussian velocity of the turbulent flow.
We assume that u(x, t) is delta-correlated in time and has a spatial correlation length lc:

〈u(x, t)u(x ′, t ′)〉 = B(x − x ′)δ(t − t ′), B(x) = B0e−x2/ l2
c . (45)

The specific form of the correlation function B is not important. Eulerian field u(x, t) is related
to the Lagrangian process s(t) (see equation (3)) via s(t) = ∂u(x(t |x0), t)/∂x . From this it
follows that St ≡ Dτ 3 = (τ/2) |B ′′(0)| = (τ/ l2

c ) B0. Prior to solving the system of ODEs (43),
(44) one has to generate a 1D Eulerian velocity field u(x, t) with the prescribed correlation
function (45). The algorithm for this is fairly standard (see. e.g. [32]). First we note that since
the field u(x, t) is delta correlated in time, its temporal regularization is trivial. Introducing
discrete temporal step �t at each time step, n, we now need to generate a spatially distributed
Gaussain field un(x) with the correlation property 〈un(x)um(x ′)〉 = B(x − x ′) δmn . In order to
generate the field un(x) we utilize the Fourier method. Indeed the field un(x) can be represented
as the following Fourier integral:

un(x) =
∫ ∞

0
cos(2πkx) [2E(k)]1/2ξn(k)dk +

∫ ∞

0
sin(2πkx) [2E(k)]1/2ηn(k)dk, (46)

where ξn(k) and ηn(k) are independent real Gaussian processes with the following properties:

〈ξn(k)〉 = 〈ηn(k)〉 = 0

〈ξn(k)ξm(k ′)〉 = 〈ηn(k)ηm(k ′)〉 = δ(k − k ′) δmn (47)

and E(k) is an energy spectrum of the random field un; it coincides with the Fourier transform
of the correlation function B(x):

E(k) =
∫ ∞

−∞
e2π ikx B(x)dx = B0

√
πl2

c exp
[ − π2l2

c k2]. (48)

We then use a discrete version of (46):

un(x) ≈
√

E(0) �k ξ n
0 +

M∑
j=1

√
2 E(k j ) �k [ξ n

j cos(2πk j x) + ηn
j sin(2πk j x)]. (49)

Here we have partitioned the Fourier space into M intervals, so that the wavevectors k j = j�k
denote the locations of the equispaced grid points. Variables ξ n

j and ηn
j form a set of independent

standard Gaussian variables (mean zero and unit variance). Because of the nature of the
Fourier method the synthetically generated field un(x) will contain an intrinsic spatial period
λF = (�k)−1. Naturally, one wishes to make it much bigger than the characteristic scale
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Figure 5. The Eulerian moments 〈n−k〉 for St = 0.2.

of the system L . On the other hand, one has to ensure that we have enough harmonics in
(49) to sample the peak of the function E(k). These two requirements can be met assuming
(lc M)−1�k � L−1.

Once we generated the synthetic Eulerian velocity field u(x, t), we use a method of La-
grangian markers to obtain the Eulerian particle density at each point (using effectively formula
(42)). We introduce a chain of NL representative Lagrangian markers connected by some fic-
titious ‘strings’. Each ‘string’ contains a large constant number of uniformly distributed real
particles. This number is fixed for each string; it does not change during the evolution and is
determined by the initial density distribution (note that all the results presented here are inde-
pendent of the initial distribution as is also the case for a smooth random flow [5]). During the
evolution, the strings deform according to the Lagrangian dynamics of the initial markers. In
particular, the occurrence of explosions in Lagrangian frame corresponds to the formation of
folds in the chain of markers. In order to obtain numerically the local Eulerian particle density
at a given point, we count the number of strings passing through this point and then for each
string determine the contribution to the density as a ratio Ni/ li , where Ni is the number of
particles in the string and li is the current length of the string. In figure 5, we plot the first four
negative moments of n. Similarly to Lagrangian moments, Eulerian moments also grow ex-
ponentially: 〈n−k+1〉 ∝ exp(�k t). The table compares �k and Lagrangian γ̃k given by (19) for
St = 0.1 and St = 0.2. We see that Lagrangian breakdowns (Eulerian folds) violate �k = γ̃k

that one would have for a smooth flow. We do not have a meaningful parametrization for the
dependences of γ̃k − �k on k and St . It is likely that rare explosions cannot be completely
disentangled from the exponential evolution.

