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PACS. 36.20.-r – Macromolecules and polymer molecules.
PACS. 47.55.Kf – Multiphase and particle-laden flows.
PACS. 82.35.Lr – Physical properties of polymers.

Abstract. – We study the dynamics of a single polymer subject to thermal fluctuations in
a linear shear flow. The polymer is modeled as a finitely extendable nonlinear elastic (FENE)
dumbbell. Both orientation and elongation dynamics are investigated numerically as a function
of the shear strength, by means of a new efficient integration algorithm. The results are in
agreement with recent experiments.

Introduction. – Nowadays, thanks to the development of effective experimental tech-
niques, it is possible to follow the motion of a single macromolecule in a flow, either laminar
or turbulent [1–16]. This is of crucial importance for applications in polymer processing [17]
and biophysics [1]. Dynamical properties of biomolecules have been explored in detail (see,
e.g., [1–5,9–12] for DNA and [13] for chromatin) and protein-macromolecule interactions have
been studied [14–16].
The formulation of theoretical models (see, e.g., [17]) able to reproduce qualitatively and

quantitatively these measurements represents an important step towards the understanding of
single-molecule biophysics. An extensive analysis of single polymer dynamics in simple flows
has been conducted in a series of papers by Chu and coworkers, Larson and coworkers and
Shaqfeh and coworkers (see [1–8] and references therein). Here we mention in particular two
recent papers where the statistics of orientation and conformation of long-chain molecules in
linear shear flows has been studied in great detail, with a direct comparison with numerical
models [18,19]. An intrinsic difficulty is represented by the large number of degrees of freedom
required to describe the polymer conformation, and thus its dynamics. Nonetheless, nontrivial
aspects of polymer-fluid interactions may be accounted for and even explained at a semi-
quantitative level by means of simple, few-degrees-of-freedom models. One of the simplest,
yet reliable, model is the finitely extendable nonlinear elastic dumbbell (FENE) [17]. The
polymer is described by its end-to-end distance vector R and the microphysical properties
are essentially dumped into two parameters: 1/γ, the longest elastic relaxation time of the
c© EDP Sciences
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Fig. 1 – A sketch of the geometry of polymer motion in a linear shear flow.

macromolecule, and ζ, its friction coefficient with the surrounding solvent. Nonlinear elastic
effects must be accounted for whenever the polymer is considerably stretched, as is the case of
shear flows [4]. The geometry of this problem is depicted in fig. 1. The polymer spends a large
fraction of time in elongated configurations along the shear direction. In the following we will
present numerical results about end-to-end orientation, elongation and about the statistics
of tumbling times. The latter is defined as the time spent between two successive “flips” of
the polymer ends (see fig. 2). Tumbling can occur via different pathways, e.g. passing by a
coiled state or through folded configurations: those details cannot be addressed within the
single-dumbbell model and will be the subject of future study.
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Fig. 2 – Four possible stages of a tumbling event.
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From experiments to numerics. – Single polymer orientation and tumbling dynamics
was recently studied experimentally by Steinberg et al. [10] with a 10−3 ppm solution of
λ−DNA molecules labeled with fluorescence methods (but see also the experiments presented
in [18,19]). To resolve the angular dynamics two different flow configurations were used: one
was generated by two discs one of which was rotating with uniform angular velocity Ω and
the other flow was obtained by a boundary layer in a micro-channel produced with the soft
lithography method (see [10] and references therein for details).
To reproduce the physical situation of [10] we studied a FENE dumbbell in a simple shear

flow �v = (sy, 0, 0), sensing thermal fluctuations (see fig. 1). The equation describing the
evolution of the end-to-end vector of the polymer is

Ṙi = s δix Ry − γRi

2
(
1− R2/R2

m

)−1 +
√

γR2
0 ηi(t), (1)

where R0 = KBT/H, γ = 4H/ζ, η is a three-dimensional white noise with zero mean and
correlation 〈ηi(t)ηj(t′)〉 = δijδ(t − t′), Rm is the maximum length of the polymer, KB is
the Boltzmann constant, T is the temperature, ζ is the isotropic drag coefficient, and H the
spring constant.
Even if the single-FENE-dumbbell model does not reproduce precisely the behavior of

real molecules [8], we can set the parameters of our model, R0, Rm, γ, as close as possible
to their corresponding experimental values [4, 10]: we choose R0 � 1µm, Rm/R0 � 21,
γ � 0.01 s−1–1 s−1.
The orientation dynamics has been investigated for rigid spheroid by Hinch and Leal [20].

