
Received August 12, 2017, accepted September 5, 2017, date of publication September 19, 2017,
date of current version October 12, 2017.

Digital Object Identifier 10.1109/ACCESS.2017.2754346

Identifying Uncertainty Distributions and
Confidence Regions of Power Plant Parameters
TETIANA BOGODOROVA1, (Student Member, IEEE), LUIGI VANFRETTI2, (Senior Member, IEEE),
VEDRAN S. PERIĆ3, (Member, IEEE), AND KONSTANTIN TURITSYN4, (Member, IEEE)
1KTH Royal Institute of Technology, 114 28 Stockholm, Sweden
2Electrical, Computer and Systems Engineering Department, Rensselaer Polytechnic Institute, Troy, NY 12180 USA
3GE Energy Consulting, 80807 Munich, Germany
4Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139-4307 USA

Corresponding author: Tetiana Bogodorova (tetianab@kth.se)

This work was supported by the EU through FP7 iTesla project.

ABSTRACT Power system operators, when obtaining a model’s parameter estimates; require additional
information to guide their decision on a model’s acceptance. This information has to establish a relationship
between the estimates and the chosen model in the parameter space. For this purpose, this paper proposes to
extend the usage of the particle filter (PF) as a method for the identification of power plant parameters; and
the parameters’ confidence intervals, using measurements. Taking into consideration that the PF is based on
the Bayesian filtering concept, the results returned by the filter contain more information about the model
and its parameters than usually considered by power system operators. In this paper the samples from the
multi-modal posterior distribution of the estimate are used to identify the distribution shape and associated
confidence intervals of estimated parameters. Three methods [rule of thumb, least-squares cross validation,
plug-in method (HSJM)] for standard deviation (bandwidth) selection of the Gaussian mixture distribution
are compared with the uni-modal Gaussian distribution of the parameter estimate. The applicability of the
proposed method is demonstrated using field measurements and synthetic data from simulations of a Greek
power plant model. The distributions are observed for different system operation conditions that consider
different types of noise. The method’s applicability for model validation is also discussed.

INDEX TERMS Confidence intervals, measurements, parameter identification, particle filters, power plant
models, power system identification, power system model validation, power systems.

I. INTRODUCTION
Accurate modeling of electric power system components is
essential for power system operators. However, maintain-
ing accurate dynamic models represents large technical and
practical challenges for utilities, including those related to
data management and analysis. The conventional approach to
obtain dynamic models is through physical modeling, where
values of parameters are obtained from name tables. This
approach is relatively simple, but can lead to inaccuratemodel
responses due to uncertain changes that parameters undergo
through time. Model accuracy can be improved by periodi-
cally performing staged identification tests where parameters
can be updated. However, the logistics and costs associated
to these tests are non-negligible because staged tests require
components to be disconnected from the network or other
interventions that may hinder the normal operation of the
power system. An approach to address these problems has

been found in the application of modern system identification
theory for parameter identification and calibration. Develop-
ment of synchrophasor technology has made this approach
even more appealing due to the increasing availability of
synchronized high sample rate measurement data capturing
the systems’ dynamic response.

A. LITERATURE REVIEW
From the mathematical perspective, different methods for
identification of the power system’s parameters have been
proposed [1]–[5]. Jones [1] focused on the use of the autore-
gressive moving average with integrator in noise model and
exogenous inputs to represent a power system using a low-
order dynamic model. Stefopoulos et al. [3] have shown
the benefits of applying genetic algorithms for governor-
turbine dynamicmodel identification inmulti-machine power
systems. In [4], researchers have successfully applied the
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extended Kalman filter for generator dynamic model valida-
tion using phasor measurements. Zhou et al. in [5] extended
a particle filter to estimate the dynamic states of generators.

The particle filter (PF) has a number of benefits that makes
it attractive for parameter identification. A PF provides the
parameter uncertainty distribution of estimated parameters by
a set of samples (particles). In this way, this property makes a
PF applicable for nonlinear system identification and robust
to different types of noise, including non-Gaussian noise. As a
result, this technique does not impose any constraints on the
model structure used, meaning that the parameter set defining
a power plant model can be identified entirely.

Parameter estimates are most meaningful when accompa-
nied with their statistical properties, i.e. mean and confidence
intervals. Such properties were received in the asymptotic
variance evaluation of estimated modes that is extracted
directly from auto regressive moving average model [6].

Meanwhile, in [5] the statistical properties were received
for distribution of mean values evaluated using Monte Carlo
simulations in order to verify the PF method. In this way,
the estimated mean and standard error characterized the accu-
racy of the method, but not the internal dynamics of the
nonlinear power system.

B. CONTRIBUTION
The main goal of this paper is to derive new knowledge for
power system operators about the power system parameters
that are estimated given measurements and a model. The
ability to derive an estimated parameter uncertainty using
an arbitrary distribution shape has not been analyzed in
power systems. The current methodology used by power
system operators limits their ability to determine parameter
estimates relationships and consequently, design model val-
idation experiments that consider the implications of these
relationships. To address this gap, the reconstruction of the
estimated parameter posterior distribution and confidence
intervals is proposed.

The proposed methodology is based on particle filtering,
it is applicable for non-linear systems, and robust to arbitrary
noise characteristics. These features represent an enhance-
ment in comparison to the previously proposed methods [4]
that assume linear(-ized) models with Gaussian distributed
noise.

The main benefit of the PF is that it can handle multi-
modal distribution of parameter estimates. Therefore, the
proposed method calculates the uncertainty of parameter
estimates in the form of multimodal (mixture) Gaussian
distributions. The estimate distribution’s reconstruction for
Gaussian mixture distribution and its confidence regions
calculation is presented in detail. Three methods (Rule of
Thumb (ROT), Least-Squares Cross Validation (LCV), Plug-
in method (HSJM)) for standard deviation (bandwidth) selec-
tion of the Gaussian mixture distribution are compared.

The performance of the Gaussian mixture distribution
reconstruction is evaluated by comparing the confidence
intervals estimated using the proposed method that exploits

Gaussianmultivariatemixture distribution and aMonte-Carlo
method that approximates the uncertainty distribution with a
uni-modal Gaussian distribution form. Finally, the estimates
of the reconstructed distributions are compared to the actual
parameter values. The proposed method can be parallelized
to increase computational efficiency and applicable for online
applications.

The remainder of this paper is organized as follows.
Section II gives the problem formulation. The proposed par-
ticle filter identification method is formulated in Section III
and expanded to evaluate confidence intervals in Section IV.
The application of the proposed method is shown and
discussed in Section V, whereas conclusions are drawn
in Section VI.

II. PROBLEM FORMULATION
A. PROBLEM STATEMENT
To identify the model parameters and their confidence
regions, assuming the model structure of a power plant that
includes a generator with controls (Fig. 1), and having mea-
surements from the tests and on the terminal bus.

FIGURE 1. Generator with controllers connected to an infinite bus.