In 1D case, there is a very simple way of visualizing the dynamics of the caustics. At a given
time moment, t , one can plot the final displacement of a particle, x(t) versus its initial position
x0. The Eulerian density distribution can be obtained by projecting the plot onto the coordinate
axis x(t). At the time moment t = 0 the curve is just a straight line at the half the right angle

Table 1. The comparison of Eulerian and Lagrangian growth rates for St = 0.1 (left) and St = 0.2 (right).

k γ̃k �k γ̃k − �k k γ̃k �k γ̃k − �k

1 0.006 – – 1 0.028 – –
2 0.158 0.146 0.012 ± 0.003 2 0.274 0.250 0.025 ± 0.002
3 0.393 0.374 0.019 ± 0.005 3 0.643 0.611 0.032 ± 0.005
4 0.695 0.666 0.029 ± 0.006 4 1.098 1.054 0.044 ± 0.008
5 1.054 1.012 0.043 ± 0.009 5 1.627 1.564 0.063 ± 0.009
6 1.459 1.403 0.056 ± 0.010 6 2.223 2.131 0.098 ± 0.012
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Figure 6. The evolution of 30 Lagrangian markers with time. The time is normalized to τ and increases from a) to
d). St = 0.4

to the axes. During the evolution it will deform, according to the Lagrangian dynamics of
individual particles (43), (44) eventually leading to the formation of folds illustrating the
nonlocal nature of the Eulerian density.

In figure 6, we plot the three stages of evolution of particle distribution. We take NL = 30
initially equispaced Lagrangian markers and follow the evolution of the function x(x0) through
time for a particular realization of the velocity field. We observe that at the initial stage (figure
6(a)) the particle displacements are small so that the density distribution is smooth and there
is one-to-ne correspondence x(t) ↔ x0. Figure 6(b) shows the appearance of the first caustic
(a particle overtakes another). In figure 6(c) the folds are more pronounced and clearly visible.
Finally, at large times (figure 6(d)) one can evidently observe the effect of the clustering of
particles.

5. Two-dimensional problem

Now, we must consider the matrix equation

dσ̂

dt
+ σ̂ 2 + σ̂ /τ = ŝ, (50)

with ŝ(t) =
√

D
(

ξ1 ξ2 − √
2ξ3

ξ2 + √
2ξ3 −ξ1

)

and 〈ξi (t)ξ j (0)〉 = δi jδ(t). One can write the equation in components
ω = tr σ = σ11 + σ22, a = σ11 − σ22, b = σ12 + σ21, c = σ12 − σ21 :

dω

dt
= −ω

τ
+ c2 − a2 − b2 − ω2

2
,

da
dt

= −a
τ

− ωa + 2
√

Dξ1, (51)

db
dt

= −b
τ

− ωb + 2
√

Dξ2,
dc
dt

= − c
τ

− ωc − 2
√

2Dξ3. (52)
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Define I ≡ c2 −a2 −b2. Note the exact symmetry relation 〈σi jσkl〉 = 〈(∂vi/∂x j )(∂vk/∂xl)〉 =
〈σilσk j 〉 which gives

〈ω2 + I 〉 = 0 , (53)

when the moment exists.
Lagrangian determinant V = tr ∂ Ri (t)/∂ R j (0) satisfies the equation V̇ = ωV . To describe

the growth of the volume moments, we introduce moments V k,l
m = 〈ωk I l V m〉 and assume

V k,l
m ∝ exp(γmt). Differentiating 〈V 〉 three times we get the conservation of the Eulerian

volume (i.e. the largest γ1 is zero)

γ1(γ1 + 1)(γ1 + 2) = 0. (54)

For m = 2, we differentiate six times and in the basis

〈V 2〉, 〈ωV 2〉, 〈(3ω2 + I )V 2〉, 〈ω(ω2 + I )V 2〉, 〈(ω2 + I )2V 2〉, 〈(2c2 + a2 + b2)V 2〉
we get the following matrix (compare with (21)):

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ2 −2 0 0 0 0

0 γ2 + τ−1 −3/2 0 0 0

0 0 γ2 + 2τ−1 −1 0 0

0 0 0 γ2 + 3τ−1 −1/2 0

0 0 0 0 γ2 + 4τ−1 −16D

−24D 0 0 0 0 γk + 2τ−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0 . (55)

This gives γ2(γ2 + τ−1)(γ2 + 2τ−1)2(γ2 + 3τ−1)(γ2 + 4τ−1) = (24D)2. At small St, we get
γ2 ≈ 12D2τ 5 [33]. At large D, we get γ2 ≈ (24D)1/3. Similarly to 1d case, one can show
that the Lagrangian volume |V | grows exponentially with time (the details will be published
elsewhere).

