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Abstract We consider a stable open queuing network as a steady non-equilibrium system of
interacting particles. The network is completely specified by its underlying graphical struc-
ture, type of interaction at each node, and the Markovian transition rates between nodes. For
such systems, we ask the question “What is the most likely way for large currents to accumu-
late over time in a network ?”, where time is large compared to the system correlation time
scale. We identify two interesting regimes. In the first regime, in which the accumulation
of currents over time exceeds the expected value by a small to moderate amount (mod-
erate large deviation), we find that the large-deviation distribution of currents is universal
(independent of the interaction details), and there is no long-time and averaged over time
accumulation of particles (condensation) at any nodes. In the second regime, in which the
accumulation of currents over time exceeds the expected value by a large amount (severe
large deviation), we find that the large-deviation current distribution is sensitive to interac-
tion details, and there is a long-time accumulation of particles (condensation) at some nodes.
The transition between the two regimes can be described as a dynamical second order phase
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transition. We illustrate these ideas using the simple, yet non-trivial, example of a single
node with feedback.

Keywords Statistics of non-equilibrium currents · Open queueing networks ·
Condensation phenomenon · Birth-death processes

1 Introduction

1.1 Non-Equilibrium Statistical Physics and Queueing Networks

The concept of statistical equilibrium is extremely powerful. Once detailed balance (which
is synonymic to the equilibrium) is established, one can shortcut a discussion of dynamics
and just consider the Gibbs distribution that governs simultaneous correlations in the steady
state. On the other hand, if detailed balance is broken no free lunch is guaranteed, and one
generally does need to dive into dynamics, even to describe just the steady state. This is an
infamous and principal difficulty at the very core of non-equilibrium statistical physics. It is
thus of interest to identify a class of non-equilibrium steady systems where the steady state,
distinctly different from the Gibbs distribution, can be derived in a straightforward way.

The problem discussed in this manuscript belongs to this class—it is a non-equilibrium
statistical physics problem with the steady state known explicitly. More precisely, we study
the model generally known as an open queueing network. A general (Markovian) open
queueing network, the so-called Jackson network [1], can be described as a random walk
of particles (jobs, vehicles, people, computer packets, etc) on a directed graph. The directed
links label the transitions between stations/nodes, each of the Poissonian type and thus char-
acterized by a single number (the rate). Each node is characterized by the number of equiv-
alent servers. Collectively this defines a many-particle problem, whose non-equilibrium na-
ture (no detailed balance) follows immediately from the definitions. Adopting the terminol-
ogy of the Queueing Theory community (a subset of the Operations Research community),
the type of service at a node is provided by the M/M/m/∞ queue, which is translated as
Markovian input, Markovian output with m servers, and infinite waiting room. (Through-
out the manuscript we use the shorter notation M/M/m.) An example of such a network is
shown in Fig. 1, and more information will be provided below. Note that a similar, and to a
degree more general, model is known in statistical physics as the zero range model [2].

In spite of the generally pessimistic non-equilibrium assessment, the stable (i.e. achiev-
ing a statistical steady state) open Jackson network allows an explicit and simple solution
for the steady state [3]. Similar statements apply to the zero range model [2]. The solution
for the steady state is the so-called product form [2–4], where the joint distribution function
of the occupation numbers at all the nodes/stations is factorized into a product of marginal
probabilities at the separate nodes. Some new and physics-based exposition of this factor-
ized solution is due to [5], and will also be a part of our construction below. We note that
a different factorization has also led to the solution of the related Asymmetric Exclusion
Processes (AEP) Models, see [6–9] and the references therein.1

1The general AEP models are significantly different from the Jackson-network models discussed in this
manuscript—they can be viewed as a special case of an M/M/1/1 queuing model (waiting room with one
slot and no particles lost) in contrast with the Jackon network of M/M/m/∞ (infinite waiting room) queues.
In the case of a simple one-dimensional chain the AEP model is reducible (with a proper redefinition of
the phase space) to the Jackson network model (and other way around) [6–9], and then both models show
product-state form solution [2–4]. However, the product-state solvability, which holds for the Jackson network
generally, does not extend to the AEP model on general graphs.
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Fig. 1 Example of an open finite queueing network represented by a directed graph. The sample graph
consists of four vortexes/stations, labeled 1,2,3,4, with label 0 is reserved for an external (out) node. Tran-
sitions between the stations are shown as directed edges. Loops (self-loops), as 1 → 1, are allowed. Each
graph edge is equipped with a transition rate. Throughout the manuscript all transitions in the network are
assumed memoryless, i.e. 0-degree Markovian–Poisson. We also focus on the case of the infinite waiting
room, i.e., no particles/jobs are lost, and thus the number of particles accumulated at a node may reach +∞.
Another important characteristic of a station/note is the number of tellers/servers. For the sake of simplicity,
we assume the jobs/particles to be identical (single-class), and all tellers at any given station processing with
the same time-independent Poisson rate

On the other hand, in recent years the quest for universality in non-equilibrium statisti-
cal problems has turned to the analysis of currents generated over time, long compared to
the system correlation time scale. This route became fruitful and helped to establish some
fundamental relations about the symmetry of the currents distribution, known as fluctuation
theorems [10–12]. In spite of this partial success, the full description of the currents distri-
bution for a general many-particle and open non-equilibrium problem was (and is) deemed
too difficult.2

1.2 Large Deviations, Queueing Networks, and Condensation Phenomenon

One of the central questions in the Queueing Theory community is the probability of rare
events in queueing networks (large deviations) [15]. A central tool in understanding such
events is the notion of the so-called ‘fluid-limit’ of a queueing network [16], which was
originally developed to understand certain questions related to the stability (existence of
steady state) for certain complicated networks [17, 18]. We now describe this fluid-limit in
greater detail. For a fixed queueing network, one scales both time and the initial number of
particles in system by some large integer n, and then normalizes the set of queue lengths by
n. Note the important difference with the standard notion of hydrodynamic limit—here, the
number of nodes in the network is fixed—only time and the initial number of particles are
scaled. It is proven in [15, 16] that for a broad class of networks, this scaling has a non-trivial
limit (the fluid limit). It is then standard in the Queueing Theory literature to perform the
large deviations analysis in the setting of this fluid limit, as opposed to the original (unscaled)

2We would like to emphasize here the principal difficulty arising from the fact that the system is both (a)
many-particle and (b) open. The analysis of such systems is often limited to the setting in which there are
few degrees of freedom. An example is a recent paper of three of us with Puliafito [13] that discusses an
explicit expression for the distribution of currents associated with a polymer stretched by external shear flow.
In another paper (two of us with Malinin and Teodorescu [14]) considered a setting with multiple degrees
of freedom and analyzed the statistics of so-called topological currents. The statistics of currents have also
been studied for the aforementioned AEP models over one-dimensional chains, which typically have multiple
degrees of freedom [8].
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network. There has been great progress in understanding all aspects of these large deviations
[19–23]. However, driven by applications to describing buffer overloads in communications
systems, most of these results have been geared towards understanding how large queue
lengths accumulate over time (see for example [22]). Much less is known about how large
currents build up in a queueing network over time, especially for the unscaled (not fluid
limit) network.

The statistical physics community has developed several tools (e.g. the fluctuation the-
orems [10–12]) that are well-suited to studying the large-deviations properties of currents
in a network. In light of the aforementioned gap in our understanding of the large devia-
tions of currents in queueing networks and related network models, several researchers in
the statistical physics community have recently begun to apply the fluctuation theorems to
the study of currents in a variety of network-related models [24–27]. Most of these results
have been for models such as the zero-range process, which are tangential (although closely
related) to the networks studied by the Queueing Theory community. We bridge this gap by
directly applying such an analysis to the canonical model of queueing theory—namely the
Jackson network. We note that although the potential application of these tools to Jackson
networks is mentioned in [24], the paper closest in spirit to our own is [25]. Indeed, for the
1-D zero-range process the authors identify several regimes in which the model may oper-
ate, characterized by the large-deviations properties of currents, and whether or not there is
an accumulation of particles at sites over time (so-called condensation phenomenon). Their
analysis proceeds by formalizing the system dynamics in a quantum-mechanical/operator-
theoretic framework, and then studying the relevant spectral properties and Crámer (large
deviation) functions. Our own analysis will very-much parallel that of [25], but for the Jack-
son network model on general graphs. Other related work can be found in [28], in which the
zero-range model on regular lattices is studied in the hydrodynamic limit, as well as [29]
where the closely related stochastic lattice gas model is studied.