The formulated problem is illustrated on the model that
consists of a synchronous machine GenVI [7], turbine gov-
ernor TGI [7], automatic voltage regulator AVRIII [7] and
power system stabilizer PSSIII [7]. The generator is con-
nected to the infinite bus through transmission lines. The
entiremodel1 can be described in state space form, as follows:

dx
dt
= f (x(t), ρ, u, ξ ) (1)

y = h(x(t), ρ, u, σ ), (2)

where {x, ρ}- states/parameters (some of them to be esti-
mated); σ - measurement noise, ξ - process noise; and u -
input (e.g. terminal voltage), y - measurements.

Given the discrete measurements (input and output) un =
{ui, i = 1..n} and yn = {yi, i = 1..n} obtained every i1t ,
where i = 1, 2...n, the model can be discretized:

xn = f (xn−1, ρn−1, un−1ξn−1) (3)

yn = h(xn, ρn, un, σn), (4)

1The model that has been used for the case studies has been developed
in Modelica. All the model components are included into OpeniPSL library
and can be found in open access [8].
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FIGURE 2. Global algorithm of the uncertainty distributions and
confidence intervals identification.

III. IDENTIFICATION APPROACH
To address the problem formulated in Section II, the algo-
rithm depicted in Fig. 2 have been developed:

1) Given measurements, the assumed model structure and
the parameter space that defines the limits in which the
parameters can vary, execute particle filter routines to
identify parameter values. The output of the filter are
particles that are coordinates in parameter space, their
weights and fitness (Section III-A).

2) Choose the covariance for the selected Gaussian
kernel2 using one of the available algorithms (see
Section IV-B) that exploit the particles and their
weights, received as an output of the particle filter.

3) Using the selected covariance, particles that define
mean values for Gaussian mixture, and weights, recon-
struct the uncertainty distribution for the estimated set
of parameters (Section IV-A).

4) Marginalize3 the uncertainty distribution with respect
to each parameter to receive a univariate pdf. The latter
depends only on one parameter and defines the uncer-
tainty interval of this parameter.

A. PARTICLE FILTER AS A BAYESIAN FILTERING
IMPLEMENTATION
Bayesian filters, the class of filters to which PF belongs,
recursively estimates a belief (pdf) in the parameters4 {xn} [9]
by using all available information about the system’s structure
and measurements (3), (4).

The algorithm starts by assuming that the initial pdf that
is called prior, p(x0|y0) = p(x0), is given. Then the final pdf
that is often referred as a posterior, p(xn|y1:n), is iteratively
constructed. This iterative process is a stochastic Markovian
process itself, where the next (n + 1) parameter set is deter-
mined by the pdf at point (n) given the model of the sys-
tem (prediction step) and real system measurements (update
step). PF proceeds in this manner through discrete approx-
imations the posterior pdf p(xn+1|yn) by a set of random
samples (particles) of a parameter space {x(i)n } drawn from

2Gaussian kernel meant to be a normalized sum of Gaussians centralized
around each particle and scaled by particle weight.In that way it forms the
final uncertainty probability density function (pdf).

3Marginalization is an act of retrieving the pdf for a parameter discarding
other parameters from the joint parameter pdf.

4The states are variable parameters that can be included into estimation
process. Therefore, for simplicity lets assign xn(i) to a set of parameters that
are aimed to be identified.

the posterior pdf. Each particle is a concrete instantiation of
the state/parameter value at time t . Let N be a number of
particles the parameter space x(i)n is defined with, so that the
prediction step of discrete approximation is described by the
Chapman-Kolmogorov equation, [10]:

p(xn|y1:n−1) =
Nn−1∑
i=1

p(xn|x
(i)
n−1)p(x

(i)
n−1|y1:n−1), (5)

where p(xn|x
(i)
n−1) - transition density in importance function.

The result of prediction step at (n + 1) is improved by using
Bayes’ rule once the measurements (yn) at point (n + 1)
become available.

p(xn|y1:n) = �−1n p(yn|xn)p(xn|y1:n−1) (6)

The normalizing constant C can be evaluated using:

� = p(yn|y1:n−1) =
Nn−1∑
i=1

p(yn|x(i)n )p(x(i)n |y1:n−1). (7)

The likelihood function p(yn|xn) is represented through the
measurement equation (4), where the properties of the mea-
surement noise are known.
In Algorithm 1, the action of assigning and updating

weightsω(i)
0 for each particle is called weighting. The weight-

ing is specific and based on the value of the fitness function
that is defined as the relative squared difference between
simulated and real measurements in Algorithm 1. Transition
density p(xn|x

(i)
n−1) can be obtained from model structure by

passing samples trough equation (3).

IV. EXTENSIONS TO THE PARTICLE FILTER ALGORITHM
In this section the estimate distribution with definition of all
the parameters to be described. Ability to reconstruct the full
distribution gives benefit to engineer to observe peaks and
hollows meaning probability mass allocation of the estimate,
in other words, local optimums. In this case, for nonlinear
model the distribution to be reconstructed has non-Gaussian
form, therefore, the confidence intervals quantitatively can’t
be estimated only by one covariance matrix in the closed
form.

A. ESTIMATE DISTRIBUTION RECONSTRUCTION
The posterior distribution that is an output of particle filter
is described by particles with weights assigned according
to a fitness function that is presented in Algorithm 1. The
continuous pdf can be constructed from PF by assigning so
called kernel function to each particle. The solution is to use
each particle as the center of the kernel and the overall density
will be composed as a mixture of the kernel densities. In this
particular case, a Gaussian kernel was chosen, and thus,
the resulting distribution can be estimated using Gaussian
mixtures, as illustrated in Fig. 3:

p(x) =
N∑
n=1

wnN (xn|µn, 6n), (8)
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Algorithm 1 Particle Filter
1: procedure PF(pmin, pmax ,N , ε, nit )
2: while n < nit and {stop criteria} do
3: Step 1. Initialization (sampling from uniform

prior pdf):
4: for i = 1 to N do
5: draw the samples x(i)n ∝ p(x0)
6: ω

(i)
0 ← 1/N .

7: Step 2. Importance Sampling:
8: for i = 1 to N do
9: draw samples x̂(i)n ∝ p(xn|x

(i)
n−1),

10: x̂(i)n ← {x
(i)
0:n−1, x̂

(i)
n }

11: Step 3. Weight update with normalization:
12: for i = 1 to N do
13: RSSD(y, ŷ)← 1

L

∑
i(
yi−ŷi
yi

)2

14: fitness← RSSD(y, ŷ)
15: ω

(i)
n ← 1− fitness∑

i fitness

16: Step 4. Resampling:
17: Generate/prune particles x(i)n from {x̂(i)n }
18: according to ω(i)

n /(prune if ω(i)
n < ε)

19: to obtain N random samples

where [pmin, pmax ] - range of parameters’ values which define
parameter space, N - number of particles used to fill the space of
parameter values; Y - real measurements; Ŷ - estimate; ε - prune
threshold (defines which percentage of particles with lowest weight
will not survive); {stop criteria} - set of conditions to finish the main
procedure cycle; L - number of measurement instances.