As far as explosions are concerned, it can be argued that at small Stokes numbers it is much
more probable to have a large velocity gradient along one direction rather than simultaneously
along both directions. Therefore, most of the explosions are locally one dimensional in such
a case. Indeed to have ω → −∞, the system has to pass through the barrier in the region
−2/τ < ω < 0. For, that, it needs a fluctuation with I = c2 − a2 − b2, which is negative and
large compared to its average scale during a long enough time. The most probable trajectory
which satisfies this condition has c = 0. That allows us to rewrite equations (51), (52) in the
following way:

dω

dt
= −ω

τ
− ω2 + r2

2
(56)

dr
dt

= −(1/τ + ω)r + 4D
r

+ 2
√

2Dξr , (57)

where r = √
a2 + b2 and 〈ξr (0)ξr (t)〉 = δ(t). As long as we will be interested in trajectories

where r ∼ τ−1 the second term on the rhs of (57) can be neglected. In this case, it is convenient
to turn to the new variables y± = ω ± r which obey the following equation:

dy±
dt

= − y±
τ

− y2
±
2

± ξr . (58)

These are one-dimensional equations similar to (3). As long as the breakdown in ω corresponds
to the breakdown in either y± all of the results from section 2 can be applied here. We conclude
that the breakdown processes in two dimensions are effectively one dimensional.
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6. Conclusion

Let us summarize the peculiarities of the evolution of the distribution of inertial particles that
distinguish them from smooth compressible flows

1. Infinite moments of density and inter-particle distance appear non-analytically at t = +0,
according to exp(−C/Dt3).

2. Average distance between particles in 1d (and average Lagrangian volume in higher di-
mensions) grows exponentially.

3. Negative moments of density in the Eulerian reference frame grow with the rates not
reducible to those of distance moments (or volume moments in higher dimensions) in the
Lagrangian frame.
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Appendix A: the Blow-up criteria for negative moments of R

Consider the moments Rl,k = 〈σ l Rk〉 with negative k. Equation for the moments is given by
(19). Consider first two equations for the moments

dR0,k

dt
= −|k|R1,k, (A1)

dR1,k

dt
= − R1,k

τ
− (1 + |k|)R2,k . (A2)

Assuming that k is even, we can use the Cauchy–Schwartz inequality

R1,k ≤ R1/2
2,k R1/2

0,k , (A3)

and combining these two equations we get

d2 R0,k

dt2
+ 1

τ

dR0,k

dt
= |k|(1 + |k|)R2,k ≥ R2

1,k

R0,k
= 1 + |k|

|k|
(dR0,k/dt)2

R0,k
. (A4)

Making transform Z = R−1/|k|
0,k yields

Ztt + Zt/τ ≤ 0 . (A5)

Equality here would give Zt (t1)/Zt (t) = exp[(t − t1)/τ . Inequality allows one to define the
function f (t) = Z (t1) + τ Zt (t1)(1 − e−(t−t1)/τ ), which bounds Z (t) from above. Therefore,
Z (t) ≤ f (t). Yet f (t) turns into zero provided that there exists such t1 that Z (t1)+τ Zt (t1) < 0.
To prove that the moments can collapse in a finite time we need to demonstrate that

− Z (t1)

τ Zt (t1)
= − R0,k(t1)

τ R1,k(t1)
< 1 (A6)
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at some t1. It is useful to re-write equations on several first moments in the integral form. In
particular,

R0,k = R0,k(0) + |k|(|k| + 1)

t∫
0

dt ′ exp[−t ′/τ ]

t ′∫
0

dt ′′ exp[t ′′/τ ] R2,k(t ′′).