We also note that the Queueing Theory community has already had some success in
applying some of these tools [30–32]. Indeed, these analyses (and our own) rely on the in-
terpretation of queueing systems as interacting particle systems, which (historically) helped
lead to many of the great breakthroughs in the understanding of queueing networks (e.g.
product-form solution [33]). However, these analyses have been for either an infinite 1-D
chain of queues [30, 32] or only in the hydrodynamic limit [31]. In either case, their find-
ings parallel our own, in the existence of certain phase transitions in which condensation
may (or may not) occur.

1.3 Currents in a Queueing Networks with Feedback

We now discuss the nature of the currents in a Jackson network in steady state, a topic that
has generated much research in the queueing literature [34–38]. Although currents over the
entering links are Poissonian by construction, those which leave the system are not obvi-
ously Poissonian. However, if the system is stable, these exiting flows are in fact Poissonian
[33, 35]. More generally, the flow is Poissonian along all arcs that may not be revisited by
a particle, and these flows enjoy several nice properties (such as asymptotic independence)
[38]. It was recognized early on in the queueing literature that the statistics of the internal
currents with feedback are rather difficult to analyze [35]. The source of these difficulties
is the complicated feedback mechanism that arises when particles may revisit an arc. Thus,
even for the simple single-node feedback system (which will serve as an enabling example
in this manuscript), the statistics of the feedback current are rather complicated [39–41].
Although several properties of the currents in a multi-server feedback queue and its gener-
alizations have been studied in the literature [42–47], most of these results involve showing
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that in certain limiting regimes the flows are close to Poissonian under some metric [43, 48–
50]—the precise nature of these flows remains poorly understood. Furthermore, it seems
that an operator-theory/generating-function approach has not yet been applied to the study
of these feedback currents. We will take this approach to derive new understanding of these
currents.

1.4 Our Main Results

The main results of our manuscript can be described as follows:

• We present an explicit, detailed operator-theoretic description of a Jackson network in the
Doi-Peliti formalism. This expands on the description given in [5], with an eye towards
introducing a larger set of the statistical physics community to standard queueing models.

• We identify an “uncongested” regime in Jackson networks, w.r.t. the large-deviation
behavior of current. This regime is universal, i.e. interaction-independent, and non-
Poissonian. Furthermore, in this regime there is no infinite accumulation of particles at
any node (condensation). This universality can be qualitatively explained as follows. In
this regime, the given deviation is driven by sample paths in which the number of particles
does not diverge. This will generally occur when the given deviations are somewhat mild,
and a deviation can be attained without a massive buildup of particles. Then, the impact
of one particle ‘blocking’ another does not contribute asymptotically to the deviation, and
thus the system is equivalent asymptotically to one in which all nodes have an infinite
number of servers (particles do not interact). We confirm the existence of this regime by
demonstrating that the single-node network with feedback falls into this regime for certain
parameters, which we compute explicitly.

• We also identify a second, “congested” regime, which is interaction-dependent. In this
regime, a given deviation is driven by system primitives that are dependent on the number
of servers and service times. This will generally occur when the given deviations are more
severe, and the only way to attain the given deviation is to have all, or at least some, servers
busy for essentially the entire time horizon. In this regime the time-averaged queue length
diverges for at least one node, marking the dynamical phase transition between the two
regimes as second-order.

• We observe that statistics of time-averaged (over the large observational interval) queue
and queue measured at the last moment of time, both conditioned to an atypical (large
or small) values of currents, are not identical. The difference is particularly striking in
the “congested” regime of the largest currents, where all moments of the former object
(queue at the last moment of time) saturate to finite values while all moments of the later
object (time-averaged queue) diverge with time. Quite generally this phenomenon can be
classified as a breakdown of ergodicity in cases which are atypical with respect to cur-
rents. We note that this phenomenon has been previously studied in the queueing theory
community, in the context of large deviations and quasi-stationary distributions [51, 52].

1.5 Outline

The manuscript is organized as follows. In Sect. 2, we present a technical introduction to the
dynamics of the Jackson network in terms of the physics-native Doi-Peliti (“quantum” or
“second-quantized”) technique [53–55]. There we formally characterize the Master Equa-
tion (ME) that governs the system evolution and steady state, as well as the joint distribution
of densities (occupation numbers). We customize this description to the M/M/∞, M/M/1,
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and general M/M/m models in Sects. 2.1, 2.2, and 2.3, respectively. In Sect. 3, which rep-
resents the core of the manuscript, we adopt the Doi-Peliti technique to analyze the ME for
the joint distribution function of densities (that reside at the nodes) and currents (that reside
at the links). We also show how the coherent-state technique provides a complete descrip-
tion of the ground state (eigen-value and eigen-function) in terms of the relevant evolution
operator. Section 3 is partitioned into four Subsections. In Sect. 3.2, we discuss the universal
(and statistically typical) “uncongested” regime. We also describe the boundary of the “un-
congested” region in the space of currents, and comment on the associated dynamical phase
transition. Our analysis procedes by invoking an auxiliary construction for the left eigen-
function of the evolution operator, which is discussed in Appendix. The transitions between
the “uncongested” and (partially) “congested” regimes are discussed in Sect. 3.3. The gen-
eral theory is illustrated in Sect. 3.4 for a single-node system with feedback. In Sect. 4, to
validate the theory, we describe a full spectral solution for this single-feedback problem. In
Sect. 5 we draw several conclusions and discuss future directions for research.

2 The Doi-Peliti-Massey Operator Technique for a Generic Birth-Death Process

This section introduces notation and describes the main operational rule of the Jackson net-
work in terms of the statistical physics native Doi-Peliti technique [53–55]. We note that a
very similar (but less explicit) formulation was derived in [5].

As we will see, in this context the Doi-Peliti technique is closely related to the operator-
theoretic framework formulated by Massey [56, 57] in the Queueing Theory community. We
start by introducing the quantum-mechanics based bra(c)ket notation. We then discuss the
product-form solutions for the stationary problems associated with the M/M/∞, M/M/1,
and generic M/M/m networks in Sects. 2.1, 2.2, and 2.3, respectively.

The network (e.g. the one shown in Fig. 1) is represented by the directed graph, (G0, G1),
where G0, G1 marks the set of vertices and directed edges of the graph (respectively). If
at some instance t , node j has a queue of size n, one says that the node is in the state
represented by the ket-vector |n〉, where n = 0,1, . . . . Then, any “pure” state of the network
will be denoted by the ket-vector |n〉, where the components ni of a vector n = (ni |i ∈ G0)

are labeled by the network nodes (vertices). If a state |n〉 is realized with the probability
P (n), we say that the entire network is in the following “mixed” state

|s〉 =
∑

n

P (n)|n〉,
∑

n

P (n) = 1, (1)

where the last condition reflects the fact that the total probability equals unity. Here and be-
low we formally assume that P (n) = 0 whenever any component of the vector n is negative.

It is convenient to introduce a Hilbert space of G0-dimensional analytic functions of the
vector variable z = (zi |i ∈ G0)

P(z) =
∑

n

P (n)
∏

i∈G0

zn
i , (2)

which is also known as the generating function in the theory of birth-death processes [58, 59].
The “quantum” (pure) states are transformed by the following creation and annihilation

operators:

â+
j | . . . , nj , . . .〉 = | . . . , nj + 1, . . .〉, âj | . . . , nj , . . .〉 = nj | . . . , nj − 1, . . .〉. (3)
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The normalization condition in (1), i.e. conservation of probability, reads

〈0| exp

⎛

⎝
∑

j∈G0

âj

⎞

⎠ |s〉 = 1, (4)

where the vacuum state |0〉 ≡ |0, . . . ,0〉 corresponds to the empty queue over the entire
network.

In these notations ME becomes

∂t |s〉 = Ĥ |s〉, (5)

where Ĥ is the Hamiltonian operator of the Q-network. In an integrated form, (5) is equiv-
alent to

|s(t)〉 = Û (t)|s(0)〉, Û (t) ≡ T exp

(∫ t

0
dt ′Ĥ

)
, (6)

where T exp is defined as a time-ordered exponential, i.e. the product of time-discretized
operators. Furthermore, it becomes normal exponential if the parameters of Ĥ (i.e. transition
rates) do not carry explicit time dependence.