FIGURE 3. Gaussian mixture distribution reconstruction [illustration for
equation (8)].

where
∑N

n=1 wn = 1, 0 6 wn 6 1 - normaliza-
tion of N individual M -dimentional Gaussian components
N (xn|µn, 6n), where M - number of parameters.
Each component is a multivariate Gaussian distribution

given by:

N (x|µ, 6)
def
=

1

(2π )M/2|6|1/2

× exp
(
−

1
2
(x− µ)T6−1(x− µ)

)
(9)

where x = [x1.. xM ] - vector of parameters.

In (9), 12
= (x − µ)T6−1(x − µ) represents the squared

Mahalanobis distance [11] between x and µ. When 12 is
equal to a constant, it will define ellipsoids that result in locus
of the equal density level of each Gaussian component. This
means that it defines the confidence contours on the required,
user-predefined confidence region percentage (e.g. 95%).

Decomposing the covariance in (9) to eigenvalues
and eigenvectors using the Cholesky decomposition [12]
(6 = U3UT ) gives the following:

6−1 = U−T3−1U−1 = U3−1UT
=

M∑
m=1

1
λm

umuTm (10)

where U - eigenvectors, 3 - diagonal matrix of eigenvalues
[λ1..λm]m=1:M .
Substituting (10) in the squared Mahalanobis distance

of (9), it can be shown that:

(x− µ)T
( M∑
m=1

1
λm

umuTm
)
(x− µ) =

M∑
m=1

y2m
λm

(11)

where ym
def
= uTm(x− µ).

The confidence space5 of a parameter vector x can
be defined as the union of M-dimentional ellipsoids
(see Appendix A). The number of the ellipsoids corresponds
to the number of Gaussians in a Gaussian Mixture model,
which is created locating the means of Gaussian components
in each PF particle.

From (11), the M-dimensional ellipsoid described by a
constant Mahalanobis distance, can be presented as follows:

Si =
M∑
m=1

y2m
λm
= a (12)

where a - defines the scale of the ellipse.
The squared Mahalanobis distance12 is a sum of squared

M Gaussian data samples that are distributed according to
the Chi-Square distribution (χ2) withM degrees of freedom.
Therefore, one has to find the probability P(x ≤ at ) = I
where x is less than or equal to a specific value, which
can easily be obtained using the cumulative Chi-Square
distribution.

Note that the union of the ellipses is given by:

S =
N⋃
i=1

Si (13)

where N is the number of particles.

B. COVARIANCE SELECTION
Covariance in the Gaussian kernel (8) plays the role of a
smoothing parameter that defines the shape of the recon-
structed estimate distribution. Small covariance values 6n
of each M -dimensional Gaussian component increase the
asymptotic variance, meaning that the resulting distribution

5The confidence space is referred as confidence interval when the space
is of 1-dimension.
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shape will be ‘‘wavy’’ with many extra graphical features,
such as peaks and cavities. On the other hand, big values of
the covariances reduce the (asymptotic) variance but increase
the (asymptotic) bias, thus smoothing away the true distribu-
tion peaks [13].

In this paper three methods for bandwidth selection are
applied and compared: Rule of Thumb, Least-Squares Cross
Validation, and the Plug-in method [14].

1) RULE OF THUMB (ROT)
This method is based on the asymptotic mean squared
error estimator AMISE(h). The optimal bandwidth ĥrot
obtained from differentiating AMISE(h) w.r.t. standard devi-
ation (bandwidth)6 h and calculating root of the derivative.
The result is simplified substituting the unknown true density
function f (x) with a standard normal distribution rescaled to
have variance equal to the sample variance σ̂ 2:

ĥrot = argmin
h

AMISE(h) = 1.06σ̂N−
1
5

AMISE(h) = (Nh)−1
∫
K 2(x)dx

+
h4

4

(∫
x2K (x)dx

)2∫ (d2f (x)
dx

)2
dx (14)

where Ki = NωiN (xi|µi, hi)- the kernel function7; f̂h(x) =
1
N

∑N
i=1 Ki - density function estimator. Note: Integration is

performed over the x parameter space.

2) LEAST-SQUARES CROSS VALIDATION (LCV)
This method is based on the integrated squared error
function ISE(h).

ISE(h) =
∫

(f̂h(x)− f (x))
2
dx

=

∫
f̂ 2h (x)dx − 2

∫
f̂h(x)f (x)dx +

∫
f 2(x)dx

Due to the third term of ISE(h) doesn’t depend on h, one can
use Least-Squares Cross-Validation function LSCV (h) as an
estimator for ISE(h)−

∫
f 2(x)dx:

ĥLSCV = argmin
h

LSCV (h) (15)

= argmin
h

(∫
f̂ 2h (x)dx − 2

N∑
i=1

f̂h
)

(16)

3) PLUG-IN METHOD (HSJM)
The main idea of the HSJM8 method is to take one fur-
ther term 9 in the asymptotic expansion of the integrated

6In statistical research, the standard deviation that has to be estimated is
referred as bandwidth [13].

7For simplicity, the kernel and the estimators are presented for 1-d space
kernel. For multidimentional representation, it is recommended to refer
to [15].

8The abbreviation refers to Hall, Sheather, Jones, and Marron’s work
in [16].

squared bias:

ĥ = argmin
h

AMISE2(h) = argmin
h

(AMISE(h)−9) (17)

where

9 =
1
24
h6
∫
x2K (x)dx

∫
x4K (x)dx

∫ (d3f (x)
dx

)2
dx (18)

The minimizer (17) is not easy to calculate, therefore,
the asymptotically equivalent ĥHSJM is used:

ĥHSJM =
( ∫

K 2(x)dx

N
( ∫

x2K (x)dx
)2
Î2

) 1
5

(19)

+

∫
x4K (x)dxÎ3

20
∫
x2K (x)dxÎ2

( ∫
K 2(x)dx

N
(∫

x2K (x)dx
)2
Î2

) 3
5

(20)

where Î2 and Î3 are functionals that depend on true density
function derivatives of 2 and 3 order respectively and should
be estimated (for more details refer to of [16, Sec. 3]).

C. CONFIDENCE REGION (INTERVALS) IDENTIFICATION
The problem of the mixture of multivariate Gaussians lies in
the fact that the maximum likelihood solution for the param-
eters no longer has a closed-form analytical solution. This
means that the moments of the distribution (mean, variance,
peaks) need to be found numerically as a superposition of
weighted multivariate Gaussians.

In this context, the task of a required confidence space
allocation, and consequence confidence intervals allocation,
is transformed into the following problem:

Find the cutting surface C : p(x) = b that intersects
with the Gaussian mixtures pdf p(x) given by (8) and gives
a projection contour area on (x1, .. , xM ) coordinates plane
equal to S, where S - union of ellipses.

