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Abstract—DC grids are prone to small-signal instabilities due
to the presence of tightly controlled loads trying to keep the power
consumption constant over range of terminal voltage variations.
Th, so-called, constant power load (CPL) represents a classical
example of this destabilizing behavior acting as an incremental
negative resistance. Real-life DC loads represented by controlled
power converters exhibit the CPL behavior over a finite frequency
range. There exist a number of methods for stability certification
of DC grids which are primarily concerned with the source-
load interaction and do not explicitly account for the influence
of network. In the present manuscript, we develop a method
for stability assessment of arbitrary DC grids by introducing
the Augmented Power Dissipation and showing that it’s positive
definiteness is a sufficient condition for stability. We present an
explicit expression for this quantity through load and network
impedances and show how it could be directly used for stability
certification of networks with arbitrary configuration.

Index Terms—Electric Power Networks, Stability, DC Micro-
grids, Algebreic/Geometric Methods.

I. INTRODUCTION

Recent advances in power electronics technologies and
general trend towards renewable energy sources have lead to
increased interest in DC grids [1], [2]. Small-scale DC mi-
crogirds have been in use for several decades already, mainly
as autonomous electric systems on board of vehicles [3]. As
such, the configuration of these microgrids was fixed and well
planned for the exact operating conditions which were known
in advance. On the other hand, DC microgrids with ”open”
structure, capable of being expanded and reconfigured, as well
as suitable for stable operation in a broad range of loading
conditions, have mostly been out of the scope of academic
research. In part, this is justified by the fact that, currently,
the majority of microgrids are using AC interface for power
distribution, even if all the sources and loads are naturally DC.
However, fully DC microgrids can become an economically
feasible solution for supplying power in remote communities
at the minimal cost.

Unlike in AC grids where substantial part of the load is of
electro-mechanical type, loads in DC grids are mostly repre-
sented by power electronics converters with tight controls to
achieve flat voltage at their outputs [4]. This leads to a constant
power load (CPL) behavior on the input within the control loop
bandwidth, which is regarded to be one of the main sources of
instabilities in DC grids. The origin of the instability is often
regarded to the, so-called, negative incremental resistance
introduced by CPL and a number of methods for stability
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assessment are based on such representation. Recent reviews
[5], [6] present a comprehensive classification of the existing
stability criteria and stabilization methods for DC grids.

Apart from certain special configurations [7] CPL provides
the worst case representation for real-life converters, formally
corresponding to constant negative incremental resistance over
all the frequencies. Recently the problem of stability of
CPL based microgrids has attracted substantial attention from
the controls community, see e.g. [8]–[12]. In our previous
works on the subject [13]–[15] we have demonstrated that
the problem of linear and transient stability of DC micro-
grids with CPL can be addressed using Brayton-Moser mixed
potential approach [16]–[18]. However stability conditions
derived under the CPL modeling assumptions may potentially
be conservative and lead to excessive constraints on network
configuration and/or installed equipment. In reality, regulated
power converters act similar to CPL - exhibiting incremental
negative resistance properties - only within their control loop
bandwidth, at frequencies lower than the cross-over frequency
[19]. Above this frequency the effective incremental resistance
is positive and no special stabilization is required so that less
conservative stability criteria can be formulated.

Traditionally, power electronics community has relied on
a number of different impedance based stability conditions.
Most of them consider the minor loop gain which is the ratio of
the source output impedance to the load input impedance. The
celebrated Middlebrook criterion [20], originally proposed for
input filter design, is based on a small-gain condition for minor
loop gain demanding its absolute value to be less than unit
(or even less if a gain margin is imposed) for all frequencies.
It is a rather conservative method, however it requires only
the knowledge of the absolute values of impedances over
the whole frequency range. A less conservative Gain Margin
Phase Margin criterion [21] allows the Nyquist plot of the
minor loop gain to leave the unit circle provided there is
a sufficient phase margin. Another method - the opposing
argument criterion - is based on conditions imposed on the
real part of the minor loop gain [22]. The main advantage of
this method is that it can be applied to multiple load systems,
since the contributions from each individual load can now be
simply added together. Finally, the least conservative methods
are the, so-called, energy source consortium analysis (ESAC)
[23] and a similar one root exponential stability criterion [24].
Both offer the smallest forbidden region for the minor loop
gain of all the existing methods.

Complementary to stability assessment methods there exist
a number of stability enhancement techniques aimed at in-
creasing of the effective system damping. This can be either
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by adding/changing the circuit elements - passive damping,,
or by changing converters control loops - active damping [5].
In the present manuscript we are interested in the former
considering both source and load control settings to be fixed.
Passive damping is realized by adding circuit elements to load
input (or modifying the input filter) in order to reshape the load
input impedance. The choice of different damping circuits for
stabilization of a CPL is analyzed in [25] while an optimal
choice of damping resistance is given in [26].

The stability assessment and enhancement methods re-
viewed above a mostly concerned with single-source single-
load systems and a possible destabilizing interaction between
the impedances of corresponding components. Under certain
conditions it could be possible to generalize some of these
methods by attributing the network parts to either loads or
sources effectively changing corresponding impedances. How-
ever, there is a need for new methods for stability assessment
which can be routinely applied to networked DC microgrids
where the effect of line impedances on system stability is
substantial.