Note that the Hamiltonian Ĥ is always real, as it represents probabilities which are posi-
tive and bounded. Thus the normalization conditions (4) and (5), which should be enforced
by the theory for any feasible n, result in

〈0| exp

(∑

j

âj

)
Ĥ = 0, (7)

where we have used standard bra-vector notations. Recall that an operator acting on the
bra-vector from the right generates a bra-vector, and all the features of left operations
can be extracted directly from the normal definition of the bra-(c)-ket scalar product,
∀n,m: 〈n|m〉 = δ(n,m). Stating it differently, 〈0| exp(

∑
j âj ) is the left eigen-vector of the

Hamiltonian with zero eigen-value.
The expectation value of a (dummy) operator •̂ over a state |s〉 is

〈•̂〉 ≡ 〈0| exp

(∑

j∈G0

âj

)
•̂|s〉, (8)

and according to (7), the corresponding Heisenberg (evolution) equation becomes

∂t 〈•̂〉 = 〈[•̂, Ĥ ]〉. (9)

Here we have assumed that •̂ does not have an explicit time dependence, and [Â, B̂] is the
standard notation for a commutator.

2.1 M/M/∞ Network

The generic form of the ME for a network of M/M/∞ queues is

∂

∂t
P (n; t) =

i,j 
=0∑

(i,j)∈G1

λij

(
(ni + 1)P (. . . , ni + 1, . . . , nj − 1, . . . ; t)
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− niP (. . . , ni, . . . , nj , . . . ; t)
)

+
∑

i∈G0

λ0i (P (. . . , ni − 1, . . . ; t) − P (. . . , ni, . . . ; t))

+
∑

i∈G0

λi0 ((ni + 1)P (. . . , ni + 1, . . . ; t) − niP (. . . , ni, . . . ; t)) . (10)

Here (i, j) stands for the directed edge of the network corresponding to a job transfer from
site i to site j , with Poisson rate λij ; and λ0j ,λj0 are the Poisson rates for job injection and
removal to/from the network at site j (respectively). Applying summation over properly
weighted n-states to both sides of (10), and using the relations (5), (6), one arrives at the
following Hamiltonian:

Ĥ∞ =
i,j 
=0∑

(i,j)∈G1

λij (â
+
j − â+

i )âi +
∑

i∈G0

(
λ0i (â

+
i − 1) + λi0(1 − â+

i )âi

)
, (11)

which was first derived for the problem in [54].
We further introduce a path-integral representation. The analytic structure of the theory

is as follows:

P(z; t) =
∫

dζdζ ′

(2πi)|G0| W(z, ζ )P(ζ ′;0) exp(−ζζ ′), (12)

W(z, ζ ) =
∫ η′(t)=z

η(0)=ζ

DηDη′ exp

(
zη(t) −

∫ t

0
dt ′

(
η′(t ′)η̇(t ′) − H∞(η′(t ′),η(t))

))
, (13)

where H∞(η′,η) corresponds to Ĥ∞ expressed as a polynomial over the creation/annihilation
operators, so that the creation operators are all positioned on the left from the annihilation
operators (normal ordering), and â+

j ,âj are replaced by η′
j and ηj (respectively). Thus, for a

general birth-death model (11) over a network G , one derives

H∞(η′,η) =
i,j 
=0∑

(i,j)∈G1

λij (η
′
j − η′

i )ηi +
∑

i∈G0

(
λ0i (η

′
i − 1) + λi0(1 − η′

i )ηi

)
. (14)

As usual, the path-integrals in (13) should be understood as the continuous limit of the
following discretized multiple integral (see [54] for explanations and accurate validation of
the proper discrete-time regularization):

W(z, ζ ) = lim
N→∞

∫ N−1∏

l=1

dηldη′
l

(2πi)|G0|

× exp

(
zηN−1 + �H(z,ηN−1) +

N−1∑

l=1

(−η′
l (ηl − ηl−1) + �H(η′

l ,ηl−1)
)
)

, (15)

where � = t/N .
Finally, one finds that the creation-annihilation (11) and the path-integral (13), (15) for-

mulations of the birth-death process also allow for the following simple “differential” inter-
pretation for the analytic function defined in (2):

∂t P(z; t) = Ĥ∞(z)P(z; t), (16)
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Ĥ∞(z) = H∞(z, ∂z) =
i,j 
=0∑

(i,j)∈G1

λij (zj − zi)∂zi
+

∑

i∈G0

(
λ0i (zi − 1) + λi0(1 − zi)∂zi

)
. (17)

Thus the mapping from the creation-annihilation operators to the poly-differential operators
(holomorphic representation) is

(
â+, â

) → (z, ∂z) . (18)

Looking for a steady state (time-independent) solution of (17) in the exponential form

P∞(z) = exp

[∑

i∈G0

hi(zi − 1)

]
, (19)

and substituting the ansatz into (16), one arrives at the following set of conditions on h:

∑

i∈G0

(λ0i − λi0hi) = 0, (20)

∀i ∈ G0: −hi

(i,j)∈G1∑

j 
=0

λij +
(j,i)∈G1∑

j 
=0

λjihj + λ0i − λi0hi = 0. (21)

Although it seems that there is one more condition than the number of variables, the condi-
tions are dependent (sum (21) over all vertices of the graph). Therefore, solving the system
of inhomogeneous linear equations (21), which we restate for convenience as

�̂h = λin,

λin ≡ (−λ0i |i ∈ G0), �̂ = (�ij |i, j ∈ G0), �ij =
{−λi0 − ∑(i,k)∈G1

k λik, i = j,

λji, i 
= j,

(22)

consists in evaluating

h = �̂−1λin. (23)

Here the existence of the steady state solution requires that: (a) �̂ is not singular, and (b) all
components of the h vector that solves (23) are positive.

Note that the form of (19) is fully factorized. Thus once the valid solution of (21) is
found, the full probability of observing the system in any given state is decomposed into a
product of probabilities, each evaluated at the relevant graph vertex. Recall that this occurs
in spite of the fact that to find the re-normalized rates hi one must solve a graph-global
linear problem. This strong symmetry of the Poisson-In-Poisson-Out process, observed in
spite of the fact that the DB is broken, is referred to (in the Queuing Theory literature) as
“quasi”-DB [15, 33].

The special feature (memoryless property) of the exponential distribution is also very
transparent in the creation-annihilation language. Indeed, one observes that the exponen-
tial (in quantum mechanics also referred to as “coherent”) state exp(hâ+)|0〉 is the eigen-
function of the annihilation operator â, with the eigen-value h

â|coh∞(h)〉 = h|coh∞(h)〉, |coh∞(h)〉 ≡ exp(hâ+)|0〉. (24)
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Therefore,

Ĥ∞|coh∞(h)〉 =
(

i,j 
=0∑

(i,j)∈G1

λij (â
+
j − â+

i )hi +
∑

i∈G0

(
λ0i (â

+
i − 1) + λi0(1 − â+

i )hi

)
)

× |coh∞(h)〉, (25)

and the stationarity condition Ĥ∞|coh∞(h)〉 = 0 translates exactly into (21), where the i-th
equation correspond to the condition that the c-factor in front of the corresponding â+

i is
zero.

2.2 M/M/1 Network

Consider a network of M/M/1 processes. In this case the ME adopts the following form:

∂

∂t
P (n; t) =

i,j 
=0∑

(i,j)∈G1

λij

(
P (. . . , ni + 1, . . . , nj − 1, . . . ; t) − P (. . . , ni, . . . , nj , . . . ; t)

)

+
∑

i∈G0

λ0i (P (. . . , ni − 1, . . . ; t) − P (. . . , ni, . . . ; t))

+
∑

i∈G0

λi0 (P (. . . , ni + 1, . . . ; t) − P (. . . , ni, . . . ; t)) . (26)

Here θ(x) is the characteristic function of the logical condition x, i.e. it is unity when the
condition is satisfied and zero otherwise. The corresponding Hamiltonian operator in (5),
(6) is of the form

Ĥ1 =
i,j 
=0∑

(i,j)∈G1

λij (â
+
j − â+

i )b̂i +
∑

i∈G0

(
λ0i (â

+
i − 1) + λi0(1 − â+

i )b̂i

)
. (27)

Here b̂i is a “skewed” annihilation operator (see e.g. [5] for a similar operational rule), such
that b̂i |ni〉 = θ(ni > 0)|ni − 1〉, and in both (26) and (27) we keep the same notation as in
(10), (11) (respectively).