As for polymers, at large Weissenberg numbers Wi = s/γ, where s is the shear rate, the
basic ingredients of the polymer dynamics can be summarized as follows [7,20–25]: due to the
shear flow the polymer tends to reach the unstable equilibrium configuration where it is fully
extended along the shear direction. In polar coordinates (R, θ, φ) = (Rm, 0, 0 or π). The effect
of thermal noise is to drive the polymer away from this configuration. The most probable value
of θ is zero, due to the symmetry of the dynamics along the z-axis. However, large fluctuations
in the off-shear-plane angle can occur. The most probable value for φ will be slightly larger
than 0, or π: the symmetry-breaking effect of shear causes the polymers to “hesitate” for
some time before crossing the x-axis and then give rise to a tumbling event. Few results can
be obtained analytically for this model, except for the linear case where Rm/R0 → ∞.

Numerical algorithm. – Several numerical methods have been proposed to simulate poly-
mer dynamics (see, for example, [26]). A commonly encountered problem with nonlinear elas-
tic models is the loss of accuracy close to the singularity R → Rm. In order to overcome this
problem, it is possible to perform a change of variables in the vicinity of Rm that removes the
singularity and allows to use a straightforward time-marching scheme. This method can be
easily extended to other nonlinear models [27] as well as to other flows.
Equation (1) can be solved by any stochastic discretization scheme (Euler-Itô in our case)

in the region R < Rthr, where Rthr is a fraction of Rm, say 0.5Rm. Whenever R exceeds
the threshold we switch to polar variables (R, n̂), where n̂ is the unity vector describing the
orientation of the polymer n̂i = Ri/R, and then to the new variables (z, n̂), where

z = −Rm

2

(
1− R

Rm

)2

. (2)

This relation can be easily inverted to give R as a function of z. After computing all the
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Fig. 3 – The PDF of elongation plotted for Wi = 0, 1, 5, 10, 40, 200 (from A to F).

contact terms in the Itô convention we have the following equations for (z, n̂):

∂tz = −γR

(
1+

R

Rm

)−1

− γR2
0

2
1

Rm
+

(
1− R

Rm

) (
sn̂xn̂yR+

γR2
0

R
+

√
γR2

0n̂iηi(t)
)

, (3)

∂tn̂i = s
(
n̂y − n̂yn̂2

x

)
δix − γR2

0

R2

(
1− R

Rm

)2

n̂i +

√
γR2

0

R

(
ηi(t)− ηj(t)n̂j n̂i

)
. (4)

which is regular in the neighborhood of R = Rm, i.e. z = 0.

Results. – The Probability Density Function (PDF) of the modulus of the conformation
vector depends strongly on Wi. At sufficiently small Wi ≈ 1, the statistics does not differ much
from the linear elastic case, since R � Rm. The PDF in the FENE case can be computed
analytically only in asymptotic regimes [25, 28]. The numerical result is shown in fig. 3 for
several Weissenberg numbers. At very large Wi the elongation PDF presents a peak with
height scaling as Wi2/3 and width as Wi−2/3 (not shown). This result is in agreement with
the predictions of ref. [23]. As a side remark we notice that experimental measurements of
the elongation PDF at Wi as large as Wi = 76 do not display a peak near Rm (see [8] and
fig. 5 of [4]) as well as numerical results of multi-beads models (see figs. 4, 5 in [8] and the
discussion therein).
The orientation of polymers follows the qualitative picture drawn in the linear elastic

case [24, 25], even though there appear important quantitative differences. The PDF of the
in-shear-plane angle φ is shown in fig. 4. The probability is concentrated in the vicinity of
φ = 0, π with a peak width at half height φt, whose dependency on Wi is shown in fig. 5. The
case of a linear elastic dumbbell Rm = ∞ is shown for comparison. The angle φt decreases
with Wi in both cases, i.e. the larger is Wi the narrower is the region around the x-axis where
the polymer spends most of its time. The scaling can be derived by simple physical arguments:
following Chertkov et al. [22], the evolution equation for φ in the region φ � 1 is approximated
by ∂tφ = −sφ2+