The key contribution of this manuscript is a novel sta-
bility certification method based on a specially formulated
passivity condition for the whole system. We quantify the
destabilizing effect of the loads by introducing a certain
function - Augmented Power Dissipation - and show that the
positive definiteness of this function represents a sufficient
stability condition. We describe a procedure for calculating the
contribution to the Augmented Power Dissipation from loads
and network and present a method for splitting the network
contribution into parts each responsible for stabilizing of a
single load.

II. PROBLEM FORMULATION

DC-DC power electronic converters are typically designed
to efficiently provide a fairly constant output voltage with
control system properly mitigating the input voltage variations.
As seen from the network these converters represent a rather
complex dynamic behavior, so a dynamic model of the con-
verter needs to be considered for studying the stability of it’s
operation with the network. A common way to represent a
lossless converter is using a single-pole, double-throw (SPDT)
switch with a duty cycle D defining the fraction of the
cycle spent in position 1. By using lossless elements, the
modification of the input voltage is achieved in a manner that
can apply to all power throughputs. In steady state, converters
can be described by their DC conversion ratio M , the ratio of
the output voltage V to the input voltage Vg . This conversion
ratio is a function of the duty cycle control input.

To study stability, we utilize a small signal model of the sys-
tem. Due to the switch, which operates with a frequency on the
order of tens of kilohertz, the inductor current and capacitor
voltage vary throughout a given cycle with small amplitude
around their average values even in steady state. Therefore,
to properly account for the low frequency variations, the so-
called small-ripple approximation is used where the system is
averaged over a period so the switching variations within a
given period are neglected. The averaged system can then be

linearized about a given operating point to give a small signal
model.

While there are several common types of converters, we
will focus on the buck converter, given in Figure 1a, due to its
prevalence. The buck converter, consisting of an inductance L,
capacitance C and constant resistance load R, has a conversion
ratio M(D) = D, such that the converter steps-down the
input voltage in proportion to the duty cycle. The small signal
model of a buck converter is shown in Figure 1b where
all uppercase variables refer to the operating point and all
lowercase variables refer to the time varying deviations. Since
averaging is done over many switching periods, an ideal DC
transformer, rather than a switch is used in the small signal
model to properly describe dynamics. A formal derivation of
this model and additional background on buck converters are
given in [4].

To maintain constant voltage at its output, a converter relies
on feedback to modify the duty cycle following any variations
in the input voltage. In this work, we consider a buck converter
interfaced with a constant resistance on it’s output and the
control loop to stabilize the output voltage, so that it is seen
from the network as a constant power load in steady state.
This model is defined in Figure 3. To characterize the small
signal behavior of the buck converter, we first examine the
transfer function from the control input (duty cycle variation)
d(s) to the output voltage v(s) which has the following form
(detail can be found in [4])

Gvd(s) =
v(s)

d(s)
= G0

ω2
0

s2 + 2ζω0s+ ω2
0

(1)

with G0 = V/D, ω0 = 1/
√
LC and ζ = 1/(2R)

√
L/C. In

the presence of voltage control, the loop gain of the system is
defined as T = Gvd(s)H(s)Gc(s)/Vm where H is the sensor
gain, Gc(s) is the compensator transfer function and Vm is the
voltage of the pulse width modulation. The input admittance
transfer function YL,k(s) can then be defined as

YL,k(s) =
i(s)

vg(s)
=

1

ZN (s)

T (s)

1 + T (s)
+

1

ZD(s)

1

1 + T (s)
(2)

where ZN is the converter impedance when the output v(s) is
nulled and ZD is the converter impedance in the absence of
control input d(s). For a buck converter, these have the fol-
lowing expressions: ZN = −R

D2 and ZD = R
D2

1+sL/R+s2LC
1+sRC .

As will be shown in the following sections, much of the
analysis relies on the real component of the input admittance.
For a buck converter, this quantity is given in Figure 2,
the corresponding quantities for constant resistance load and
a constant power load are given for comparison. A tightly
controlled buck converter can be thought of as a constant
power load at low frequencies. The buck converter becomes
passive at a crossover frequency ΩC , defined as the frequency
above which Re[YL(ω)] > 0. In contrast the constant power
load is frequency independent and is never passive. This
highlights the need for a more detailed stability analysis than
a constant power representation can provide for systems with
power converters.



(a) Switching Model

(b) Small signal model

Fig. 1: Steady state and small signal models of a buck
converter

Fig. 2: Real component of the input admittance transfer
functions for a buck converter, constant resistance load and
constant power load.

In practice, converters are also equipped with an input
filter to reject the high-frequency current components from
converter switching actions. In this work, the input filter is
considered to be part of the network. It is known that improper
input filter design can bring instability to an otherwise stable
converter, therefore, a careful selection of filter configuration is
required. Typically, the whole system is designed to be stable
when directly connected to a fixed DC voltage source with the
effect of interconnecting line neglected. If the connecting line
has substantial impedance, it can interfere with the converter
filter and finally lead to instability.