To find the confidence interval for each estimated param-
eter, the Gaussian mixture pdf has to be marginalized, thus
defining the uncertainty distribution for each parameter xi.

V. CASE STUDIES
The following case studies were performed to assess the
proposed algorithm, which includes posterior distribution and
confidence intervals estimation. For this purpose the RaPId
Toolbox [17] was extended by implementing the proposed
theory in Section IV. The simulation data was generated using
the FMI Toolbox for Matlab allowing for Simulink usage.

The single-machine infinite-bus power system (Fig. 1) was
modeled using Modelica and used to simulate the system’s
response. RaPId [18] allows the parameters estimation of the
generator and its controls. To excite the system a probing
signal was given to reference inputs and a tree-phase fault was
applied. The parameter values used to initialize the algorithm
were chosen according to known ranges that are available for
different components in the literature [19]. Hence, the prior
pdf was chosen as uniform in the parameter space defined for
initialization.
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Each case study subsection is divided into parts:
• Model: It describes the model setup for the particular
case study. The parameters that are estimated and their
range of values. Also, the excitation input signal is pre-
sented if any is applied. For each case the model in Fig. 1
with parameters in Appendix B is used.

• Measurements: The measurements that are used as out-
put signals used in evaluation of fitness in Algorithm 1.

• Choice of the number of particles, Choice of 6, etc..
Those contain the results analysis of the global algorithm
steps corresponding to Fig. 2

The results for all cases are summarized in Table 4.

A. CASE 1: ILLUSTRATIVE EXAMPLE USING
MEASUREMENT DATA FROM STAGED TESTS
This case aims to illustrate the proposed method showing:
a) the reconstruction of the uncertainty pdf of the estimated
parameters, b) the identification of the confidence regions of
a model estimated parameters. This case targets have been
illustrated using the identification of confidence regions in a
2-dimensional form. In this case the field measurements have
been used.
Measurements: The measurements used in this example

come from staged tests that were performed on a turbine-
governor set to determine the response of the turbine to
system frequency deviations, thus the measured output data
is the turbine mechanical power output pm.
Model: The turbine parameters of the power plant system

model that most influence the power output are the droop (R)
and governor time constant (Ts). Hence, they were chosen for
estimation. For this case study the power plant was operated
at different power dispatch levels by varying the initial power
p∗in [20]. The initial power was measured in percentage of the
so-called Maximum Continuous Rating (MCR) that refers to
the gas turbine output at which it enters into the temperature
limit control regime under normal air (temperature/humidity)
ambient conditions, which is 95% of MCR for this particular
case. An incremental signal (1ω = +0.2Hz (0.004 p.u)) was
injected to the frequency reference input of the governor to
mimic the effect of a variation in the system’s frequency.

Initial parameter values were sampled from a uniform dis-
tribution on the space xmin(R,Ts) = [0.03 0.6], xmax(R,Ts) =
[0.08 1.5]. To define the appropriate number of particles for
estimation, experiments that compare the error value depen-
dency on the number of particles were performed. The results
from the experiments are shown in Figs. 4-7.

1) CHOICE OF THE PARTICLES NUMBER
The computational complexity of the Particle Filter highly
increases with the increase of chosen number of particles (see
Table 1) [21]. In addition, complexity of the inverse compu-
tation of 6 rises with the increase of dimension. For this rea-
sons, it is important to choose an optimal number of particles
for the selected case. In Fig. 4(a) the estimation error of the
algorithm steeply drops with the increase of the number of
particles. After N = 10, the estimation error (fitness), which

TABLE 1. Computational complexity evaluation (Case 1).

FIGURE 4. (a) Estimation error (fitness) and (b) Confidence area
dependency on number of particles (Case 1 in Table 4).

FIGURE 5. Marginalized estimate uncertainty pdf(s) and σ

choice (Case 1 when N=10 in Table 4).

FIGURE 6. Reconstructed estimate uncertainty probability density
function (Case 1 when N=10 in Table 4).

is presented in Fig. 4(b), remains approximately the same, i.e.
equal 6 · 10−6. Therefore, N = 10 is chosen.

2) CHOICE OF 6
To reconstruct the estimate uncertainty distribution (given
particles and their weights after the Particle Filter run),
the bandwidth of the kernel has to be estimated (see Fig. 2).
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FIGURE 7. 95% confidence region of [R, Ts] parameters uncertainty of
estimate (corresponds to Case 1 when N=10 in Table 4).

TABLE 2. Estimates of reconstructed pdf (Fig. 5).

In the case of the Gaussian kernel, the standard deviation is
such so-called ‘‘bandwidth’’, that has to be estimated. It is
assumed that each component of the Gaussian mixture has
the same bandwidth and that all the estimated parameters are
independent. In other words,6 (8) is aMxM diagonal matrix,
where each diagonal value corresponds to the dimension of
each parameter. For this purpose threemethods for data-based
bandwidth selection were applied using the KDE Toolbox for
MATLAB [22].

Themethods for droop estimation of the same performance
in terms of confidence in estimates are the Rule of Thumb
method and the Least-Squares Cross Validation method. The
Rule of Thumb method minimizes the sample variance while
maximizing confidence. Least-Squares Cross Validation pro-
vides a more prominent peak at the parameter value. As it
can be observed in Fig. 5, ROT smooths out the distribution
features more than other methods, and therefore it is not
appropriate for estimation of ‘‘wavy’’ distributions with two
peaks close to each other, which is not the case in this exam-
ple. The LCVmethod is more sensitive to variance than ROT,
but less sensitive than HSJM (Fig. 5). The best method for
the time constant uncertainty pdf is LCV, as it gives maximal
confidence (Fig. 5).

Another way to evaluate the performance of the proposed
methods is to compare their estimates to the real (known)
parameter value. Thus, after reconstructing the distribu-
tions (5), the mean values have been compared. The result
shows that all the values are close to the real value, but in the
case of the case of droop R estimate, the best performance is

shown by Gauss method, while the ROT gives the worst. The
opposite behavior of Gauss and ROT has been observed in
the case of time constant estimate Ts. The closest estimates
to the real values have been given by HSJM method.

The effectiveness of the algorithm can be assessed by
comparing the confidence regions estimated using a Gaussian
distribution and the proposed method. Under the assumption
that the samples of the posterior distribution are from the
Gaussian distribution, the confidence region can be eval-
uated. For each parameter, i.e. droop [Fig. 5(a)] and time
constant [Fig. 5(b)], a comparison between the best estimated
bandwidth using the proposed methods and the bandwidth
estimated using a Gaussian distribution is shown. It can be
concluded that the Gaussian distribution simplifies the shape
and it is valid only for rough approximations, while the
proposed methods provide increased shape resolution and an
increase of confidence for smaller percentages of probability.
For example, in the case of 95% probability, the right value
lies in the estimated interval, the difference in the intervals
estimated from the compared methods is negligible; however,
for 50% probability, the intervals shrink considerably.

