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Abstract: Nonlinear Bayesian filtering has been utilized in numerous fields and applications.
One of the most popular class of Bayesian algorithms is Particle Filters. Their main benefit is
the ability to estimate complex posterior density of the state space in nonlinear models. This
paper presents the application of particle filtering to the problem of parameter estimation and
calibration of a nonlinear power system model. The parameters of interest for this estimation
problem are those of a turbine governor model. The results are compared to the performance
of a heuristic method. Estimation results have been validated against real-world measurement
data collected from staged tests at a Greek power plant.
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1. INTRODUCTION

Mathematical modeling and parameter estimation of elec-
trical power systems are of the great importance for power
system operators. Model uncertainties and deviations from
reality deeply affect the ability of operators to predict large
blackouts Kosterev and Davies (2010). Speed governors
play a major role in power system security and dynamic
performance. They are responsible for primary frequency
control in the power grid.

Heuristic algorithms to identify of the steam turbine speed
governor model parameters have been successful Tao et al.
(2012), Stefopoulos et al. (2005). In addition, these algo-
rithms have been used to solve other estimation problems
in power systems Lee and El-Sharkawi (2008). The non-
linear recursive least squares method has been applied to
estimate parameter values optimizing the measurement
and simulation difference in voltage and current through
time Pourbeik (2009). Extended Kalman filtering was suc-
cessfully applied for generator parameter estimation from
real measurements in Huang et al. (2013).

The application of particle filters in power systems has
been recently investigated for dynamic state estimation
of a synchronous machine Zhou et al. (2015). Due to its
non-requiring assumptions about the state-space model or
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the state distributions, there is great potential to exploit
Bayesian filtering approach for parameter identification
and model validation.

There are technical issues related to identification prob-
lems in power systems. First, there is a lack of measure-
ment data due to several reasons. Experimental testing
is limited, as it requires the switching of components or
part of the network, which is costly. From the other hand,
confidentiality issues are always present, so an operator
may be able to provide measurements, but not to provide
the model, or vice versa. Second, even when the model and
measurements are provided, there is always ambiguity and
uncertainty in these data. Some details about the network
are not documented properly or are a trade secret.In ad-
dition, time-series data may contain different number of
samples and usually has to be processed before estimation
algorithms can be applied.

The contribution of this paper consists in evaluating meth-
ods from different frameworks - the Bayesian framework
(Particle Filter (PF)) and heuristic optimization (Particle
Swarm Optimization (PSO)) in combination with naive
(gradient descent) or simplex search (Nelder-Mead (NM)
method) using real measurements from staged tests in a
Greek power plant.

The remainder of this article is structured as follows.
Section 2 describes the algorithms applied for parameter
estimation and the turbine speed governor model in the
Greek power plant. Numerical tests and simulation results
are shown in Section 3, and further discussed in Section 4.
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Finally, conclusions were drawn and future work is out-
lined in Section 5.

2. MODELING AND METHODOLOGY

The Greek power plant which will be used in this pa-
per was not modeled for dynamic simulation before this
study and relatively little information was available about
the dynamic characteristics of the equipment. Complete
modeling of the plant has been carried out using Model-
ica Fritzson (2011), in Bogodorova et al. (2013), Qi (2014),
however, in this paper only the turbine-governor system is
described in detail.

2.1 The dynamic model of the turbine-governor

The model TG Type I, Milano (2005), was used to rep-
resent the dynamics of the real turbine governor in the
Greek power plant, as follows

p∗in = pref +
1

R
(ωref − ω) (1)

pm = xg3 +
T4

T5

(
xg2 +

T3

Tc
xg1

)
(2)

ẋg1 = (pin − xg1)/Ts (3)

ẋg2 =

((
1− T3

Tc

)
xg1 − xg2

)
/Tc (4)