√
γR2

0/R2 ηφ, where ηφ is a white noise. Thus φt can be estimated balancing
shear and noise terms in the right-hand side terms, i.e. φt ∼Wi−1/3(R0/R)2/3. At large Wi,
for a linear elastic dumbbell one has R ∝ Wi, yielding φt ∼ Wi−1, whereas for a nonlinear
elastic force one estimates R ∼ Rm to find φt ∼Wi−1/3. The tails of the PDF follow closely
the distribution sin−2 φ dictated by the shear (see fig. 4).
The agreement with the experiments is very good [10]: the scaling in the tail follows
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Fig. 4 – The PDF of the angle φ plotted with sin−2 φ. In the inset the PDF in linear scale plotted
for Wi = 1, 5, 40.

Fig. 5 – The behavior of φt as a function of Wi.

sin−2 φ, and the dependence of φt on Wi is close to the theoretical prediction already for
Wi = 25.
The marginal PDF of the angle θ is presented in fig. 6. The tails decay as θ−2, with

a scaling range increasing with Wi. The algebraic behavior has been observed in [10] for
Wi = 17.6, and even if Wi is not very high the agreement is remarkable. The probability
density of θ for small angles φ ∼ φt, or equivalently the joint PDF P (θ, φ = 0), shows a
neat power law close to θ−3 for θ � θt. This nontrivial scaling behavior has been predicted
theoretically and observed numerically for the linear elastic case in refs. [22,24,25]. The width
of the peak of the P (θ) at half height, θt, decays as Wi−1/3 for the nonlinear elastic case (see
fig. 7). The agreement with experimental data is perfect [10].
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Fig. 6 – The PDF of the angle θ plotted against θ−2. In the inset the PDF in linear scale for
Wi = 20, 40, 100.

Fig. 7 – The behavior of θt as a function of Wi.
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Fig. 8 – The PDF of tumbling times: τR is the time elapsed between two nonadjacent coiled states,
defined as the states where R is smaller than λR0 (λ = 1.5 in this figure); τφ is defined as the time
between two rotations of π in the angle φ. Here, Wi = 76.

Fig. 9 – The exponent E rescaled with the relaxation time as a function of Wi in the linear case and
in the FENE case.

Note that the crossover between the linear elastic case φt ∼ θt ∼ Wi−1 and the FENE
case φt ∼ θt ∼Wi−1/3 occurs at Wi ∼ 1, as measured experimentally.
For what concerns the tumbling times statistics there are two possible definitions [25]:

i) given an appropriate threshold value in R that defines the coiled state for the polymer, one
can compute the time spent during two successive coiled states [10]. ii) One can consider the
time between two subsequent crossings of the plane φ = π/2.
Both definitions are ambiguous for small values of Wi, i.e. when the polymer spends most

of its time in a coiled state. For large tumbling times the PDF is exponential for both defini-
tions of τ , P (τ) ∼ exp [−Eτ ] (see fig. 8). This is a robust feature of this phenomenon [10,22].
Experimental measurements of the tumbling time are possible only following the first defini-
tion, due to lack of angular resolution [10].
The exponent E of the tail in the linear elastic case is inversely proportional to the relax-

ation time of the polymer γ−1. In the FENE case there is a nontrivial dependence on Wi,
as shown in fig. 9. The scaling of the typical tumbling time τt ∼ E−1 can be estimated at
large Wi as follows: the angular motion in the region φ ∼ φt is driven by the thermal noise
and is therefore diffusive. The diffusion coefficient is D = γ(R0/R)2 and therefore τt ∼ φ2

t /D.
Substituting R ∝ R0Wi for the linear spring model and R ∼ Rm for the FENE model one
obtains for E/γ the scalings Wi0 and Wi2/3, respectively.
The behavior of the PDF at τ � τt is model dependent and should not be considered as

relevant (see, e.g., [25]). In experiments [10] the exponential tail of the PDF is observed and
the dependence of τt on Wi is in accordance with theoretical arguments and numerical results.

Conclusions. – We studied the dynamics of a single FENE polymer immersed in a simple
shear flow with thermal noise. The statistics of orientation, elongation and tumbling of the
polymer have been analyzed in comparison with experimental measurements [10], previous
numerical simulations [8,25], and theoretical expectations [22–24]. Even if the large variety of
conformations of real polymers cannot be explored within such a simple model, single-FENE-
dumbbell can reproduce semiquantitatively several aspects of the behavior of real polymers.
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