III. EFFECTIVE LOAD ADMITTANCE AND STABILITY
CONDITIONS

A. Effective Admittance Representation

To study small-signal stability of our network we introduce
the following vector of node voltage and current perturbations
xe = [iTe .v

T
e ]T where both the node current i ∈ C|V| and node

voltage v ∈ C|V| being deviations from the equilibrium point,
eg. ie(t) = I(t)− I0.

Next, we define the frequency dependant nodal admittance
matrix according to a general rule:

i(ω) = Y (ω)v(ω) (3)

where the full matrix Y includes contribution from network
YN and loads YL with the latter matrix being diagonal. The

Fig. 3: Definition of Small Signal Load Model

effective load admittance matrix can be explicitly expressed
using converter small-signal model or directly measured.

Our general strategy for proving the stability of the intercon-
nection is based on the well-known “zero exclusion principle”
and is closely related to the µ-analysis.

Theorem 1. The interconnection is stable for any admissible
load transfer functions if there exists a quadratic form

W = Re[v†D(YN (ω) + YL(ω))v] (4)

that is strictly positive for any harmonic signal v(ω) 6= 0.

Proof. This is a well-known principle in the robust control
literature. The simple interpretation of the standard proof is
the following. Suppose that for some admissible loads there
exists a pole in the right hand plane. Consider now a homotopy
between the unstable an completely unloaded system (all load
admittance are zero YL = 0). As the unloaded system is stable,
there would be a point on a homotopy where the originally
unstable pole lies on the imaginary axis at ω = ωc. The voltage
profile v corresponding to this mode, would then satisfy
(YN (ωc) + YL(ωc))v = 0 and contradict the assumptions of
the theorem.

In the following we consider a specific quadratic func-
tional we refer to as Augmented Power Dissipation, that
is characterized by D = ejφ(ω). The important property
that follows directly from (4) is that the total dissipation
of the system can be decomposed into the contributions
coming from the network WN = Re[v†DYN (ω)v] and loads
WL = Re[v†DYL(ω)v] and one can establish the bounds on
these components separately. After proving some intermediate
results, we derive the sufficient conditions on the network
structure that guarantee overall system stability.

Definition 1. The Augmented Conductance of a two-terminal
element with admittance yk is defined as

Gk(ω, φ(ω)) = Re[ejφ(ω)yk(ω)] (5)

Definition 2. For a two terminal element characterized by the
admittance yk(ω) and voltage drop ∇kv(ω), the Augmented
Power Dissipation is defined as

Wk = Re
[
∇kvejφyk∇kv

]
= Gk(ω)|∇kv|2 (6)



The Augmented Power Dissipation coincides with real
power dissipation for φ = 0 and with reactive power dis-
sipation for φ = π/2. For general φ(ω) the corresponding
time-domain storage function does not have any well-defined
physical meaning. The following results will be useful for
constructing the dissipative functionals:

Remark 1. The Augmented Conductance of resistive-inductive
elements with admittance y = 1/(r + jωL) is given by

G =
r cosφ(ω) + ωL sinφ(ω)

r2 + ω2L2
(7)

The Augmented Conductance is positive whenever
r cos(φ(ω)) + ωL sin(φ(ω)) > 0. The biggest value of
Augmented Conductance, and thus the highest rate of
Augmented Dissipation is achieved for tanφ(ω) = ωL/R for
which G = 1/

√
r2 + ω2L2

Remark 2. For resistive-capacitive elements with y = 1/(r−
j/(ωC)) the Augmented Conductance takes the form

G = ωC
ωrC cosφ(ω)− sinφ(ω)

1 + (ωrC)2
(8)

This element remains augmented dissipative whenever
rωC cos(φ(ω)− sin(φ(ω)) > 0

Remark 3. In the presence of shunt capacitive element with
inductive and resistive line with y = 1/(r + jωL) + jωC the
augmented conductance takes the form

G =
r cosφ(ω) + ωL sinφ(ω)

r2 + ω2L2
− ωC sinφ(ω) (9)

A choice of negative φ may be required for this element to
remain augmented dissipative.

Whenever the overall element admittance magnitude is
bounded, the following bound can be established on the
absolute value of Augmented Power Dissipation

Lemma 1. For any two-terminal element k, with bounded
magnitude of admittance yk satisfying |yk| ≤ Y max

k , the
absolute value of Augmented Power Dissipation is bounded
from above:∣∣Re

[
∇kvejφyk∇kv

]∣∣ ≤ Y max
k |∇kv|2 (10)

Proof. Follows directly from |Re[ejφyk]| ≤ |ejφyk| = |yk|

This observation implies that the constant power load
with incrementally negative resistance can inject only some
bounded amounts of Augmented Power into the system. Our
stability certificates will be based upon matching the Aug-
mented Power injected by the loads with it being dissipated
by the network elements.

B. Network Decomposition and Stability Certificates

In order to derive the stability certificate, we first introduce
a path based characterization of the interconnection network.