ẋg3 =

((
1− T4

T5

)(
xg2 +

T3

Tc
xg1

)
− xg3

)
/T5 (5)

pin =




p∗in if pmax ≥ p∗in ≥ pmin

pmax if p∗in > pmax

pmin if p∗in < pmin

(6)

where
ωref - reference speed [p.u];
R - droop [p.u.];
pmax - maximum turbine output [p.u.];
pmin - minimum turbine output [p.u.];
Ts - governor time constant [s];
Tc - servo time constant [s];
T3 - transient gain time constant [s];
T4 - power fraction time constant [s];
T5 - reheat time constant [s];

This model was chosen because of its simplicity and ability
to reproduce the main dynamics of the governor and steam
turbine. It is a very simple approximation of the real
dynamics, which brings deviation of the model behavior
from the real system response.

A droop governor response is used in turbine generator
controls to help maintaining an electrical grid at constant
frequency. If the grid frequency drops below rated fre-
quency, the turbine will be commanded to increase its
power output. If the grid frequency increases above the
rated frequency, the turbine will be commanded to reduce
its power output. In other words the primary frequency re-
sponse is aimed to automatically change of the gas turbine
load to compensate for change in grid frequency.

2.2 Bayesian filtering concept

Bayesian filtering is one of the most popular methods to
solve inverse problems. It recursively estimates a belief
in the unmeasured states/parameters {xn}, Kramer and
Sorenson (1988), by using all available information about
the system’s structure

dx

dt
= f(x(t), t) (7)

yn = h(x(tn), tn, σn), (8)
where σn- measurement noise; and y1:n = {yi, i = 1..n}
are measurements. Assuming that the initial probability
distribution function (pdf) (prior), p(x0|y0) = p(x0), is
given, one has to construct the posterior pdf, p(xn|y1:n).
This process is recursive and may be performed in two
stages: prediction and update.

At the prediction step the Chapman-Kolmogorov equa-
tion, Doucet et al. (2001), is applied:

p(xn|y1:n−1) =

∫
p(xn|xn−1)p(xn−1|y1:n−1)dxn−1 (9)

At the update step when the measurements yn have been
received, the Bayes’ rule is exploited to update the prior
to the posterior pdf given the measurements yn:

p(xn|y1:n) =
p(yn|xn)p(xn|y1:n−1)

p(yn|y1:n−1)
(10)

The normalizing constant can be evaluated using:

p(yn|y1:n−1) =

∫
p(yn|xn−1)p(xn|y1:n−1)dxn (11)

The likelihood function p(yk|xk) is represented trough
measurement equation, where the properties of the mea-
surement noise are known.

In Bayesian inference, all of uncertainties are treated as
random variables. Bayesian filtering is optimal in a sense
that it seeks the posterior distribution which uses all of
available information expressed by probabilities (assuming
they are quantitatively correct). However, as time pro-
ceeds, one needs infinite computing power and unlimited
memory to calculate the optimal solution, except in some
special cases (e.g. linear Gaussian or conjugate family
cases). Hence, in general, we can only seek a suboptimal
or locally optimal solution Chen (2003).

2.3 Particle Filter

The particle filter is an nonparametric implementation
of the Bayes filter. The particle filters approximate the
posterior pdf by a finite number of parameters. The key
idea of the particle filter is to represent the posterior
pdf p(xn+1|yn) by a set of random samples drawn from
the posterior. Instead of representing the distribution in
parametric form (exponential function for a normal distri-
bution), particle filters represent a distribution by a set of
samples drawn from this distribution. Such a representa-
tion is approximate, but it is nonparametric, and therefore
can represent a much broader space of distributions than,
for example, Gaussians. Another advantage of the sam-
ple based representation is its ability to model nonlinear
transformations of random variables, as shown in Fig. 1.
The samples of a posterior distribution are called particles
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Fig. 1. Particle Filter with importance sampling and
resampling

{x(i)
n }. Each particle is a concrete instantiation of the state

(parameter value) at time t.