Note that b̂ is expressed in terms of â and â+ in an extremely nonlinear way. However,
the representation allows a simple “analytic” interpretation [5]:

b̂
∑

n

pn|n〉 → p(z) − p(0)

z
, where p(z) =

∑

n

pnz
n. (28)

For the introduced generating function representation, the analog of (16), (17) becomes

∂t P(z; t) =
i,j 
=0∑

(i,j)∈G1

λij (zj − zi)
P(z; t) − P(z∼i; t)

zi

+
∑

i∈G0

λ0i (zi − 1)P(z; t)

+
∑

i∈G0

λi0(1 − zi)
P(z; t) − P(z∼i; t)

zi

. (29)

Here z∼i ≡ ((1−δij )zj |j ∈ G0). In words, this is the vector z with the component zi replaced
by zero.
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Let us come back to the skewed-creation-annihilation representation, and note that the
coherent states associated with this “skewed” annihilation operator b̂ were discussed in [5].
The approach can also be traced back in the Queuing Theory literature to the classic papers
of Massey [56, 57] on the operator approach to Jackson networks. The coherent states for b̂

are constructed as follows:

b̂|coh1(h)〉 = h|coh1(h)〉, |coh1(h)〉 ≡ 1

1 − hâ+ |0〉. (30)

Then the analog of (25) becomes

Ĥ1|coh1(h)〉

=
(

∑

(i,j)∈G1

λij (â
+
j − â+

i )hi +
∑

i∈G0

(
λ0i (â

+
i − 1) + λi0(1 − â+

i )hi

)
)

|coh1(h)〉. (31)

Furthermore, the condition of stationarity, Ĥ1|coh1(h)〉 = 0, translates exactly into (21),
where the i-th equation corresponds to the condition that the c-factor in front of the respec-
tive â+

i is zero. We conclude that the stationary distribution of the M/M/1-network is

P1(z) =
∏

i∈G0

1 − hi

1 − hizi

, (32)

where h is the solution of (21).

2.3 M/M/m Network

The ME in the general case of an inhomogeneous M/M/m-network, with positive integers
mi (number of tellers) assigned to each vertex i of the graph, can be represented by

∂

∂t
P (n; t) =

∑

(i,j)∈G1

λij

(
θmi

(ni + 1)θ(nj > 0)P (. . . , ni + 1, . . . , nj − 1, . . . ; t)

− θmi
(ni)P (. . . , ni, . . . , nj , . . . ; t)

)

+
∑

i∈G0

λ0i (θ(ni > 0)P (. . . , ni − 1, . . . ; t) − P (. . . , ni, . . . ; t))

+
∑

i∈G0

λi0

(
θmi

(ni + 1)P (. . . , ni + 1, . . . ; t) − θmi
(ni)P (. . . , ni, . . . ; t)

)
,

(33)

θm(n) = min(n,m). (34)

The evolution operator (Hamiltonian) becomes

Ĥ =
i,j 
=0∑

(i,j)∈G1

λij (â
+
j − â+

i )b̂
(mi )

i +
∑

i∈G0

(
λ0i (â

+
i − 1) + λi0(1 − â+

i )b̂
(mi )

i

)
, (35)

b̂(m)|n〉 = θm(n)|n − 1〉. (36)



830 V.Y. Chernyak et al.

Thus the problem of finding the stationary solution is reduced (pretty much like before in
the m = ∞ and m = 1 cases) to constructing coherent states for the annihilation operator
b̂(m):

b̂(m)|cohm(h)〉 = h|cohm(h)〉, |cohm(h)〉 ≡ gm(hâ+)|0〉, (37)

gm(x) ≡
∞∑

k=0

xk

∏k

l=1 θm(l)
= mm

m!
1

1 − x/m
+

m−1∑

k=0

xk

(
1

k! − mm−k

m!
)

. (38)

Finally, the full expression for the generating function of the stationary solution over the
general network becomes

P(z) =
∏

i∈G0

gmi
(hizi)

gmi
(hi)

, (39)

where h is the solution of (21). Therefore, by (2),

P (n) = Z−1
∏

i∈G0

h
ni

i∏ni

li=1 θmi
(li )

. (40)

Obviously, (39), (40) are consistent with (19) and (32) when m = (mi |i ∈ G0) is set to m =
∞ and m = 1 (respectively).

Note (for the sake of accurateness) that when deriving (40) in the operator formalism we
took advantage of the important fact that both left (bra-) and right (ket-) zero eigenvalues
of the Hamiltonian (35), described by 〈0| exp(

∑
j âj ) and

∏
i∈G0

gmi
(hi â

+)|0〉 respectively,
are explicitly known.

Note that one can recalculate any moment of n from either (39) or (40). In particular, for
the first moment at a station we arrive at

〈ni〉 = 〈0| exp(
∑

j∈G0
âj )â

+
i âi

∏
k∈G0

gmk
(hkâ

+)|0〉
〈0| exp(

∑
j∈G0

âj )
∏

k∈G0
gmk

(hkâ+)|0〉 = ∂

∂zi

gmi
(hizi)

gmi
(hi)

∣∣∣∣
z=1

, (41)

where gm(x) is taken from (38) and (as before) h is the solution of (21). Note that the
moments are finite only if hi < mi , which thus defines the condition for Q-network stability
(statistical stationarity) [15].

3 Statistics of Network Currents

A (general) queueing network is naturally characterized by the actual current of parti-
cles/jobs going through and being processed at each station according to a certain service
discipline (e.g. First-In-First-Out (FIFO)). Here the quasi-current characterizes the activi-
ties of tellers, not focusing on the dynamics of the individual particles at all. In other words,
actual current tracks the dynamics of the jobs/particles, while quasi-current tracks quasi-
particles/jobs assuming that all the jobs waiting for service at a station are fully equivalent
and not prioritized. Actual current and quasi-current coincide in the case of an M/M/∞
network, when the individual jobs do not interact at all, as well as any network in which all
particles (customers) are identical. With this disclaimer, we will be discussing quasi-currents
for the remainder of the paper, and refer to them as currents to simplify our exposition.
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As shown below, calculating the statistics of the currents in a Jackson network becomes
tractable in the two regimes that we will study: the “uncongested” and “congested” regimes.

In the “uncongested” regime, this arises from the product-form symmetry characterizing
the regime (an extension of the product-form symmetry discussed earlier), as well as the
m-independence property (universality). Note that for networks without feedback, the state-
ment of m-independence is equivalent to the fact that in steady state, the flow along arcs will
be Poisson (with rate independent of the number of servers). As mentioned previously, this
phenomenon was discovered earlier in the Queueing Theory literature [38, 60, 61]. However
(and to the best of our knowledge), the extension of this statement to the asymptotic (large
time) limit for more general networks (unscaled, not in the fluid limit or hydrodynamic limit)
has not been formally explored in the literature.

The remainder of this section is partitioned into four Subsections. We start from a gen-
eral discussion of the current related objects in Sect. 3.1. In Sect. 3.2 we consider the un-
congested regime. We also develop several generalizations of the Doi-Peliti technique to ac-
count for currents, and develop some machinery necessary for the statement of our results.
At the end of the section, our analysis naturally leads to the identification of the uncongested
regime’s breakdown, namely the identification of a phase transition in the space of currents.
We also show that this transition is second-order, thus translating into smoothness of the
Crámer function of currents (continuity of the first and the second derivatives) at the tran-
sition. In Sect. 3.3, we extend the coherent state formalism to the “congested” regime via a
simple reduction of the network graph. We note that a similar decomposition was applied
in [25], and is similar in spirit to many such reductions appearing throughout the Queueing
Theory literature [62–68].

Finally, in Sect. 3.4 we illustrate the general theory using our enabling example of a
single node with feedback.

3.1 Preliminary General Remarks

We will mainly be interested to evaluate the joint distribution function of the currents and
queue sizes where the latter are averaged over the entire time horizon. In the following
we will use P (n̄,J |t) notation for the main object of interest. However it is technically
more convenient to start from another (and to a degree auxiliary) object defined as a joint
distribution function of currents and queues where the latter are observed at the final moment
of time. We will see below that it is important to differentiate these generally distinct objects.