Definition 3. A load path Πk(ω) = {e1, . . . enk
} is an ordered

set of directed circuit network edges satisfying following

(a) (b)

Fig. 4: The example decomposition of a two port resistive
element to allow for n paths.

properties: i) the end of edge em coincides with the beginning
of edge em+1 ii) the beginning of the edge e1 coincides with
the load k ∈ L, iii) no edge appears twice in the path, iv) the
end of the last edge enk

does not coincide with the origin and
is denoted as end(Πk), and v) the augmented conductance Ge
of every element e ∈ Πk along the path is positive: Ge > 0.

Note, that explicit dependence of the path Πk(ω) on the
frequency empasizes that different paths can be used for
different frequencies. For every path we define the aggregate
Augmented Conductance:

Definition 4. The aggregate Augmented Conductance GΠk

of the path Πk is related to the conductance of individual
elements via the following series interconnection relation:

1

GΠk

=
∑
e∈Πk

1

Ge
(11)

This definition appears naturally in the following bound on
the Augmented Power Dissipation:

Lemma 2. If the network is composed of elements with
positive Augmented Conductances Gk > 0, the aggregate
Augmented Power Dissipation WΠk

=
∑
e∈Πk

We of all
elements e ∈ Πk along the path is bounded from below by

WΠk
≥ GΠk

∣∣vk − vend(Πk)

∣∣2 (12)

Proof. Define πe = GΠk
/Ge > 0, so that

∑
e∈Πk

πe = 1 in
accordance to (11). In this case one has

WΠk
=

1

GΠk

∑
e∈Πk

πe |Ge∇ev|2

≥ 1

GΠk

∣∣∣∣∣∑
e∈Πk

πeGe∇ev

∣∣∣∣∣
2

= GΠk

∣∣vk − vend(Πk)

∣∣2 (13)

Here we have used the Jensen’s inequality and the definition
of the path.

Definition 5. A load path decomposition of the network is
a set of load paths Πk assigned for every load k ∈ L, such
that there is only one path passing through every two-terminal
element k ∈ E .

Note, that the load path decomposition may not exist for
original circuit, for example there is only a single source and
multiple loads connected to it through a single line. However,



the path decomposition can be constructed for an equivalent
electric circuit where some individual network elements are
represented as a parallel interconnection of multiple ones,
like illustrate on Figure 4 . In the following, we assume that
the network circuit has been transformed to allow for load
path decomposition. Then, the following lemma establishes
the ground for the central result of the paper:

Lemma 3. The total Augmented Power WN dissipated in the
network characterized by the path decomposition Πk with k ∈
L is bounded from below by the following expression:

WN ≥
∑
k

GΠk

∣∣vk − vend(Πk)

∣∣2 (14)

Proof. Given that there is at most one path passing through
every element, one has WN ≥

∑
k∈LWΠk

. Then the relation
(14) follows immediately from Lemma 2.

This allows us to finally formulate the following central
result of the work:

Theorem 2. Consider a network composed of elements
with positive Augmented Conductances and constant voltage
sources with vk = 0. Assume that for every ω, there exists a
path decomposition Πk(ω) such that every path ends either
at the ground or source nodes, i.e. vend(Πk) = 0. Then, the
total Augmented Power Dissipation in the system WN +WL
is positive for any non-zero voltage signal whenever for every
k ∈ L one has GΠk

(ω) > Y max
k (ω).

Proof. In accordance to lemmas 1 and 3, the total Augmented
Power Dissipation of the system can be decomposed as

WN +WL ≥
∑
k∈L

WΠk
− yk|vk|2

≥
∑
k∈L

|vk|2 (GΠk
− Y max

k ) > 0. (15)

IV. STABILITY CERTIFICATES

A. General Network Stability Guidelines

In order to apply the certificates to actual networks ap-
pearing in a microgrid context, we define simple criteria that
guarantee existence of paths with sufficiently high Augmented
Conductance to support a given load below its crossover
frequency Ωc. In accordance to (11), the path has a high
conductance only if all of its elements are conductive enough.
On the other hand, as discussed in remarks 1 and 2, the
Augmented Conductance of inductive elements decreases at
high frequencies, and paths with only inductive elements
cannot be used to certify stability at high frequencies. At
the same time, the Augmented Conductance of capacitive
elements goes to zero at small frequencies and grows at high
frequencies, and can be naturally used to certify the stability
there. Hence, we conclude that if the load is not passive at high
frequencies, namely that real part of load admittance remains
negative, at least two kinds of paths need to be utilized to
certify the overall stability of the system. In the following,

we first discuss the properties of inductive and then capacitive
paths.