Algorithm 1 Particle Filter
1: procedure PF(pmin, pmax, Np, ε, σK , nit)
2: while n < nit and {stop criteria} do
3: Step 1. Initialization (sampling from uniform

prior):
4: for i = 1 to Np do
5: draw the samples x

(i)
n ∝ p(x0)

6: W
(i)
0 ← 1/Np.

7: Step 2. Importance Sampling:
8: for i = 1 to Np do
9: draw samples x̂

(i)
n ∝ p(xn|x(i)

n−1),
10: x̂

(i)
n ← {x(i)

0:n−1, x̂
(i)
n }

11: Step 3. Weight update with normalization:
12: for i = 1 to Np do
13: RSSD(y, ŷ) ← 1

M

∑
i(

yi−ŷi

yi
)2

14: fitness ← RSSD(y, ŷ)

15: W
(i)
n ← 1− fitness∑

i
fitness

16: Step 4. Resampling:
17: Generate/prune particles x

(i)
n from {x̂(i)

n }
18: according to W

(i)
n /(prune if W (i)

n < ε)
19: to obtain Np random samples

where [pmin, pmax] - range of parameters’ values which
define parameter space,
Np - number of particles used to fill the space of parameter
values;
σK - covariance of the kernel;
Y - real measurements;
Ŷ - estimate;
ε - prune threshold (defines which percentage of particles
with lowest weight will not survive);
{stop criteria} - set of conditions to finish the particle
filtering main cycle
M - number of measurement instances.

The algorithm described above and illustrated in Fig. 1, is
a general description of the principle of particle filtering.
Variations in the realization of each step lead to different
types of particle filters and largely depend on the applica-
tion.

In the case of the application to the power plant scenario
herein, weighting is specific and based on the value of
the fitness function (relative squared difference between
simulation and real measurements), while resampling is

used a well-known and widely applicable (previously for
pattern recognition and classification) Gaussian kernel
technique Bishop et al. (2006).

2.4 Heuristic optimization concept

The common features of all heuristic optimization (HO)
methods is that they start off with a more or less ar-
bitrary initial solution, iteratively produce new solutions
by some generation rule and evaluate these new solutions,
and eventually report the best solution found during the
search process. The execution of the iterated search pro-
cedure is usually halted when there has been no further
improvement over a given number of iterations (or further
improvements cannot be expected); or when the found
solution is good enough, or when the allowed CPU time (or
other external limit) has been reached Maringer (2005).

2.5 Particle Swarm Optimization

The particle swarm optimization (PSO) is an heuristic
optimization method based on the natural behavior of an-
imal groups Nedjah and de Macedo Mourelle (2006). Each
potential solution is assigned a randomized position vector,
and the potential solutions called particles, move through
the potential values of the parameter space seeking the
objective function’s optimal values. Particles change their
direction based on the combination of their own experience
and the best experience of the group. In each iteration,
the particles are updated with swarm motion equations
which include a particle’s own experience, and experience
of the group of particles to choose the way of movement
for each particle towards the optimum with some random
deviation:

Vt = α1R1Vt−1 + α2R2(Pb −Xt−1) + α3R3(pb −Xt−1)

Xt =Xt−1 + Vt (12)
where
α1- multiplier on the contribution of the last sample of the
particle’s speed to it’s next sample;
α2- multiplier on the contribution of the distance to the
particle’s personal best position to the next sample of the
speed;
α3- multiplier on the contribution of the distance to the
swarm’s overall best position to the next sample of the
speed;
Pb- particle’s previous best state;
pb- the globally best location of the moving group;
R1,2,3- randomly generated noise.

3. NUMERICAL TESTS

The RaPId toolbox for parameter identification developed
by Vanfretti et al. (2014) has been equipped with Particle
Filter method in addition to previously implemented PSO
algorithm.

Due to complexity of heuristic and Bayesian algorithms
and the use of high-order models (e.g. the Greek power
plant) for parameter identification, the methodology used
for experiment setup can be described in two main steps:
Step 1. Execute the stochastic (Bayesian) Particle Filter or
Particle Swarm Optimization (PSO) for a few iterations.
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Step 2. Start from the solution found in Step 1 (which is
close to the optimum solution) with a simple optimiza-
tion method (gradient descent-based (naive) or simplex
(Nedler-Mead method Lagarias et al. (1998)) in order to
find an optimal solution.