3) ESTIMATE UNCERTAINTY DISTRIBUTION AND
CONFIDENCE REGION RECONSTRUCTION
For the estimated characteristics (w, µ, 6, N ), the dis-
tribution (8) is reconstructed (Fig. 6) and the confidence
region ((13) and Section IV-C) is defined. The estimated
and the real parameters values lay in the identified confi-
dence region. It is worth to notice that the real values of
the identified turbine governor parameters lay at the peak
of the reconstructed distribution. Considering the high pre-
cision or, namely, small estimation error of the Particle Filter,
an engineer can use smaller than 95% confidence interval
when defining the parameter’s variance.

4) VERIFICATION OF THE PARTICLE NUMBER CHOICE
To verify the choice of the number of particles, the confidence
regions of 95% and 65% were estimated for particle numbers
in the range of [5..100]. Results are presented in Fig. 4. The
shape of the distribution, created by increasing the number
of particles, causes an increase in the area of the confidence
regions as shown in Fig. 4. An adequate number of particles
must correspond to a minimal fitness and a small uncer-
tainty or confidence area. Therefore, N = 10 is an adequate
number for this case study.

To analyze the dependency of confidence intervals to the
number of particles for each estimated parameter, 95% con-
fidence intervals were extracted by marginalizing the recon-
structed distributions. Fig. 8 shows the estimates with respect
to the real value of the parameters and the 95% confidence
region limits for each parameter. The 95% confidence region
for the Ts estimate grows as the number of particles increases
from N = 5 to N = 70, while there is no clear dependency
for the 95% confidence region of R estimate.
These results imply that the droop R can be precisely

estimated when N > 5, while the time constant’s Ts value is
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FIGURE 8. Confidence limits of the 95% probability for each parameter vs
the number of particles (N) (Case 1 in Table 4).

underestimated for most of the cases. This can be explained
by considering the fact that the tests performed in the plant
did not heavily excite transient dynamics, and thus, these
dynamics are difficult to observe in the measurement data,
in addition to the presence of measurement noise. This causes
a comparatively large divergence in the estimates of Ts with
respect to those of R.

B. CASE 2: POWER PLANT PARAMETER ESTIMATION
UNDER STEADY STATE OPERATION USING
SIMULATED MEASUREMENTS
In order to illustrate the methodology on a large set of esti-
mated parameters, simulations of a power plant connected to
a grid were performed.
Model: The power plant model used in this case is shown

in Fig. 1. The detailed list of parameters of each component is
available in [20]. The parameters to be estimated are the gen-
erator’s inertiaM0 (initial value range [6..7]), governor droop
R (initial value range [0.04..0.065]), governor time constant
Ts (initial value range [0.5..1.5]), automatic voltage regula-
tor (AVR) gain K0 (initial value range [4..6]), the AVR’s field
circuit time constant Te (initial value range [0.005..0.03]),
washout gain of the power system stabilizer (PSS) Kω (initial
value range [20..90]), and the PSS’s washout time constant
Tω (initial value range [5..40]).
Measurements: The following synthetic measurements

have been used: voltage phasor (v.i, v.r) and current pha-
sor (i.i, i.r) from bus (Fig. 1), mechanical power (pm) (output
of the turbine governor), speed (ω) (input to the turbine gover-
nor), voltage (vs) as the PSS output, and the field voltage (vf )
as the AVR’s output. The sampling rate of the simulation was
set to 50 samples/s. A 1% Gaussian white noise was added to
the voltage and current phasors.

1) CHOICE OF NUMBER OF PARTICLES
To keep the estimation error low, the number of particles
needed for the set of 7 parameters to estimate is bigger than
in the case for 2 parameters. Fig. 9 shows that for Case 2 the
estimation error is minimized when N = 500.

2) CHOICE OF 6
Taking into consideration the analysis for the choice of 6 in
Section V-A, the ROT method was chosen for Cases 2-4.

Results are summarized in Table 3.

FIGURE 9. Estimation error (fitness) dependency on number of
particles (Cases 2-4 in Table 4).

TABLE 3. Bandwidth estimation by ROT method (N = 500) (Case 2-4).

C. CASE 3: POWER PLANT PARAMETERS ESTIMATION
UNDER TRANSIENT GRID DISTURBANCES USING
SIMULATED MEASUREMENTS
Model: This case study was performed for a case when
the system is excited with a 3 phase fault occurred at
t = 10−10.2 s. Such a test should enable engineer to obtain a
more precise estimation of a certain time constants by having
additional system excitation. In addition, it allows to test the
method with a larger dynamic variation in the system states,
which makes the identification problem more complex. All
the other simulation and identification settings are the same
as in Case 2.
Measurements: In this case, a 1% Gaussian process noise

was added to the bus in order to imitate the natural power
fluctuations observed in reality.

1) CHOICE OF NUMBER OF PARTICLES
When a large disturbance is applied to the model, the sys-
tem dynamics are activated and reflected in the simulated
data (measurements). The operating state may vary and
non-linear components become active, which brings more
uncertainty into identification process. For this reason, the
estimation error is higher than in the steady state operation
case (Case 2). The error is relatively unchanged with growth
of the particles number (Fig. 9), so N = 500 was chosen for
convenience and consistency with other cases.

D. CASE 4: POWER PLANT PARAMETERS ESTIMATION
THAT UNDER A TRANSIENT GRID DISTURBANCE AND
NON-GAUSSIAN NOISE USING SIMULATED
MEASUREMENTS
There are several types of noise that are more prominent in
power systems, which may corrupt measurements or influ-
ence the process. The largest influence is that of thermal
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TABLE 4. Numerical experiment results.

FIGURE 10. Marginalized estimate uncertainty pdf(s) (Case 3 (N=500)
in Table 4).

noise (Johnson-Nyquist noise) present in every conductor,
and Flicker noise (or 1/f noise) that is present in almost all
electronic devices. The latter, contrary to thermal noise, has
a non-white wide-band spectrum that is known as ‘‘pink’’
noise.
Model: In this case study the performance of the algorithm

is observed in the case when a 3 phase fault disturbance and
a 1% non-Gaussian ‘‘pink’’ noise as process noise is applied.
The process noise has influence on each input-output signal
measured in the system.
Measurements: The synthetic measurements have been

taken and used in this case study are the same as for the
Case 2. The difference with Case 3 is that 1% non-Gaussian
‘‘pink’’ noise is added to the voltage and current phasors at
the bus (Fig. 1).

1) CHOICE OF NUMBER OF PARTICLES
Fig. 9 shows that the estimation error decreases with the
increase of particles number. The optimal particle number can

FIGURE 11. Marginalized estimate uncertainty pdf(s) (Case 4 (N=500)
in Table 4).

be considered equal to N = 500, due to a large drop of the
error value fromN = 300 toN = 500, and approximately the
same value for the error after N = 500. In addition, it allows
for comparison with Cases 2-4.