In real microgrids, inductive lines are commonly used to
interconnect the loads with sources. The common assump-
tion employed in previous studies on the subject is that the
time-constant of inductive elements is bounded from above:
Lk/rk < τL. This time constant is usually determined by the
kind of wires used for interconnection. Both the inductance
Lk and resistance rk scale linearly with the length of the
wire, so the time-constant depends only on the type of wires.
Assume that there is an equivalent circuit allowing a proper
load path decomposition such that for a given load k there is
an inductive path Πk to the source, and the resistance of the
elements along the path is given by re with e ∈ Πk. Then, the
conductance of individual element is bounded from below by
Ge > 1/(re + reω

2τ2
L). While for the total conductance for a

non-augmented (φ(ω) = 0) power is given by

GΠk
=

1

RΠk

1

1 + (ωτL)2
, (16)

where RΠk
=
∑
e∈Πk

re is the total resistance of the path
Πk. For a constant Y max

k , independent of ω, this path certifies
stability in the band of frequencies |ω| < ΩLk with

ΩLk =
1

τL

√
1

RΠk
Y max
k

− 1. (17)

If rather than using the upper bound, there is an explicit de-
pendence of the admittance magnitude on ω the corresponding
frequency band is determined by the solutions of inequality
GΠk

(ω) > |yk(ω)|. Note that augmentation with some posi-
tive angle φ(ω) could improve the bandwidth; however such
augmentation will rotate the admittance of a capacitive element
into the left half plane so that its real part becomes negative.
Therefore, the capacitive elements will inject Augmented
Power which compromises the assumption of the Theorem 2
where all the network elements, even those not participating in
path decomposition, are required to have positive Augmented
Conductance under any admissible rotation. This issue can
be dealt with by constructing additional paths to balance
the capacitors Augmented Power injection, however this is
beyond the scope of the present manuscript where we will
only consider the non-augmented inductive paths.

Next, we proceed to certification of stability for high
frequency region, for which paths going through capacitors
to the ground are needed. If we assume that the bound on
load admittance stays constant for all the frequency range -
a CPL assumption, than the only way to certify stability is
to place capacitor directly at the load bus. Indeed, given the
decay of inductive conductance with frequency according to
(7), any path certifying the stability can not go through any of
inductive elements. Hence, under this assumption the only path
that can certify stability has to go through a capacitive element
directly connected to the load bus. This argument illuminates
the necessity of the capacitive input filter that stabilizes the
high frequency perturbations in the system. For realistic load
models, however, the real part of the load admittance does not
stay constant and negative over all frequencies and becomes
positive above the crossover frequency, after which the load



becomes passive. Therefore, for this case one can use the paths
going through inductive elements and the need for placing
capacitors directly at the load bus is eliminated.

An Augmented Conduction of a capacitive element is given
by GΠk

= −ωC sin(φ(ω)). This expression suggests that
augmentation with negative φ(ω) is essential for a positive
Augmented Conductance which can certify stability at high
frequencies. As in the previous discussion with inductive lines,
there is a maximal angle that is determined by the requirement
that all the elements in the network, even those not included in
any path, retain positive Augmented Conductance. Given the
time-constant τL of inductive elements and using expression
(7) the maximal negative augmentation angle for a given
frequency is given by φ(ω) = − arctan((ωτL)−1). The limi-
tation on the augmentation angle is illustrated by the Figure 5.
We remind, that this maximum negative augmentation angle
can be used only if the capacitive element is directly attached
to the load bus. If there is an inductive line between the
load and the capacitor the actual augmentation angle could
be smaller in absolute value and determined by the effective
Augmented Conduction of the whole path. At the maximum
negative augmentation angle the conductance of the capacitive
path is given by

GΠk
=

ωCk√
1 + (ωτL)2

(18)

For constant Y max
k , this capacitor can certify stability for

frequencies |ω| > ΩCk with ΩCk given by

ΩCk =
Y max
k√

C2
k − (Y max

k τL)2
(19)

The overall system can certified to be stable only if for all
the loads the two frequency bands given by inductive paths -
equation (17), and capacitive paths - equation (19) - overlap,
i.e. ΩCk < ΩLk . The resulting criterion can be formulated either
as a condition on Ck or RΠk

, in the following two equivalent
forms:

Ck >
Y max
k τL√

1−RΠk
Y max
k

(20)

RΠk
<
C2
k − (Y max

k τL)2

Y max
k C2

(21)

For an idealized constant power load, the incremental ad-
mittance is simply Y (ω) = −P/V 2 where P and V are
the equilibrium power consumption and voltage across the
load. The load admittance is independent of frequency and
therefore the bound on admittance is simply it’s magnitude,
i.e. Y max

k = V 2/P . Substituting this expression into equation
(20) or (21) allows for necessary (in the framework of the
Augmented Power Dissipation method) stability conditions for
the network parameters to be calculated. For more complicated
load models or for experimental use, an upper bound on the
absolute value of admittance can be evaluated numerically. For
example, the magnitude of the admittance transfer function
for a simple buck converter is given in Figure 6 and the
upper bound of the admittance magnitude can be discerned

Fig. 5: Admittances of a capacitive element, YC, and an
inductive and resistive element, YRL with no augmenta-
tion and with an augmentation by a negative rotation of
|φmax(ω)| = arctan((ωτ)−1). The inductive-resistive elements
achieve their maximum allowable dissipation with no rotation
while the capacitive elements achieve their maximum allow-
able dissipation through a negative rotation by |φmax|
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Fig. 6: Magnitude of the load admittance transfer function
bounded from above by Ymax ≈ 0.1016

graphically. This upper bound is frequency independent; how-
ever, unlike with the CPL, the network is only required to
be sufficiently conductive for frequencies below the crossover
frequency Ωc.