Let P (n(t),J |t) denote the joint probability distribution function of the queue size at
the final moment of time t , n(t) = (ni(t)|i ∈ G0), and currents accumulated over the [0; t]
interval of time, J = (Jij |(i, j) ∈ G1), where the latter are defined on all edges of the graph
and the former are defined (as before) on vertices. The ME for this object is the natural
generalization of (33), which we now present in operator form (to allow for more compact
notations). In particular, the operator form of the ME for P (n(t),J |t) is

∂t |s(n(t);J )〉 =
(

Ĥ +
∑

(i,j)∈G1

Ĵij

)
|s(n(t);J )〉, (42)

∀i, j 
= 0: Ĵij = λij (â
+
ij − 1)â+

j b̂
(mi )

i , (43)

Ĵ0i = λ0i (1 − â+
0i )â

+
i , Ĵi0 = λi0(â

+
i0 − 1)b̂

(mi )

i , (44)
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where Ĥ is defined in (35). Here we have assumed that the currents are discrete and positive,
and the respective ket-vector is related to the joint PDF of n(t) and J as follows:

|s(n(t);J )〉 = P (n(t);J )|n;J 〉. (45)

Ĵij (in (43)) is the operator for the amount of current from site i to site j , and â+
ij is the

newly introduced creation operator (at edge (i, j)) acting on the space of discrete positive
currents. We define operators for incoming and outgoing currents in (44) similarly. Formal
solution of (42) is

|s(n(t);J )〉 = exp

(
t

(
Ĥ +

∑

(i,j)∈G1

Ĵij

))
|s(n(0);J )〉, (46)

where the ket-state on the rate correspond to the “initial” steady distribution of queues,
described by (40), and zero initial current: |s(n(0);J )〉 = |s〉 ⊗ |J = 0〉, where we follow
notations introduced in the introduction and |s〉 = ∑

n P (n)|n〉.
It follows that the generating function over the currents (i, j) ∈ G1, accounting for the

incoming ((0, i) ∈ G1) and outgoing ((i,0) ∈ G1) arcs, is

|sq(n(t))〉 =
∑

J

∏

(i,j)∈G1

q
Jij

ij |s(n(t);J )〉. (47)

According to our standard birth-death [creation/annihilation] rules, the object described by
(47) satisfies

∂t |sq(n(t))〉 = Ĥq |sq(n(t))〉, |sq(n(t))〉 = exp(tĤq)
∑

n

P (n)|n〉 = exp(tĤq)|s〉, (48)

Ĥq =
∑

(i,j)∈G1

λij (â
+
j − â+

i )b̂
(mi )

i

+
i 
=0,j 
=0∑

(i,j)∈G1

λij (qij − 1)â+
j b̂

(mi )

i +
∑

(0,i)∈G1

λ0i (q0ia
+
i − 1) +

∑

(i,0)∈G1

λi0(qi0 − a+
i )b̂

(mi )

i .

(49)

Note that even though our evaluation in (48) applies to the general object, namely to the
joint distribution function of currents over the entire network, one may compute the relevant
marginals (say the distribution function for the current over a single edge) in a straightfor-
ward manner. We also note that the operator Ĥq can be obtained by modifying/twisting the
evolution operator Ĥ , given by (36), as follows. One weights the off-diagonal terms of Ĥ

in the space of populations |n〉, namely λij â
+
j b̂

(mi )

i , λ0ia
+
i , and λi0b̂

(mi )

i , with the factors qij ,
q0i , and qi0 respectively. This corresponds to viewing the underlying stochastic process as a
Markov chain on an infinite graph, whose nodes are labeled by pure states |n〉, whereas links
represent the set of processes allowed by the evolution operator Ĥ . Within such a picture,
the set of q parameters plays the role of discrete gauge fields (vector potentials), and Ĥq is
interpreted as the evolution operator, “twisted” by the gauge field q , as described in [69].
Since here we are dealing with oriented graphs, no constraints are imposed on q .

It is also useful to consider the distribution function of queue at the finite moment of
time, conditioned to specific value of the current generating parameter q . This object, and
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the respective first moment of queue size, become

Pq(n(t)) ∝ 〈n(t)| exp
(
tĤq

)
|s〉, (50)

〈ni(t)〉q = 〈0| exp(
∑

j∈G0
âj )â

+
i âi exp(tĤq)|s〉

〈0| exp(
∑

j∈G0
âj ) exp(tĤq)|s〉

. (51)

Returning back to our main object of interest (the joint distribution function of the cur-
rent and of the queue averaged over the time horizon) and following the same formal-
ism/notations, we derive the analogs of (50), (51)

Pq(n̄) ∝ t−1
∫ t

0
dt ′〈0| exp

(∑

j∈G0

âj

)
exp

(
(t − t ′)Ĥq

)
|n(t ′)〉〈n(t ′)| exp

(
t ′Ĥq

)
|s〉, (52)

〈n̄i〉q =
∫ t

0 dt ′〈0| exp(
∑

j∈G0
âj ) exp((t − t ′)Ĥq)â

+
i âi exp(t ′Ĥq)|s〉

∫ t

0 dt ′〈0| exp(
∑

j∈G0
âj ) exp(tĤq)|s〉

. (53)

3.2 Uncongested Regime

We are now in a position to introduce the “uncongested” regime on a formal level. We will
characterize this regime in terms of the existence of a special “universal” product-form so-
lution to (48), as well as the finiteness of a particular expectation value (capturing the fact
that no condensation of particles occurs at any nodes), at sufficiently large observational
time t . Note that in the spirit of our operator-theoretic framework, we define the regime in
terms of both the queueing network and the vector q on which one evaluates the generating
function for occupation numbers in the network. Thus a given queueing network may be in
the regime for some evaluations of its generating function (certain values of q) but not for
others. This will then be related to belonging (or not belonging) to the regime for differ-
ent types of large deviations (of current) through the standard Legandre transform, which
maps the generating function (evaluated at different q) to the Crámer function (evaluated at
different-sized deviations).

We say that a given queueing network is in the “uncongested” regime for a given vector
q if the ket vector |sq(n)〉 is dominated by the ground state of Ĥq , i.e. at sufficiently large
time, |sq(n)〉 ∼ exp(−�(q)t)|cohm(h(q))〉, holds. In other words, the spectrum of Ĥq is
such that its ground state is separated from the excited states by a finite gap, and thus at the
times much large than inverse value of the gap the solution is completely described by the
ground state only, thus providing respective universality. We also require that 〈n̄i〉q < ∞ for
all nodes i of the network in the “uncongested” regime, ensuring that the expected number
of particles (size of the queue averaged over time) does not diverge at any nodes as t → ∞.

The statistics of queueing networks in the “uncongested” regime may be analyzed using
the techniques from Sect. 2. In particular, we substitute |sq(n)〉 by
∼ exp(−�(q)t)|cohm(h(q))〉 in (48) to arrive at

∑

i∈G0

(q0iλ0i − λi0qi0hi(q)) = �(q), (54)

∀i ∈ G0: −hi(q)

(i,j)∈G1∑

j∈G0

λij +
(j,i)∈G1∑

j∈G0

qjiλjihj (q) + λ0i − λi0hi(q) = 0. (55)
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This set of relations generalizes the stationary (q = 1) relations (20), (21), and are thus
consistent with �(1) = 0. Equations (54), (55) describe the right (ket) eigen-function of
the ground-state of the evolution operator/Hamiltonian (49), while the corresponding left
(bra)-eigenfunction is described in Appendix.

Note that, replacing all internal q-variables by unity, the basic set of equations for h does
not depend on the remaining q0i and qi0 components. It follows that the respective h are
identical to the one derived before for the stationary h(0) (no currents) setting. Moreover,
�(q0) = ∑

i ((q0i − 1)λ0i − λi0(qi0 − 1)hi(0)). This observation translates (after the obvi-
ous Legandre transform) into the statement that all the currents entering and leaving the
network are asymptotically Poisson, which (as already mentioned) was known previously in
the Queuing literature [33, 61].