At each iteration of the algorithms, RaPId launches the
simulation of a Modelica model for each particle of the
PSO and Particle Filter. The model used for the experi-
ments is shown in Fig. 2. This Greek power plant (iGrGen)
is a combined cycle power plant containing a gas turbine,
a steam turbine and a synchronous generator in a single
shaft arrangement. A speed governor is used to control the
system frequency.

The measurement data used for parameter identification
was obtained from staged tests performed on the turbine
governor. The purpose of the experiment is to demonstrate
the response of turbine to system frequency deviations,
thus the measured data is the turbine mechanical power
output pm. The turbine parameters of the iGrGen system
model which influence the power output the most are
droop (R) and governor time constant (Ts). Hence, they
were chosen for estimation. The steam turbine in the power
plant does not contribute initially to the primary frequency
control because of its large thermal inertia.

For each test (experiment) the power plant was operated at
different power dispatch levels by varying the initial power
p∗in (1). The initial power was measured in percentage of
the so-called Maximum Continuous Rating (MCR) which
refers to the gas turbine output at which it enters into the
temperature limit control regime under present air temper-
ature/humidity ambient conditions. An incremental signal
(∆ω = ±0.2Hz (0.004 p.u)) is injected to the frequency
reference input of the governor to mimic the effect of a
variation of system frequency.

The numerical results of the turbine governor parameter
estimation are shown in Table 1. Two kinds of optimiza-
tion algorithm combinations are used, and the perfor-
mances are evaluated by comparing the Averaged Relative
Summed Squared Difference (ARSSD).
Graphical comparisons of the measurement data and simu-
lation results of the iGrGen system model using the es-

Table 1. Parameter and fitness values for the
simulated model

Exp. Name R Ts Fitness
1 PSO10 + NM 0.0558 1.5397 1.4659e-004

PF10 + NM 0.0547 7.4021 1.0137e-004
2 PSO10 + NM 0.0672 14.4695 9.0661e-005

PF10 + NM 0.0672 14.2693 9.0661e-005
3 PSO10 + NM 0.0469 1.2551 2.6791e-004

PF10 + NM 0.0461 12.9999 1.5908e-004
4 PSO10 + NM 0.0571 1.4008 3.0166e-004

PF10 + NM 0.0560 1.6019 3.0123e-004
5 PSO10 + NM 0.0686 1.8506 7.4265e-005

PF10 + NM 0.0681 3.4113 6.7935e-005
6 PSO10 + NM 0.0703 1.0762 5.1476e-005

PF10 + NM 0.0691 0.8929 5.0014e-005
7 PSO10 + NM 0.0696 0.9581 5.1442e-005

PF10 + NM 0.0689 1.1808 4.9343e-005
8 PSO10 + NM 0.0600 0.7849 8.3462e-005

PF10 + NM 0.0660 1.0685 4.8372e-005

timated values obtained from the estimation process are
shown in Figs. 3 - 8.
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4. DISCUSSION

The results on estimation of the turbine governor parame-
ters in Table 1 show faster convergence using the combina-
tion of PF and NM methods in contrary to the PSO and
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Step 2. Start from the solution found in Step 1 (which is
close to the optimum solution) with a simple optimiza-
tion method (gradient descent-based (naive) or simplex
(Nedler-Mead method Lagarias et al. (1998)) in order to
find an optimal solution.

At each iteration of the algorithms, RaPId launches the
simulation of a Modelica model for each particle of the
PSO and Particle Filter. The model used for the experi-
ments is shown in Fig. 2. This Greek power plant (iGrGen)
is a combined cycle power plant containing a gas turbine,
a steam turbine and a synchronous generator in a single
shaft arrangement. A speed governor is used to control the
system frequency.