Similar expressions can be derived for the first and second moments. From these equations
one can infer the upper bound estimate for R1,k :

R1,k ≤ −D τ 2 R0,k(0) h(t),

where

h(t) = (1 + |k|)(1 − exp(−t/τ ))2 + St(1 + |k|)2(2 + |k|){1 − 6(t/τ ) exp(−2t/τ )

− 6(t/τ ) exp(−t/τ ) − exp(−3t/τ ) − 9 exp(−2t/τ ) + 9 exp(−t/τ )}. (A7)

Next we want to estimate R0,k = R0,k(0) − |k| ∫ t
0 dt ′ R1,k(t ′). In order to do so we

note that R1,k exp(t/τ ) is monotonously decreasing function so that R0,k(t1) ≤ R0,k(0) +
|k|R1,k(t1)

[
1 − exp(t1/τ )

]
. Thus collapse condition (A6) can be rewritten as

|k|[exp(t1/τ ) − 1] + 1

Sth(t1)
≤ 1, (A8)

with St = Dτ 3.
An analysis shows that h(t) is monotonously increasing function. Therefore, from the

first term on the lhs it follows that the sought time t1 (if exists) should be less than tmax =
ln(1 + 1/|k|), while from the second term one infers the Stokes parameter should be at least
Stmin = [(4|k| + 9)1/2 − 1]/[2(1 + |k|)(2 + |k|)]. For small t1 on the lhs of (A8) the second
term dominates while at t1 close to tmax the first term becomes important. An analysis shows
that for k = −2 for St > St∗ ≈ 12 the l h s of (A8) can indeed be less than 1 which means
that the collapse does occur. The critical value St∗ is a function of moment number k. For
instance for k = −4 one can determine that St∗ ≈ 22. Generally, the higher the |k| the higher
is the estimate for St∗.

Appendix B: semiclassical calculations

In this section, we use the semiclassical calculations to obtain the value of �0,k in the limit
St � 1. The potential part of Ĥk defined in (37) contains two minima close to σ1,2 = 0, −τ−1.
For small enough k � (Dτ 3)−1/2 in the vicinity of these minima the Hamiltonian can be
approximated as

Ĥk = −D∂2
σ + σ 2

4Dτ 2
− 1

2τ
,

√
Dτ � |σ | � τ−1 (B1)

Ĥk = −D∂2
σ + (σ + τ−1)2

4Dτ 2
+ 1 + 2k

2τ
,

√
Dτ � |σ + τ−1| � τ−1. (B2)

In these region, the wavefunction can be approximated as the following:

�0,k = A+ Dε

(
σ√
Dτ

)
, |σ | � τ−1 (B3)

�0,k = A− Dε−1−k

(
−σ + τ−1

√
Dτ

)
, |σ + τ−1| � τ−1, (B4)
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where ε = E0,kτ and Dν(x) is the parabolic cylinder function. In the classically forbidden
region away enough from the minima the wavefunction has the following WKB form:

�0,k = C−
|σ |1+ε |τ−1 + σ |1+k−ε

exp

[
U (σ )

2D

]
, σ < −τ−1 (B5)

�0,k = B−
|σ |1+ε |τ−1 + σ |1+k−ε

exp

[
U (σ )

2D

]

+ B+
|σ |−ε |τ−1 + σ |ε−k

exp

[
− U (σ )

2D

]
, −1 < στ < 0 (B6)

�0,k = C+
|σ |−ε |τ−1 + σ |ε−k

exp

[
− U (σ )

2D

]
, σ > 0. (B7)

In order to find the expressions for A±, B± and C±, we have to use normalization and to match
the solutions (B3), (B4) with (B5)–(B7) in the intersection regions

√
Dτ � |σ | � τ−1 and√

Dτ � |σ + τ−1| � τ−1. The parabolic cylinder functions have the following asymptotic
expansions at x → +∞:

Dp(x) ∼ x p exp(−x2/4) (B8)

Dp(−x) ∼ cos(πp)x p exp(−x2/4) −
√

2π

�(−p)
x−1−p exp(x2/4). (B9)

Omitting the tedious but rather straightforward calculations, we present only the final expres-
sions here: A− = A+(2π )−1/2�(1+k)Stk/2 exp(−1/12St). One can see that the amplitude A−
is exponentially suppressed, so one has to apply the usual quantum-mechanical normalization
condition to (B3), which automatically gives A+ = √

Dτ (2π )−1/4. Finally, we obtain

�0,k = C+C− = Stk/2−1 exp(−1/12St)A− A+ = τ−1 �(1 + k)

2π
Stk exp

[
− 1

6St

]
. (B10)

Formally, the same calculations can be performed for arbitrary εm = Em,kτ . Although the
final expression �m,k will be more complicated, it will always contain the exponential small
factor �m,k ∝ exp(−1/6St) which is a direct consequence of a high barrier between the two
minima in the potential. Such suppression of �m,k justifies the dropping of m > 0 terms in
(38) for St � 1.
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