For the sake of simplicity, hereafter we exclude the incoming and outgoing currents from
consideration, which is achieved by setting qi0 = q0i = 1. The consistency of (54) and (55)
(the two are just generalized versions of (21), (20)) translates into the following expression
for the lowest eigenvalue:

�(q) = −
i,j∈G0∑

(i,j)∈G1

hi(q)λij (qij − 1). (56)

For sufficiently large t (it is our Large Deviation Parameter and thus should at least be
significantly larger than the correlation time of the system) we obtain the following asymp-
totic expression for Pq(t) = ∑

n Pq(n̄),

Pq(t) = 
(q) exp(−t�(q)) ∼ exp

(
t

i,j∈G0∑

(i,j)∈G1

hi(q)λij (qij − 1)

)
, (57)


(q) ≡ 〈0| exp

(∑

i∈G0

h̄i (q)âi

)
|cohm(h(q)〉. (58)

Here, in evaluating the pre-exponential factor 
(q), we have used the assumption that the
main contribution into (52) originates from t ′, t − t ′ � 1/�(q). Thus, 〈0| exp(

∑
i h̄i (q)âi)

in (58) is the bra-vector defined as the left eigenvector of Ĥq with the same eigenvalue
�(q) (see Appendix for more details).3 Here certain time-independent pre-factors (which
do not impact the asymptotics up to exponential order) are ignored on the rhs. As we are
interested in the statistics of the currents that scale (grow) linearly with t , one can replace
the sum in (47) by an integral, invert the relation, and arrive at the following saddle-point
(large-deviation) expression:

P (J |t) ∼
∫

Pq(t)

i,j∈G0∏

(i,j)∈G1

q
−Jij

ij ∼ exp (−t S(J /t)) ,

S(j) =
i,j∈G0∑

(i,j)∈G1

(
jij ln(q∗

ij ) + hi(q
∗)λij (1 − qij )

)
, (59)

3Note that expression for the analog of 
(q) correspondent to Pq (n(t)) is significantly different:
〈0| exp(

∑
i∈G0

âi )|cohm(h(q)〉.



Non-Equilibrium Statistical Physics of Currents in Queuing Networks 835

∀(k, l) ∈ G1 &k, l ∈ G0: jkl/q
∗
kl =

i,j∈G0∑

(i,j)∈G1

∂hi(q
∗)

∂qkl

(q∗
ij − 1)λij + hk(q

∗)λkl, (60)

where S(j) is a convex function of its argument, also called the Crámer (or large-deviation)
function. The dependence of the Crámer function on the current production j is defined
implicitly via (60) and (55).

Since � is fully defined by the solution of (55), which is independent of m, the resulting
expression for the Crámer function is also m-independent in the “uncongested” regime. This
cancelation is quite remarkable. We note that the degeneracy is especially interesting, since
it does not seem to extend to the time-independent pre-factor in P (J |t), 
(q) (defined
in (58)). A Queueing Theory interpretation is that in this regime the large deviations are not
caused by the interactions of different particles in the network, and thus the same kind of
deviations would have occurred even if all nodes in the network were of M/M/∞ type (as
opposed to M/M/m with m < ∞), in which different particles cannot interact and delay
one-another in the network.4

As explained above, the qualitative assumption that allowed us to extend the product-
form ansatz to statistics of currents in (54)–(60) was that the number of particles in the
system (size of the queue averaged over time) did not diverge with time. For this assumption
to hold, it must be the case that

∀i ∈ G0: 〈n̄i〉q = 〈0| exp(
∑

j∈G0
h̄j (q)âj )â

+
i âi

∏
k∈G0

gmk
(hk(q)â+)|0〉

〈0| exp(
∑

j∈G0
h̄j (q)âj )

∏
k∈G0

gmk
(hk(q)â+)|0〉 < ∞, (61)

where h(q) and h̄(q) are solutions of (54), (55) and (76), (77) (which describe con-
sistently the right/ket and left/bra ground state eigen-function of the evolution opera-
tor/Hamiltonian (49)).

We now comment on the phase transition which takes us from the uncongested to the
congested regime. Picking a direction in the vector space of currents (dimensionality of the
space is equal to the number of internal directed edges of the graph) and increasing the length
of the vector in this direction, gradually (starting from the domain of values belonging to the
“uncongested” regime) we will eventually reach the regime where congestion occurs, i.e.
the condition (61) breaks down and particles accumulate over time at some nodes (conden-
sation). To see this heuristically, we note that for large values of q , the main contribution to
the generating function will be highly skewed towards very large values of current (due to
the fact that q is raised to a power equal to the current), and the most likely way to attain
such large values of currents will be for the queueing network to remain totally occupied
over the entire time horizon, causing the number of particles in the network to diverge over
time. Put in the context of large deviations, the most likely way to attain very large values
of currents is to have an accumulation over time of the number of particles in the network
(condensation), leading to the system being overloaded over the entire time horizon, en-
abling all links in the network to generate current continuously over the entire time horizon.
We focus in particular on the setting where the “breakdown” of the regime occurs initially at
some particular unique node of the network, the expected number of particles in the system
diverges at that node (over time), and a certain spectral condition holds at this breakdown

4Similar “mysterious” cancelation of the vorticity dependence was reported in [13] in the Crámer function of
the entropy production for a polymer stretched by shear-vorticity flow.
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Fig. 2 (Color online)
Transformation of the
“overloaded” node, discussed in
the text. The component of the
graph, associated with the node,
before and after the
transformation are shown in the
left-upper and low-right corners
respectively. Dashed node on the
modified graph correspond to
new injections and departures
with the Poisson rates exactly
equivalent to the respective
transition rates on the original
graph

point (described in some detail below). We will use these characteristics to formally define
our “congested” regime.

We now elaborate on the aforementioned spectral condition. In particular, the transition
point from the “uncongested” to the “congested” regime has an interpretation in terms of
the closing of the gap between the ground state and the low boundary of the continuous
spectrum of (49). This “closing the gap” picture also assumes that other excited discrete
states (which are present already in the case of a single station with feedback and m > 1, see
the discussion in Sect. 4) do not cross the factorized ground state found above. This spectral
interpretation also leads to an immediate conclusion/consequence in terms of the Crámer
function shape at the values of the current that correspond to the considered uncongested-
to-congested transition. Indeed, this “closing the gap” scenario translates into continuity of
the Crámer function and its first derivatives at the transition. Stated differently (in the jargon
of phase transition theory), the dynamical uncongested-to-congested transition with respect
to the currents is second-order, and 1/〈n̄i〉q plays the role of the order parameter at the
congested node.

Our final remark is about comparison of the distribution of queue averaged over time
with respective distribution measured at the final moment t . The asymptotic analysis, de-
scribed above for uncongested regime and extended in the following Subsection to con-
gested regime, suggests that 〈ni(t)〉q is finite at any value of q and t → ∞, in particular
for q = qc where 〈n̄i〉q = ∞. Moreover, one conjectures that the two distribution functions,
Pq(n̄) and Pq(n(t)), are different at any values of q except of the special one correspondent
to the minimum of the Crámer function achieved at J = 〈J̄ 〉. This statement may be inter-
preted as a breakdown of ergodicity for any current but the special one correspondent to the
steady distribution.

3.3 Congested Regime

We now consider a heuristic decomposition approach to extend the product-form descrip-
tion, utilized above in the uncongested regime, beyond the domain bounded by (61). We
note that similar decomposition techniques have been considered throughout the Queueing
theory literature to understand how networks become congested [62–68, 70, 71].

Consider, for example, crossing the boundaries of (61) along a direction in the q-space,
and thus violating the condition at some q∗ at a single node, say i. Then, exactly at the point
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Fig. 3 (Color online) Original
graph and transformed graph
correspondent to uncongested
and congested regimes for
example of the single station with
the feedback

of crossing we can simply assume that the node is always congested (has an infinite queue
in the waiting room), and thus the tellers at the node stay busy over the entire time horizon.
This translates into the following obvious modification of the network graph: remove the
node, and associate all the in/out edges for the node of the old graph to the new open-system
in/out nodes with exactly the same rates. The transformation is shown in Fig. 2. In the new
domain (54)–(55) should be considered on the modified graph, and one needs to add the
appropriate constant to �(q) from (56) to guarantee its continuity at q∗. Equivalently, one
must compensate all probabilities to reflect the rare event that the given node remained busy
over the entire duration.

The general construction is illustrated in Fig. 3, and will also be illustrated in the next
Subsection on our enabling example of a single node system with feedback. We note, of
course, that in general the most likely way for rare events to occur in queueing networks
may be quite complicated (see for example [22]), and what was explained above should be
considered as an approximation which is not proven rigorously.

We conclude this general construction by explaining the formal status of our derived
results. All the asymptotic derivations so far, discussed in both the congested and uncon-
gested cases, have relied on several important assumptions. The most important of these is
the equivalence of the coherent state solution to the lowest eigen-value (ground state) solu-
tion. We have assumed that this (physically very plausible) assumption holds, and focused
primarily on constructing the coherent state solution explicitly. We note, however, that our
derivations have generally been non-rigorous in nature, and this assumption was not justified
in any particular case. A considerable difficulty associated with formalizing our results (and
justifying this assumption) lie in the fact that the coherent state approach does not allow us
to analyze the entire spectrum of the operator. In view of the above, we find it important to
validate this assumption, at least for a special case. We now proceed along these lines by
studying the aforementioned case of a single station with feedback.