B. Relationship to Middlebrook Criterion

The Middlebrook criterion has been a powerful concept in
stability of DC power loads. This criterion is based on the
small gain theorem and states that the system is stable if the
ratio of the magnitudes of the input impedance of a load to
the output impedance of the network is greater than 1, namely

|Zin, L|
|Zout, N |

> 1. (22)

In practice, the ratio is designed to be much larger than 1.
For a network path of arbitrary impedance, ZΠk

(ω) =
R(ω)+ jX(ω), the corresponding conductance can be written
as

GΠk
(φ(ω)) =

R(ω) cos(φ(ω)) +X(ω) sin(φ(ω))

|ZΠk
|2

. (23)



Let us now optimize this conductance with and augmenta-
tion angle φopt = arctan(X/R). A rotation by φopt aligns
the admittance vector with the real axis. The Augmented
Conductance then is simply the magnitude of the admittance
given an optimal rotation. We note, that due to the restriction
that all elements in the network should remain passive, the
optimal rotation can sometimes be not allowable. Figure 5
shows the admittance vectors of a capacitive element, YC(ω),
and an inductive-resistive element, YRL(ω). The optimal ro-
tation for the capacitive element is φopt = −π/2 while the
optimal rotation for the inductive-resistive element is φopt =
arctan(ωτ). An optimal rotation for either element would
cause the other element to exit the passivity region. Therefore,
to achieve the maximum allowable Augmented Conductance
for the inductive-resistive element, no rotation is performed
since a positive rotation which would increase it’s maximum
Augmented Conductance would make the capacitive element
to inject the Augmented Power. However, for the capacitive
element, the maximal allowed negative rotation - dictated by
an inductive element - is applied as is demonstrated in the
figure. After any non-optimal rotation, the resulting vector is
in the right-hand side of the complex plane and the resulting
Augmenting Conductance is the projection of this rotated
vector onto the real axis and can be expressed as

GΠk
(φmax(ω)) = η(φmax(ω), ω)|Y | (24)

where η(φ(ω), ω) is an attenuation factor easily derived from
equation (23), varying between 0 and 1, due to the restrictions
the passivity requirements impose on the angle φ(ω) which
may prohibit the optimal rotation. If the optimal rotation is
admissible, the attenuation factor is 1. This formulation of
the Augmented Conductance allows for Theorem 2 to be
expressed as

|ZL|
|ZΠk

|
> η−1(φ(ω), ω) (25)

This echoes the form of the Middlebrook criterion with two
noteable differences. First, the impedance ratio must be greater
than or equal to 1. In practice, the Middlebrook criterion dic-
tates the load impedance to be much greater than the network
impedance. This formulation allows for the quantification of
that ratio given network effects. Second, the ratio of concern is
that of the load with respect to a specific path, rather than the
entire network. The path impedance is bounded from above
by the total network impedance. Therefore, even though the
impedance ratio is greater than or equal to 1, it is possible to
achieve less conservative bounds on the load.

V. NUMERICAL SIMULATION

A. Multi-Microgrid

To demonstrate the utility of the stability certificates and
path decomposition, we consider the interconnection of two
microgrids, each represented by a voltage source connected
to an aggregated load by an inductive-resitive line as given in
Figure 7. LI and LII are the loads at buses 2 and 3 respectively
and are modeled as a constant resistance load interfaced with

the network through a buck converter. The converter output
voltage is maintained through the addition of a simple lead-
lag controller of the form

Gc(s) = Gc∞

(
1 + ωL

s

) (
1 + s

ωz

)
(

1 + s
ωp

) . (26)

The converter and controller parameters have been drawn
from [4] and are defined in Table III. The network parameters
are given in Table III. For simplicity, LI and LII are identical
with a crossover frequency Ωc ≈ 4.8kHz or 30160 rad/s and
have an admittance magnitude bounded by Y max ≈ 0.1016,
which can be deduced from the model. Therefore, to certify
the stability of the system, there must be a path or paths from
each load k to a source or ground such that GΠk

(ω) > Y max

for ω < Ωc
According to discussion in the previous section, stability

certification at at low frequencies is done by chosing paths
from loads to sources passing through inductive-resistive lines.
This can only be done without any augmentation, i.e. φ(ω) = 0
in order to prevent capacitive elements from injecting the
Augmented Power. At high frequencies, the paths should
go through capacitive elements to the ground and rotation
by a negative non-zero angle is required for capacitors to
provide positive Augmented Conductance G(ω, φ(ω)). How-
ever, the rotation angle is now limited by the condition that
the Augmented Conductance of inductive-resisteve elements
be at least non-negative which is possible if |φ(ω)| <
arctan((ωτmax)−1), where τmax is the maximum value of
L/r for lines in the network. In our case we assume all the
lines to have the same τ = 1ms which plays the role of τmax.