E. ESTIMATE UNCERTAINTY DISTRIBUTION AND
CONFIDENCE REGION RECONSTRUCTION:
COMPARISON OF CASES 2-4
For the estimated distribution characteristics (w, µ, 6, N ),
the marginal distributions (8) are reconstructed in Figs. 10-11
for Case 3 and 4 respectively. The marginal confidence
regions, that are formulated in (13) and Section IV-C, are
estimated (Table 4). The estimated and real parameter values
lay in a region that is smaller than 65% of confidence. It is
worth to notice that the AVR parameter values are the most
distant from the peak of the reconstructed distribution than
other parameters. Considering the high precision or small
estimation error of the Particle Filter, an engineer can use
smaller confidence interval than 95% when defining the
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parameter variance. The assumption is that the solution to the
formulated problem is unique in the defined initial parameter
space is confirmed. It is possible to observe one prominent
peak for each marginalized distribution.

VI. DISCUSSION
The developed methodology of parameters identification
with their uncertainty representation in form of the dis-
tribution can play important role in power system models
validation and parameters calibration [23], [24]. The model
validation regularly performed by transmission system oper-
ators (TSOs) to keep the models up to date. These models are
used to test system operation in different conditions. Based
on these tests TSOs derive guidelines that comprise the set
of actions in order to preserve normal operation of the grid.
Current practices mainly based on Kalman filters [4] estimat-
ing the uncertainties by uni-modal Gaussian distribution. This
approximation is not always valid.

One of the possible cases in which the shape of estimated
distribution is important become when bivariate ambiguity in
parameter estimation takes place. Namely, when exchange
of estimated parameters values won’t change precision of
system output. For example, several time constants of the
controller (e.g. static var compensator) are laying in the same
range of values, so the algorithm will be initiated in the
same parameter estimation range. But having measured only
input and output of the controller will not allow to define
which estimated value belongs to which parameter. So the
problem in such formulation will have two possible answers.
The final decision on a proper estimate has to be taken by
the operator. Advantage of the proposed method consists in
ability to estimate two or more- peaked distribution instead
of rough approximation of Gaussian estimate.

The shape of the uncertainty distribution in parameter
space is crucial in decision of particularization of the assumed
model. This can help the engineer to decide on another exper-
iment set up for model validation or parameters calibration.
For example, if the top of the distribution is flat, there is a
big range of the parameters that give approximately the same
fitness. The reason for that could be that the measured signals
are not are not sensitive to the parameters. In this case the
measured signals to use in identification workflow should be
selected by considering the dynamics where the parameters
of interest are involved [6].

Observing the estimated parameter uncertainties can help
to verify the assumed model structure. Such information
can be found in the estimation errors (fitness) calculated by
the algorithm. In the case the model structure is erroneous,
the fitness value is large. This indicated to the operator to
change the model assumption.

This work can also be valuable for robust control
design [25]. For this task it is of crucial importance to
consider the uncertainties in parameters of real engineering
systems that are vulnerable to external disturbances and mea-
surement noise. In addition, the calibrated model can signif-
icantly decrease the requirements for robust control design.

The proposed method can be used for uncertainty assess-
ment of state tracking. However, the precision of the state esti-
mator can be improved employing the Interacting Multiple
Model (IMM) algorithm [26]. IMM combines state hypothe-
ses from multiple filter models (e.g. Particle Filter, Kalman
Filters) to obtain better estimates. IMM has been applied
in the aerospace field [27] for highly maneuvering target
tracking and could be applied in complex nonlinear power
systems for state tracking of generators and their controls.

The proposed methods for bandwidth selection are not
the only that could solve the density reconstruction prob-
lem. The expectation maximization (EM) algorithm, that
has been widely used for other applications in power sys-
tems [28], [29], could also be applied. This can be considered
as a future extension of the work presented in this paper.

VII. IMPLEMENTATION CONSIDERATIONS
The proposed methodology is generic and can be applied
to any physical system, not only the power systems. This
covers the range of the applications in multi-domain mod-
eling. In order to get a good estimate located closer to the
peak of the uncertainty distribution, the assumption of the
model structure has to be correct and the measurements being
sensitive to the estimated parameters dynamics. As more
measurements are used, more precise the parameters can be
estimated (avoiding dynamics interference or superposition
effect). The quality of the estimates depends also on the
sampling frequency. Suppose an engineer wants to estimate
the time constants, then the measurements has to be sampled
following Nyquist-Shannon-Kotelnikov theorem.

Precision of the distribution reconstruction highly depends
on number of particles chosen in the algorithm. The small
number of particles can lead to the erroneous conclusions
on the uncertainty and large estimation error. Therefore, it is
recommended to calibrate the algorithm on the known model
before applying to the real system parameters identification.

VIII. CONCLUSION
A new methodology to estimate model parameters and their
uncertainty distributions, therefore, the parameter confidence
intervals, has been presented and justified. The particular-
ization of the particle filter as the nonparametric Bayesian
filtering concept has been studied. The number of particles
has been chosen considering computational time and fit-
ness value. The bandwidth estimation algorithms has been
compared by considering estimates’ real values and the dis-
tributions’ shape. In addition, the confidence area/intervals
dependency on the number of particles, and the presence of
noise, has been studied. The proposed and alternative meth-
ods were applied to estimate the parameters of a Greek power
plant considering steady-state and transient operation condi-
tions. The proposedmethodology gives additional insight into
power system properties when estimating the parameters of
themodel. This allows power system analysts to decide on the
design of validation tests of the chosen model. Consequently,
this technique is recommended for power system analysts
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when performing power system model validation and param-
eter calibration tasks.

APPENDIX A
Theorem: The union of the ellipsoids Si formed by the
weighted mixture of Gaussians contains exactly or more
than I percent of probability if each surface contains I of
probability.
Proof: Let Si be the M-dimensional ellipsoid surface such

as P(Xi ∈ Si) = I , where I is a chosen percent of probability,
which Si contains, or the confidence that the estimated value
located inside the ellipsoid with probability I . Let the union
of the surfaces be defined as

⋃M
i=1 Si, then from the definition

of probability and the probability product rule, the following
equation can be defined:∫

⋃M
i=1 Si

p(x)dx = P(Xj ∈
M⋃
i=1

Si)

=

M∑
i=1

P(Xj ∈
M⋃
i=1

Si|J = j)P(J = j) ≥ I ,

because

P(Xj ∈
M⋃
i=1

Si|J = j) ≥ I ,
M∑
i=1

P(J = j) = 1.