3.4 Single Station with Feedback

Perhaps the simplest example of a (non-trivial) queueing network (as discussed in Sect. 1.3)
consists of a single station, one incoming channel/edge, one outgoing channel/edge, and one
self-loop, all characterized by Poisson processes with rates λ, μp and μ(1−p) respectively.
The network is shown in the upper left corner of Fig. 3.
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Fig. 4 (Color online) Crámer
function, S(j), of the feedback
current shown for λ = m = 1,
p = 1/2 and μ = 3. Thick red
and thick blue curves describe the
uncongested and congested
domains respectively. Dashed
black line marks the value of jc

In this example, the only interesting current is associated with the self-loop (as the others
are Poissonian in the steady-state, see Sect. 1.3). We thus focus exclusively on the analysis
of the current along the feedback arc, and the associated generating function (evaluated for
the scalar q and corresponding current j ).

We start by considering the “uncongested” regime. Then (54), (56) become

h = λ

μ(1 − (1 − p)q)
, � = −λ(q − 1)(1 − p)

1 − (1 − p)q
. (62)

According to (59), (60), this results in

j < jc: S(j) = λ(1 − p/2) −
√

pλ(4j + pλ)

2
+ j ln

(
2j + pλ − √

pλ(4j + pλ)

2j (1 − p)

)
. (63)

To identify the “uncongested” regime breakdown we calculate h̄, according to (77):

h̄ = p

1 − (1 − p)q
. (64)

Substituting into (58) results in


(q) = gm(h̄(q)h(q)), 〈n̄〉q = ∂

∂z

gm(h̄(q)h(q)z)

gm(h̄(q)h(q))

∣∣∣∣
z=1

. (65)

From the above and (38), we find that the expected queue length remains bounded over time
iff hh̄ < m, and thus the critical value of congestion at which point one shifts regimes is

qc =
1 −

√
λp

mμ

1 − p
. (66)

The congested regime that occurs at q > qc and j > jc corresponds to the situation when
the single server is always occupied, and thus (conditioning on this event) jobs continually
feedback over time as a mμ(1 − p) standard Poisson process. Therefore, in the congested
regime

q > qc: � = −μ(1 − p)m(q − 1) +
(√

λ − √
pμm

)2
. (67)
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Here the (
√

λ − √
pμm)2 term (a constant with respect to q) is found in accordance with

(62) and the condition of �-continuity at q = qc . Alternatively, in the congested regime �

can be identified with the lower edge s− of the continuous spectrum of Ĥq , given by (74).
The spectrum of Ĥq for a simple model under consideration is analyzed in some detail in
Sect. 4. Performing the Legendre transform on (67), we arrive at the following expression
for the Crámer function of the feedback current in the congested regime

j > jc: S(j) =
(√

λ − √
pμm

)2 + mμ(1 − p) + j ln

(
j

emμ(1 − p)

)
. (68)

Comparing (63) with (68) we also observe that the Crámer function is smooth (first deriva-
tive is continuous) at j = jc , thus confirming that the dynamical phase transition described
here is of the second order (continuous). The change of the Crámer function shape across
the transition is shown in Fig. 4.

The obtained expression for the Crámer function in the congested regime (68) has a very
simple and transparent interpretation. Since the server is always occupied, the feedback cur-
rent generation is a standard Poisson process, so that S(j) = μm(1−p)+ j ln(j/(emμ(1−
p))), where e−t S0 is the probability to keep the server busy, presented with exponential ac-
curacy. The latter is given by the probability e−t S0(ω) of creating the incoming and outgoing
currents of the same value ω to provide the marginal stability of the server, maximized
with respect to ω. Since both currents are generated by independent Poisson processes with
the rates λ and pμm, respectively, we have S0(ω) = λ + pmμ + ω ln(ω2/(λpμm)e2), and
minimization with respect to ω results in S0 = (

√
λ − √

pμm)2, which reproduces (68).

4 Direct Analysis of the Singe-Station Feedback System

As shown in the previous sections, an understanding of the evolution operator ground state
structure is essential for predicting long-time statistics of currents. We have also argued that
the ground state can be described analytically for networks with general graphical structure.
However, these arguments were indirectly dependent on certain information about the rest of
the spectrum—specifically on the fact that the ground state is separated from the continuous
spectrum by a gap which collapses at the dynamical phase transition. In general, information
on the entire spectrum is difficult to obtain. The main point of this Section is to gain a broader
understanding of the simple single-node network with feedback along these lines. Therefore
in this Subsection we analyze the full spectrum of the problem with the single feedback and
we confirm the general picture of the ‘gap emergence’, and collapse at the phase transition
point suggested above on the basis of only partial (ground state) analysis.

Our starting point is the dynamical equation Pq(n; t) = ∑∞
j=0 qjP (n, j ; t) for the gen-

erating function of current j via the feedback arc. Here P (n, j ; t) is the joint probability
distribution function of the number of particles, n standing at the queue at the time t , and
the number of particles, j , that have passed through the feedback loop by time t . Following
directly the proper generalization, according to (43)–(49) of the ME (33) we derive:

∂

∂t
Pq(n; t) = λ

(
Pq(n − 1; t) − Pq(n; t)) + μp

(
θm(n + 1)Pq(n + 1; t) − θm(n)Pq(n; t))

+ μ(1 − p)(q − 1)θm(n)Pq(n; t), (69)
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Fig. 5 (Color online) Spectrum
of the evolution operator as a
function of q for m = 5, λ = 0.5,
μ = 2.0, p = 0.5 and N = 50.
The lower bottom line
corresponds to the ground state
solution �(q)

where the last term on the r.h.s. accounts for the current. Performing the Laplace transform
of Pq(n; t) over time, Ps;q(n) ≡ ∫ ∞

0 exp(st)Pq(n; t)dt (with s considered as a spectral pa-
rameter), we arrive at the following spectral equation:

(s − λ − μpθm(n) + μ(1 − p)(q − 1)θm(n))Ps;q(n)

= −λPs;q(n − 1) − μpθm(n + 1)Ps;q(n + 1). (70)

Here the inhomogeneous part, dependent on the initial condition at t = 0, is ignored.
The “boundary” conditions over n for (70) read Ps;q(−1) = 0 and Ps;q(n → ∞) = 0. We

will relax the last condition, assuming the following natural finite waiting room regulariza-
tion: Ps;q(N + m) = 0 for some sufficiently large value of N . We will study the spectrum at
finite N , and show towards the end of the calculations that the N → ∞ limit is well defined.
We note that the particular choice of regularization turns out to be unessential for the limits
we consider. In order to find the eigenvalues (spectrum) we solve the recurrence relation
(70) for general values of s, and use the aforementioned boundary condition, and the nor-
malization condition Ps;q(0) = 1. To summarize, the set of conditions that complement (70)
to provide the full description of the spectrum are

Ps;q(−1) = 0, Ps;q(0) = 1, Ps;q(N + m) = 0, (71)

and we are mainly interested in studying the N → ∞ limit.
A numerical solution of the eigenvalue problem is illustrated in Fig. 5 for m = 5, λ = 0.5,

μ = 2.0, p = 0.5 and N = 50. The simulations show emergence at q = 1 of three discrete
eigenstates well separated from the (still discrete) band of states. We tested numerically as
one increases N , the q = 0 value of the ground state s (top line in Fig. 5) approaches 0.
We observed that the asymptotic dependence of the ground state eigen-value on s is fully
consistent with the prediction of the ground-state coherent-state theory explained above in
Sect. 3.4, specifically with (62). Moreover, our prediction of qc (where the gap between the
ground state and the continuous band collapses), as given by (66), is fully consistent with
the respective dependencies of the gap collapse in our computations. Let us also mention
that the two non-ground state eigen-values observed at q = 1 never cross with each other or
with the ground state at q > 1, and merge into the continuous band (consequently one after
another) at values of q smaller than qc . Experimenting with larger m, we observe that the
discrete spectrum becomes equidistant in the m → ∞ limit, which is fully consistent with
the interaction-free nature of the limit.
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We now analyze the spectrum analytically. Let us begin by making some preliminary
observations. First, the linear dependence on s implies that the function Ps;q(n) is an n-th
order polynomial in s, suggesting that there are always exactly N + m solutions of the last
condition in (71), Ps;q(N + m) = 0. Second, at n > m the factor θm(n) becomes constant
and the recursive relations (70) can be solved analytically. Thus, looking for solution of (70)
at n > m in the Ps;q(n) = c+ρn+ + c−ρn− form, one obtains the following expression for ρ±
(which depends on q, s and the rates):

ρ± = 1

2μpm

(
λ + μpm − μ(1 − p)(q − 1)m − s

±
√

(λ + μpm − μ(1 − p)(q − 1)m − s)2 − 4λμpm
)
. (72)

The boundary condition Ps;q(N +m) = 0 translates into the following condition (dependent
on Ps;q(m) and Ps;q(m − 1)):

Ps;q(N + m) = (Ps;q(m) − ρ−Ps;q(m − 1))ρN+ + (Ps;q(m) − ρ+Ps;q(m − 1))ρN−
ρ+ − ρ−

= 0.