In the configuration shown by Fig. 7, LI is supported at
low frequencies by a path to the source at bus 1 and at high
frequencies by the capacitor at bus 2 while LII is supported
at low frequencies by a path to the source at bus 4 and
at high frequencies by the capacitor at bus 3. These paths
do not overlap and thus no path decomposition is required.
The Augmented Conductances of the paths supporting each
load are given in Figure 8. The frequency at which the
corresponding path through the line with no augmentation
no longer exceeds the load admittance is denoted by ΩL

and the frequency at which the path through the capacitor,
augmented by φ = − arctan((ωτ)−1), begins to exceed the
load admittance is denoted by ΩC . In order to provide the
continuous support, these frequency bands should overlap
for both of the loads. The overall Augmented Conductance
supporting both loads of example from Fig. 7 at all the
frequency range is shown by the bolded sections of the path
Augmented Conductances. A non-zero φ was chosen to begin
at ω = 9000 (rad/s) which is below the crossover frequency of
each load but above ΩC for each load, the minimum frequency
at which the capacitors can certify stability.

In the configuration shown by Fig. 7, the line connecting
buses 2 and 3 is not utilized to support any of the loads.
By utilizing this line and it is possible to support additional
load. An additional load on bus 2 could be supported through
alternate paths such as to the source on bus 4 through the



Fig. 7: 4 bus system representing the interconnection of two
microgrids, each comprised of a source and a load.

Parameter Description Value

C
on
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er

V Input Voltage 28V
R Load Resistance 3 Ω

C Capacitance 500 µF
L Inductance 50 µH
D Duty Cycle 0.536

C
on

tr
ol

le
r

Gc∞ Midband Gain 3.7
wL Lead Zero 500 Hz
wz Trailing Zero 1700 Hz
wp Pole 14.5 kHz
H Sensor Gain 1

3
Vm Voltage of PWM 4

TABLE I: Converter and Control Parameters

lines connecting buses 2 and 4 for low frequencies and to
the capacitor at bus 3 via the line connecting buses 2 and 3
at high frequencies. However, utilizing these paths requires a
decomposition of Z34 at low frequencies, as in Figure 9a, and
Z3 at high frequencies, as in Figure 9b. In this decomposition,
the superscripts refer to the load being supported by the
corresponding network element.

Figure 10 gives the results of an example decomposition of
the system and demonstrates how an additional load at bus
2 can be supported while still providing enough Augmented
Conduction for original loads. It is important to note that
this decomposition is not unique and the maximum additional
load, that can be supported is related specifically to the
decomposition chosen. Further, the rotation φ(ω) that we use
to provide support at high frequencies is altered from the
maximum allowed because the path containing both the line
23 and the capacitor 3 requires an augmentation different than
what gives the maximum for the capacitor, since then the
line Augmented Conductance will be zero and an overall path
will provide no support. In addition, the rotation chosen must
still guarantee that the original loads are still supported. The
contribution of the line 23 to the high-frequency path for load
3 can be seen on Fig. 10 where the Augmented Conductance
for this path starts to decrease with frequency after certain
point due to decreasing line conductance.

The maximum magnitude of load 3 that could be sup-
ported is based upon the minimum value of the Augmented
Conductance available on it’s paths over the frequency range
ω < Ωc. In Figure 10, the crossover frequency is assumed to
be the same for all the loads in the systems and the maximum
magnitude that could be supported is Y max

LIII ≈ 0.011 and the
additional decomposition allows for a 10% increase in loading
on bus 2.

Parameter Description Value
l12 Line Length between Buses 1 and 2 0.5 km
C2 Capacitance at Bus 2 408.5 µF
l23 Line Length between Buses 2 and 3 1.0 km
C3 Capacitance at Bus 3 713.1 µF
l34 Line Length between Buses 3 and 4 0.25 km
r Line Resistance 0.2 Ω/km
τ Time Constant of All Lines 1 ms

TABLE II: Multi-Microgrid Network Parameters
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(b) LII

Fig. 8: Augmented conductance of paths supporting LI and
LII before the addition of LIII. The bolded sections represent
the overall augmented conductance based on a consistent
admissible φ(ω).

(a) Low Frequency

(b) High Frequency

Fig. 9: High and low frequency path decomposition of the 4
bus multi microgrid system shown in Figure 7
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Fig. 10: Augmented conductance G of paths supporting LI,
LII and LIII



(a) Original System (b) System with addition of stabi-
lizing capacitor

Fig. 11: 2 bus system for capacitor placement

B. Capacitor Placement

These stability certificates do not assume nor require a
capacitor to be present at each load bus but rather provide
guidance on the placement of capacitors that can support a
variety of loads. To illustrate this, we will consider a simple
two bus system, given in Figure 11, comprised of a constant
voltage source and a buck converter load connected through
a line, with converter parameters and control settings remain
the same as in the previous example. While this system is
simple, the methodology utilized in this analysis can easily be
replicated for more complex network topologies.

The load becomes passive for ω > Ωc ≈ 4.8kHz. In the
absence of a capacitor in the network, the system stability
can be certified by the line connecting buses 1 and 2 for ω ≤
ΩL = 337.17 Hz, as derived in Equation (17). The addition of
a capacitor must therefore certify the stability of the system
for ΩL < ω < Ωc via a path to the ground. The simplest
case is the placement of the capacitor at bus 2 such that the
path to certify stability consists only of the added capacitor. In
this case, the there are no inductive elements to diminish the
Augmented Conductance at high frequencies and the required
capacitance is given by Equation (20) and C > 96µF .