It is known that the confidence region of the parameter
estimate (ellipsoids Si) is proportional to square root of vari-
ance (standard deviation) of the parameter estimate. There-
fore, if we show that the resulting variance of the weighted
distribution is equal or bigger than sum of weighted variances
of separate distributions the theorem will be proved. From
equation (8) and by the definition of moments (i.g. mean,
variance) of distributions p(x) ∼ N (µ(1), µ(2)) find:

µ(k)
= Ep[xk ] =

∑
i

ωiEpi [x
k ] =

∑
i

ωiµ
(k)
i (21)

where k - the moment number

µ
(2)
i = σ

2
i + (µ(1)

i )2

Var(p) = µ(2)
− (µ(1))2 =

∑
i

ωiµ
(2)
i − (

∑
i

ωiµ
(1)
i )2

=

∑
i

ωi(σ 2
i + (µ(1)

i )2)− (
∑
i

ωiµ
(1)
i )2

=

∑
i

ωiσ
2
i +

∑
i

ωi(µ
(1)
i )2 − (

∑
i

ωiµ
(1)
i )2 (22)

According to Jensen’s inequality [11]:

φ(E[X ]) ≤ E[φ(X )], (23)

where φ is a convex function. Thus, the average squaredmean
can be no less than the square of the average mean.

Var(p) =
∑
i

ωiσ
2
i + ε, ε ≥ 0 (24)

The variance of the mixture is the mixture of the variances
plus a non-negative term accounting for the (weighted) dis-
persion of the means.

APPENDIX B
Greek Power Plant parameters: Generator VI [7]: Sn =
100 MVA, Vn = 19 kV, ra0 = 0.0028 p.u., xd0 = 2.08 p.u.,
xq0 = 2 p.u., x ′d0 = 0.305 p.u., x ′q0 = 0.49 p.u., x ′′d0 =
0.245 p.u., x ′′q0 = 0.245 p.u., t ′d0 = 6.8 s, t ′q0 = 0.62 s, t ′′d0 =
0.0402 s, t ′′q0 = 0.077 s, taa = 0 s,M0 = 6.48 kWs/kVA; TG

TypeI [7]: R = 0.04, Ts = 1 s, Tc = 0.3 s, T3 = 0.04 s,
T4 = 5 s, T5 = 4 s, pmax = 0.5 p.u., pmin = 0; AVR
TypeIII [7]: v0 = 1 p.u., K0 = 4.15, T2 = 1, T1 = 1,
Te = 0.01 s; PSS TypeII [7]: Kp = 75, Tw = 25 s, T1 =
0.15 s, T2 = 0.01 s, T3 = 0.15 s, T4 = 0.01 s, Ymin = −0.1,
Ymax = 0.1; Input references: for PSS: V = 1 p.u.; for AVR:
V0 = 1 p.u.
The Modelica components of the model are included into

the iPSL library and available in Github (see [8]).

ACKNOWLEDGMENT
The authors are thankful to George Antonopoulos of IPTO
who kindly provided measurements and Greek power plant
structure information.

REFERENCES
[1] D. Jones, ‘‘Estimation of power system parameters,’’ IEEE Trans. Power

Syst., vol. 19, no. 4, pp. 1980–1989, Nov. 2004.
[2] M. Burth, G. C. Verghese, and M. Vélez-Reyes, ‘‘Subset selection for

improved parameter estimation in on-line identification of a synchronous
generator,’’ IEEE Trans. Power Syst., vol. 14, no. 1, pp. 218–225,
Feb. 1999.

[3] G. K. Stefopoulos, P. S. Georgilakis, N. D. Hatziargyriou, and
A. P. S.Meliopoulos, ‘‘A genetic algorithm solution to the governor-turbine
dynamic model identification in multi-machine power systems,’’ in Proc.
44th IEEE Conf. Decision Control, Dec. 2005, pp. 1288–1294.

[4] Z. Huang, P. Du, D. Kosterev, and S. Yang, ‘‘Generator dynamic
model validation and parameter calibration using phasor measurements
at the point of connection,’’ IEEE Trans. Power Syst., vol. 28, no. 2,
pp. 1939–1949, May 2013.

[5] N. Zhou, D. Meng, and S. Lu, ‘‘Estimation of the dynamic states of
synchronous machines using an extended particle filter,’’ IEEE Trans.
Power Syst., vol. 28, no. 4, pp. 4152–4161, Nov. 2013.

[6] V. S. Perić, X. Bombois, and L. Vanfretti, ‘‘Optimal signal selection for
power system ambient mode estimation using a prediction error criterion,’’
IEEE Trans. Power Syst., vol. 31, no. 4, pp. 2621–2633, Jul. 2016.

[7] F.Milano. (May 2010). Power System Analysis Toolbox Documentation for
PSAT Version 2.1.6. [Online]. Available: http://faraday1.ucd.ie/psat.html

[8] L. Vanfretti, T. Rabuzin, M. Baudette, and M. Murad, ‘‘iTesla power
systems library (iPSL): A Modelica library for phasor time-domain sim-
ulations,’’ SoftwareX, vol. 5, pp. 84–88, May 2016. [Online]. Available:
http://dx.doi.org/10.1016/j.softx.2016.05.001

[9] S. C. Kramer and H.W. Sorenson, ‘‘Bayesian parameter estimation,’’ IEEE
Trans. Autom. Control, vol. AC-33, no. 2, pp. 217–222, Feb. 1988.

[10] A. Doucet, N. de Freitas, and N. Gordon, Sequential Monte Carlo Methods
in Practice. New York, NY, USA: Springer, 2001.

[11] C. M. Bishop, Pattern Recognition and Machine Learning. New York, NY,
USA: Springer, 2006.

[12] G. Strang, Introduction to Linear Algebra. Wellesley Hills, MA, USA:
Cambridge Press, 1986.

[13] B. A. Turlach, ‘‘Bandwidth selection in kernel density estimation:
A review,’’ Inst. Statist. Ökonometrie, Humboldt-Univ. Berlin, Berlin,
Germany, Tech. Rep., Jan. 1993, pp. 23–493.

[14] M. C. Jones, J. S. Marron, and S. J. Sheather, ‘‘A brief survey of bandwidth
selection for density estimation,’’ J. Amer. Statist. Assoc., vol. 91, no. 433,
pp. 401–407, 1996.

[15] T. Duong and M. L. Hazelton, ‘‘Cross-validation bandwidth matrices for
multivariate kernel density estimation,’’ Scandin. J. Statist., vol. 32, no. 3,
pp. 485–506, 2005.

[16] P. Hall, S. J. Sheather, M. C. Jones, and J. S. Marron, ‘‘On optimal
data-based bandwidth selection in kernel density estimation,’’ Biometrika,
vol. 78, no. 2, pp. 263–269, 1991.

VOLUME 5, 2017 19223



T. Bogodorova et al.: Identifying Uncertainty Distributions and Confidence Regions of Power Plant Parameters

[17] L. Vanfretti, T. Bogodorova, and M. Baudette, ‘‘Power system model
identification exploiting the Modelica language and FMI technolo-
gies,’’ in Proc. IEEE Int. Conf. Intell. Energy Power Syst., Jun. 2014,
pp. 127–132.