The measurement data used for parameter identification
was obtained from staged tests performed on the turbine
governor. The purpose of the experiment is to demonstrate
the response of turbine to system frequency deviations,
thus the measured data is the turbine mechanical power
output pm. The turbine parameters of the iGrGen system
model which influence the power output the most are
droop (R) and governor time constant (Ts). Hence, they
were chosen for estimation. The steam turbine in the power
plant does not contribute initially to the primary frequency
control because of its large thermal inertia.

For each test (experiment) the power plant was operated at
different power dispatch levels by varying the initial power
p∗in (1). The initial power was measured in percentage of
the so-called Maximum Continuous Rating (MCR) which
refers to the gas turbine output at which it enters into the
temperature limit control regime under present air temper-
ature/humidity ambient conditions. An incremental signal
(∆ω = ±0.2Hz (0.004 p.u)) is injected to the frequency
reference input of the governor to mimic the effect of a
variation of system frequency.

The numerical results of the turbine governor parameter
estimation are shown in Table 1. Two kinds of optimiza-
tion algorithm combinations are used, and the perfor-
mances are evaluated by comparing the Averaged Relative
Summed Squared Difference (ARSSD).
Graphical comparisons of the measurement data and simu-
lation results of the iGrGen system model using the es-
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PF10 + NM 0.0461 12.9999 1.5908e-004
4 PSO10 + NM 0.0571 1.4008 3.0166e-004

PF10 + NM 0.0560 1.6019 3.0123e-004
5 PSO10 + NM 0.0686 1.8506 7.4265e-005

PF10 + NM 0.0681 3.4113 6.7935e-005
6 PSO10 + NM 0.0703 1.0762 5.1476e-005

PF10 + NM 0.0691 0.8929 5.0014e-005
7 PSO10 + NM 0.0696 0.9581 5.1442e-005

PF10 + NM 0.0689 1.1808 4.9343e-005
8 PSO10 + NM 0.0600 0.7849 8.3462e-005

PF10 + NM 0.0660 1.0685 4.8372e-005

timated values obtained from the estimation process are
shown in Figs. 3 - 8.
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4. DISCUSSION

The results on estimation of the turbine governor parame-
ters in Table 1 show faster convergence using the combina-
tion of PF and NM methods in contrary to the PSO and
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NM methods. The results, as expected, lie within a range
of physically valid parameter values. This demonstrates
the potential to use these algorithms to facilitate routine
parameter calibration.

The comparisons in Fig. 3 - 8 show the ability to estimate
the parameters which allow the model to reproduce the
systems dynamic behavior. The turbine governor requires
longer time to restore the frequency to the nominal value,
which results power variance in the process of real experi-
ment.

The reason for divergence from the real system response
is uncertainty in the model structure. The dynamics of
the rise and fall period during the frequency change are
hard to estimate due to insufficient information for more
detailed modeling. However, using a turbine governor
model of higher order brings additional complexity to
estimate transient time constants. This is specially difficult
because the tests performed in the plant did not heavily
excite transient dynamics, and thus, cannot be observed in
measurement data. This causes a large divergence in the
estimates of Ts for Test 1 and 3.

5. CONCLUSION AND FUTURE WORK

The numerical experiments obtained show good perfor-
mance of the methodology proposed in the paper. The
ability to estimate the turbine governor time constant is
uncertain due to modeling adequacy and dynamics observ-
ability in the measurements. Nevertheless, overall fitness
of the simulations to the real data is sufficient for practical
purposes.

Future work will be focused on enhancing the RaPId
toolbox to include other Bayesian methods. More experi-
mental tests and real data are needed to evaluate different
methodologies for parameter identification. In addition,
further work with include the use of more complex mod-
els of the plant, as well as larger power systems for the
aforementioned aims.

ACKNOWLEDGEMENTS

The authors are thankful to George Antonopoulos of IPTO
who kindly provided measurements and plant structure
information. Le Qi has contributed to the development of
the Modelica model during her Master thesis project. Her
contributions are sincerely appreciated.