However, the use of Augmented Dissipation and the consid-
eration of the load crossover frequency allows for the certifica-
tion of the stability of networks where the loads and capacitors
are not co-located. In this case, the path to ground consists of
the line connecting buses 2 and 3 and the capacitor at bus 3
and has a total impedance of ZΠ = R23 +j(ωL23− (ωC)−1).
The corresponding augmented conductance is

GΠ(φ(ω)) =
R cos(φ(ω)) +

(
ωL− 1

ωC

)
sin(φ(ω))

|ZΠ|2
. (27)

To adhere to the requirement that all elements remain pas-
sive, the rotation φ(ω) is limited to the range − arctan(ωτ) ≥
φ ≤ 0, just as in the previous example since both cases contain
only resistive-inductive elements or capacitive elements. Un-
like the previous example, since this path contains inductive
and capacitive elements the rotation φ that results in the largest
Augmented Conductance changes with ω. At low frequencies,
the maximum Augmented Conductance is limited by the line.
At high frequencies, the optimal Augmented Conductance
would be achieved by a positive φ. However, this rotation
would cause the contribution from the capacitive elements to
become negative and thus is not allowed. Therefore, at high
frequencies, the largest allowable Augmented Conductance is
found with φ = 0.

Parameter Description Value
l Line Length between Buses 1 and 2 5 km
r Resistance per km 0.2 Ω/km
τ Line Time Constant 1 ms

TABLE III: Capacitor Placement Network Parameters
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Fig. 12: Augmented Conductance G of paths to the source and
ground given a capacitor placed at x/l = 1/50.

Figure 12 shows the Augmented Conductance of the path
through the full line to the source and the path through a
segment of the line and the capacitor to the ground with
x = 0.1km and C = 140µF. For all frequencies below the
crossover frequency, Ωc, one of these paths has an Augmented
Conductance that exceeds the maximum load admittance mag-
nitude and therefore stability is guaranteed. It is of note that
there are no paths that certify system stability at frequencies
slightly above ΩC , however, since the system is passive in
this region there is no requirement for stabilization. As in the
previous example, this is an example decomposition and is not
intended to present the minimum acceptable capacitance.

The capacitor could be placed away from the load without
compromising stability because a buck converter becomes
passive at large frequencies mitigating the concern surrounding
decaying conductance of the path to the capacitor due to
the inductive elements in the lines. For loads that do not
become passive at any frequency, such as ideal constant
power loads, this methodology dictates that a capacitor must
be placed directly at the load bus. This placement ensures
that the Augmented Conductance does not tend toward 0 at
very high frequencies due to passing through the inductive
element. By considering the magnitude of the transfer function
and the crossover frequency of a buck converter rather than
approximating it with a constant power load, a greater variety
of network topologies can be certified to be stable.

VI. CONCLUSION

DC microgrids are a powerful and practical option for
electrification of remote areas that the main grid cannot reach
due to logistical or financial limitations. In this paper, we
present a novel method for certifying the stability of a DC
network with loads represented by generic transfer functions.
While our approach is conceptually similar to the traditional
Middlebrook and other similar criteria, it’s unique in its ability



to capture the effects of network topology in terms of a
simple path decomposition. The sufficient stability condition
derived in this work relates the Augmented Conductances of
the load to the conductance of a path connecting the load bus
to some source or ground terminal. For practical purposes,
we have identified simple constraints on the network, given in
Equations (20) and (21), and presented two simple applications
of this theory.

The proposed approach establishes a new link between
the power system stability and classical network flows. This
link opens up a path for applying the powerful algorithms
developed in computer science and optimization theory to the
practical problems of DC microgrid design and analysis. It nat-
urally allows to formulate many practically-relevant problems
like stability constrained design and operation in a tractable
mathematical form.

Beside these natural formulations, we believe that the pro-
posed framework can play an important role in establishing
universal specifications that would allow for independent
decision-making in designing the component and system level
controllers, and the network structure. In future, these specifi-
cations can form the foundation of true ad-hoc/plug-and-play
power systems having the degree of flexibility comparable to
modern communication and transportation systems.

There are many open questions that need to be addressed
before these high level goals are reached. One of the most
critical, in our opinion is the extension of the proposed
framework to nonlinear stability. Power systems lack global
stability, and may collapse after strong enough disturbance
and linear stability is not sufficient to guarantee reliable and
secure operation. Traditional approaches to certification of
transient stability of power systems have relied on construction
of Lyapunov functions which may not be appropriate for
DC microgrid setting. Indeed, as was thoroughly discussed
in our work, that load-side converters operating as constant
power loads at low frequency naturally destabilize the system.
These converters are usually designed by different vendors
and their controllers tuned individually and generally not
known to the designers and operators of the microgrids. This
represents an important limiting factor that largely eliminates
the possibility of constructing universal Lyapunov functions
that could be used for stability certification. Instead, the more
appropriate way to tackle this problem would be to extend
the frequency-domain approaches developed in this work to
nonlinear settings. This can be naturally accomplished with the
help of the Integral Quadratic Constraints framework [27] that
naturally generalizes some of the key mathematical constructs
utilized in our work to the nonlinear setting.
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