[18] L. Vanfretti et al., ‘‘RaPId: A modular and extensible toolbox for param-
eter estimation of Modelica and FMI compliant models,’’ SoftwareX,
vol. 5, pp. 144–149, Aug. 2016. [Online]. Available: http://dx.doi.org/
10.1016/j.softx.2016.07.004

[19] P. M. Anderson and A. A. Fouad, Power System Control and Stability.
New York, NY, USA: Wiley, 2008.

[20] T. Bogodorova, L. Vanfretti, and K. Turitsyn, ‘‘Bayesian parameter estima-
tion of power system primary frequency controls under modeling uncer-
tainties,’’ IFAC-PapersOnLine, vol. 48, no. 28, pp. 461–465, Oct. 2015.

[21] N. Zhou, D. Meng, Z. Huang, and G. Welch, ‘‘Dynamic state estimation
of a synchronous machine using PMU data: A comparative study,’’ IEEE
Trans. Smart Grid, vol. 6, no. 1, pp. 450–460, Jan. 2015.

[22] A. Ihler and M. Mandel. (2003). Kernel Density Estimation Tool-
box for MATLAB. [Online]. Available: http://www.ics.uci.edu/ihler/code/
kde.html

[23] D. N. Kosterev, W. A. Mittelstadt, and C. W. Taylor, ‘‘Model validation
for the August 10, 1996 WSCC system outage,’’ IEEE Trans. Power Syst.,
vol. 14, no. 3, pp. 967–979, Aug. 1999.

[24] E. Allen, D. Kosterev, and P. Pourbeik, ‘‘Validation of power system
models,’’ in Proc. IEEE Power Energy Gen. Meet., Jul. 2010, pp. 1–7.

[25] G. C. Calafiore and M. C. Campi, ‘‘The scenario approach to
robust control design,’’ IEEE Trans. Autom. Control, vol. 51, no. 5,
pp. 742–753, May 2006.

[26] A. F. Genovese, ‘‘The interacting multiple model algorithm for accurate
state estimation of maneuvering targets,’’ Johns Hopkins APL Tech. Dig.,
vol. 22, no. 4, pp. 614–623, 2001.

[27] E. Mazor, A. Averbuch, Y. Bar-Shalom, and J. Dayan, ‘‘Interacting mul-
tiple model methods in target tracking: A survey,’’ IEEE Trans. Aerosp.
Electron. Syst., vol. 34, no. 1, pp. 103–123, Jan. 1998.

[28] R. Singh, B. C. Pal, and R. A. Jabr, ‘‘Statistical representation of distri-
bution system loads using Gaussian mixture model,’’ IEEE Trans. Power
Syst., vol. 25, no. 1, pp. 29–37, Feb. 2010.

[29] F. M. Gonzalez-Longatt, J. L. Rueda, I. Erlich, D. Bogdanov, and W. Villa,
‘‘Identification of Gaussian mixture model using mean variance mapping
optimization: Venezuelan case,’’ in Proc. 3rd IEEE PES Int. Conf. Exhib.
Innov. Smart Grid Technol. (ISGT Europe), Oct. 2012, pp. 1–6.

TETIANA BOGODOROVA (S’12) received the
B.S. degree in computerized systems, automat-
ics and control, the M.Sc. degree in automatic
and control systems from the National Technical
University of Ukraine–Kyiv Polytechnic Insti-
tute. She is currently pursuing the Ph.D. degree
with Electrical Power Systems Division, School
of Electric Engineering, KTH Royal Institute of
Technology, Stockholm. Her experience includes
development of the operations support system for

telecommunication industry as a System Engineer with System Analytics
Group, Research and Development, NetCracker Technology Corp. Her cur-
rent research interests lie on intersection of system identification theory and
power systems analysis, modelling, and validation.

LUIGI VANFRETTI (SM’15) is currently an
Associate Professor (Tenured) and Docent with
the Electric Power Systems Department, KTH
Royal Institute of Technology, Stockholm,
Sweden. He was conferred the Swedish Title of
Docent in 2012 and was an Assistant Professor
with the Electric Power Systems Department from
2010 to 2013. Since 2011, he has served as an
Advisor to the Research and Development Divi-
sion of Statnett SF, Oslo, Norway, where he is

a Special Advisor in strategy and public affairs (SPA–Strategi og Sam-
funnskontakt). His major research funded projects are IDE4L, Ideal Grid
for All; FP7-Energy-2013-7-1-1 Call. PI for KTH funded by the European
Commission; iTesla, Innovative Tools for Electric Power System Security
within Large Areas; FP7-Energy-2011-1 Call. PI for KTH funded by the
European Commission; STRONg2rid, Smart Transmission Grids Operation
and Control; Funded by Nordic Energy Research and Svenska Kraftnät,
Sustainable Energy Systems 2050 call. PI for KTH. He is mainly active
in the Power and Energy Society, where he contributes to several working
groups, task forces, and committees. He served, since 2009, in the IEEE
Power and Energy Society PSDPWorking Group on Power SystemDynamic
measurements, where he is currently the Vice-Chair. In addition, since 2009,
he has served as the Vice-Chair of the IEEE PES CAMS Task Force on Open
Source Software.

VEDRAN S. PERIĆ (M’17) received the M.S.
degrees in power systems and power electronics
from the University of Novi Sad, Serbia, the joint
Ph.D. degree from the KTH Royal Institute of
Technology, Stockholm, Sweden (primary insti-
tution), Delft University of Technology, Delft,
Netherlands and Comillas Pontifical University,
Madrid, Spain in 2016. He held positions of
Research and Teaching Assistant with the Univer-
sity of Novi Sad and Visiting Researcher with the

Delft University of Technology. He was a Senior Power System Engineer
with GE Grid Solutions Research and Development Department, GEWAMS
Center of Excellence and as a Senior Business Analyst with Regional Secu-
rity Coordinator, TSCNET Services GmbH. He is currently a Senior Power
System Consultant with GE Consulting in Munich, Germany. His research
interests include a wide range of topics related to power system operation and
control, with the focus on commercial application of innovative technologies.

KONSTANTIN TURITSYN (M’09) received the
M.Sc. degree in physics from the Moscow Insti-
tute of Physics and Technology, Moscow, Russia,
and the Ph.D. degree in physics from the Landau
Institute for Theoretical Physics, Moscow, Russia,
in 2007. He was an Oppenheimer Fellow with
the Los Alamos National Laboratory, Los Alamos,
NM, USA, and a Kadanoff-Rice Post-Doctoral
Scholar with the University of Chicago, Chicago,
IL, USA. He is currently an Assistant Professor

with the Department of Mechanical Engineering, Massachusetts Institute of
Technology, Cambridge, MA, USA. His current research interests include
nonlinear and stochastic dynamics of complex systems, energy-related fields
such as, stability and security assessment, integration of distributed, and
renewable generation.

19224 VOLUME 5, 2017