REFERENCES

Bishop, C.M. et al. (2006). Pattern recognition and
machine learning, volume 1. springer New York.

Bogodorova, T., Sabate, M., León, G., Vanfretti, L., Halat,
M., Heyberger, J., and Panciatici, P. (2013). A Modelica
Power System Library for Phasor Time-domain Simula-
tion. IEEE PES Innovative Smart Grid Technologies
(ISGT).

Chen, Z. (2003). Bayesian filtering: From kalman filters to
particle filters, and beyond. Statistics, 182(1), 1–69.

Doucet, A., De Freitas, N., and Gordon, N. (2001). Se-
quential Monte Carlo methods in practice. Springer.

Fritzson, P. (2011). Introduction to Modeling and Simu-
lation of Technical and Physical Systems with Modelica.
John Wiley & Sons.

Huang, Z., Du, P., Kosterev, D., and Yang, S. (2013).
Generator dynamic model validation and parameter
calibration using phasor measurements at the point
of connection. IEEE Transactions on Power Systems,
28(2), 1939–1949. doi:10.1109/TPWRS.2013.2251482.

Kosterev, D. and Davies, D. (2010). System model
validation studies in WECC. In 2010 IEEE Power
and Energy Society General Meeting, 1–4. doi:
10.1109/PES.2010.5589797.

Kramer, S. and Sorenson, H. (1988). Bayesian parameter
estimation. IEEE Transactions on Automatic Control,
33(2), 217–222. doi:10.1109/9.395.

Lagarias, J.C., Reeds, J.A., Wright, M.H., and Wright,
P.E. (1998). Convergence properties of the nelder–mead
simplex method in low dimensions. SIAM Journal on
optimization, 9(1), 112–147.

Lee, K.Y. and El-Sharkawi, M.A. (2008). Modern heuris-
tic optimization techniques: theory and applications to
power systems, volume 39. John Wiley & Sons.

Maringer, D. (2005). Portfolio management with heuristic
optimization, volume 8. Springer.

Milano, F. (2005). An open source power system analysis
toolbox. IEEE Transactions on Power Systems, 20(3),
1199–1206.

Nedjah, N. and de Macedo Mourelle, L. (2006). Swarm
intelligent systems, volume 26. Springer.

Pourbeik, P. (2009). Automated parameter derivation for
power plant models from system disturbance data. In
IEEE Power Energy Society General Meeting, 1–10. doi:
10.1109/PES.2009.5275649.

Qi, L. (2014). Modelica Driven Power System Modeling,
Simulation and Validation. Master’s thesis, Royal Insti-
tute of Technology (KTH).

Stefopoulos, G., Georgilakis, P., and Hatziargyriou, N.
(2005). An evolutionary computation solution to the
governor-turbine parameter estimation problem. In
Proceedings of the 13th International Conference on
Intelligent Systems Application to Power Systems, 6
pp.–. doi:10.1109/ISAP.2005.1599276.

Tao, Y., Yongxin, F., Yong, R., Lei, T., and Yanghai,
L. (2012). Parameter identification of steam turbine
speed governor system. In 2012 Asia-Pacific Conference
Power and Energy Engineering (APPEEC), 1–8. doi:
10.1109/APPEEC.2012.6307028.

Vanfretti, L., Bogodorova, T., and Baudette, M. (2014).
Power system model identification exploiting the
modelica language and fmi technologies. In 2014
IEEE International Conference on Intelligent En-
ergy and Power Systems (IEPS), 127–132. doi:
10.1109/IEPS.2014.6874164.

Zhou, N., Meng, D., Huang, Z., and Welch, G. (2015).
Dynamic state estimation of a synchronous ma-
chine using pmu data: A comparative study. IEEE
Transactions on Smart Grid, 6(1), 450–460. doi:
10.1109/TSG.2014.2345698.

2015 IFAC SYSID
October 19-21, 2015. Beijing, China

465