(73)
The above has different types of solutions dependent on the values of s with respect to the
following two threshold values:

s± = λ + μpm + μ(1 − p)(q − 1)m

± √
4λμpm =

(√
λ ± √

μpm
)2 − μ(1 − p)(q − 1)m. (74)

At s < s−, both eigenvalues ρ± are real and ρ+ > ρ−. In this case, as we are interested
in the N → ∞ limit, one can simply ignore the ρN− contributions in (73), thus leading to
the following relation: Ps;q(m) − ρ−Ps;q(m − 1) = 0. This then replaces the last condition
in (71), w.r.t. describing Ps;q(n) at 0 ≤ n ≤ m. We were not able to solve this reduced system
of equations analytically at any values of m, and thus to find the spectrum in its full glory.
However, the information just provided is already sufficient for a heuristic derivation of the
lowest eigenvalue, and the value of the gap between it and the continuous band.

We focus on a particular single form solution of the reduced system of equations for
Ps;q(n) with 0 ≤ n ≤ m, corresponding to s = � and Ps;q(n) = hn/n! for n ≤ m, with h

and � from (62). In this case, one has ρ+ = λ/(μph) and ρ− = h/m, so this is indeed the
ground state solution. However, let us note for the sake of accurateness that we have not
formally proven that this special solution always corresponds to the lowest eigenvalue (the
ground state). However, this is exactly what we observed in our numerical experiments with
different values of m.

Equation (73) also allows the continuous spectrum of the operator to be identified. At
s− < s < s+ we have |ρ+| = |ρ−|, and one has to keep both terms in (73). As long as
|Ps;q(m + 1) − ρ−Ps;q(m)| = |Ps;q(m) − ρ+Ps;q(m − 1)|, (73) has at least N solutions.
At N � 1 this region turns into the continuous band of the spectrum. We conjecture that the
system of equations does not have any solutions for s > s+. (Once again, this is confirmed
in simulations but we do not have an explicit way of proving it.)

Finally, we conclude that the transition between the uncongested regime and congested
regime takes place at � = s− which corresponds exactly to q = qc (from (66)). As one can
easily see, the value of h at this point is equal to h = √

λ/μp < 1, so the queue length in the
final moment does not diverge.
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5 Conclusions and Path Forward

Let us briefly recall the highlights of this manuscript. Our analysis was focused on the gener-
ating function of currents over a Jackson (queueing) network, with an eye towards analyzing
how large currents accumulate over time. We began by giving some relevant background in
Queueing Theory, and discussing some tie-ins with recent work in statistical physics. We
then adopted the Doi-Peliti technique for describing the dynamics of the Jackson network.
We used this formalism to show that the ground state of the respective evolution operator has
a well-defined and analytically tractable product/coherent state form in a particular regime.
These results were translated into an implicit analytical expression for the Crámer function
of currents in this “uncongested” regime, where the ground state was well separated by a
gap from the continuous spectrum. We also observed that crossing the surface in the phase
space of observed currents, where the spectral gap collapses, corresponds to the congestion
of a node in the network. We suggested a heuristic graph-reduction scheme which allows the
statistics of currents to be described in this partially congested setting. Finally, we validated
the general results using the example of a single node feedback system, where many of our
assumptions could be verified directly by performing an explicit analysis of the evolution
operator spectrum.

We consider this study more like an opening for further exciting research along the fol-
lowing lines:

• Following the discussion in Sect. 3.3, we naturally conjecture that in a large network,
gradually increasing the observed current(s) will lead to a transition from the uncongested
to the fully congested regime via a number of steps, each characterized by an increase
in the number of congested nodes. It would be interesting and important to explore the
specific sequence of phase transitions separating the space of observed currents into cells.
A particularly interesting question concerns the algorithmic complexity of identifying
these cells and exploring their geometric structure (e.g., possible convexity).

• We have considered a queuing model with the transition rates independent of the node
occupation numbers. This condition can be relaxed and such an extension of our theory
should allow for non-uniform dependence of the rates on the occupation numbers.

• Extensions of the current-statistics theory to the so-called multi-class networks, where
different classes of particles are treated differently at the stations (for example having
different priorities) are less trivial, yet we anticipate such a generalization is still possible.

• In this manuscript we have considered solely open queuing networks. It would be inter-
esting and instructive to generalize the theory of current statistics to the case of closed
(particles are not leaving or entering the network) and semi-open (particles are injected
into the system and leaving it, but in such a way that the total number of particles is
conserved) networks.

• We may also consider networks of fixed structure, yet with rates changing in time, for
example in a periodic fashion. To describe statistics of currents in this case, and especially
in the regime where the typical correlation time of the rate changes are comparable to
the inverse rates, constitutes another interesting future challenge. (Note that an approach
blending the techniques described in this manuscript with the ones discussed recently
in the context of the so-called Jarzynski equality [72] and work relations [73, 74], both
closely related to the subject of fluctuation theorems [10–12], may prove fruitful for this
task.)

• The assumption of infinite waiting room was crucially important for advancing the prod-
uct/coherent state decomposition to the statistics of currents. Analyzing the current statis-
tics in the regimes when all or some waiting rooms are of a finite capacity is yet another
challenging task, as this finiteness brings in a new type of inter-particle interaction.
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• It would be an interesting challenge to put the ideas presented in this paper on a more
rigorous mathematical foundation. This would aid greatly in understanding the formal
relationship between the regimes identified in this paper and the sample path large devia-
tions properties of queueing networks. We note that the authors are currently undertaking
preliminary work along these lines, with the work directed more towards the Queueing
Theory community.

• Our analysis suggests that in large queuing networks one may expect emergence of mul-
tiple transitions as one increases the current. More generally, and in the spirit of [75, 76],
it would be interesting to explore the field of the so-called qualitative queuing network
theory via the methods/techniques discussed in this manuscript.

• Finally, all of the above should be used not only to study existing (man- or nature- made)
networks, but also to guide construction of future technological networks with desired
properties. In other words, we suggest to use this analysis for control and optimization of
networks in new areas such as power, and even more generally energy, distribution.
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Appendix: Left Ground State of the Hamiltonian

In this Appendix we construct the left ground state of the Hamiltonian (49). We start by
recalling that according to (7), the bra-vector 〈0| exp(

∑
i âi ) is the left zero eigen-function

of the Hamiltonian (49) at q = 1. However, it ceases to be an eigen-vector at q 
= 1. On
the other hand, it is easy to check that the “exponential” bra-vector 〈0| exp(h̄â) is in fact
a left eigen-vector of the creation operator â+, with the eigen-value h, 〈0| exp(hâ)â+ =
h〈0| exp(h̄â). This suggests searching for a left eigen-vector of the Hamiltonian (49), in the
exponential form:

〈sq | = 〈0| exp

(∑

i

h̄i âi

)
. (75)

Then, from 〈sq |Ĥq = −�̄(q)〈sq | and (49) (combined with utilizing the aforementioned fea-
ture of the creation operators) one derives the following set of conditions on the h̄ vector (of
c-numbers):

∑

i

(q0i − h̄i (q))λ0i = �̄(q), (76)

∀i: λi0
(
qi0 − h̄i (q)

) +
(i,j)∈G1∑

j

λij (qij h̄j (q) − h̄i (q)) = 0. (77)

It is straightforward to verify that the resulting �̄(q) and �(q) from (54) are identical,
�̄(q) = �(q).
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