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A Robustness Measure of Transient Stability
Under Operational Constraints

in Power Systems
Liviu Aolaritei , Dongchan Lee , Thanh Long Vu , and Konstantin Turitsyn

Abstract—The aggressive integration of distributed
renewable sources is changing the dynamics of the electric
power grid in an unexpected manner. As a result, main-
taining conventional performance specifications, such as
transient stability, may not be sufficient to ensure its reli-
able operation in stressed conditions. In this letter, we
introduce a novel criteria in transient stability with con-
sideration of operational constraints over frequency devi-
ation and angular separation. In addition, we provide a
robustness measure of the region of attraction, which can
quantify the ability of the post-fault system to remain syn-
chronized even under disturbances. To assess this new
stability specification, we adopt the notion of input-to-state
stability to the context of power systems and introduce
a new class of convex Lyapunov functions, which will
result in tractable convex-optimization-based stability cer-
tificates. As a result, we are able to quantify the level of
disturbance a power system can withstand while maintain-
ing its safe operation. We illustrate the introduced stability
specification and certificate on the IEEE 9 bus system.

Index Terms—Power systems, stability of nonlinear
systems, Lyapunov methods, uncertain systems, robust
control.

I. INTRODUCTION

THE ELECTRIC power grid is undergoing the most sub-
stantial transformation since its emergence. The large

scale integration of distributed renewable sources introduces
significant uncertainty into the grid’s operation and reduces
the aggregate inertia, hence, reducing the ability of the grid
to counteract disturbances. At the same time, the risk of con-
tingencies is growing with the increasing number of extreme
weather events, threatening the stability and security of the
electric power grid. Therefore, new assessment and control
tools are needed to detect and mitigate warning behaviours
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expected in the dynamics of the ongoing and future power
grids.

In traditional power grids, transient stability assessment
determines whether a power system maintains its synchrony
after experiencing a large disturbance, i.e., if the frequencies
of the machines and loads in the post-fault dynamics tran-
siently converge to the nominal value of 50 or 60 Hz and
their angles transiently converge to some stable steady state
values [1]–[3]. In the modern power grid, this conventional
transient stability certificate may not be sufficient to ensure
the reliable operation of the system. Indeed, the high penetra-
tion of renewable generation can significantly unbalance the
power supply and demand, leading to large frequency devia-
tion, e.g., more than 0.5 Hz on a 50 or 60 Hz network. Large
frequency deviation in turn will activate frequency protective
relays on the power system network to shed loads/generators
or trip interconnection lines [4]. Since the widespread protec-
tive relays are still poorly coordinated due to the large scale
of the grid, load/generator shedding and line tripping, in the
worst case, may result in further cascading failures and even
power blackout.

To avoid the aforementioned harmful responses, we propose
to consider a safe and robust transient stability specification,
which will not only ensure the conventional transient stabil-
ity, but also guarantee that the frequencies and angles are
within the operational constraints, i.e., the frequencies are in
a small neighborhood of the nominal value, and the angular
differences do not greatly exceed π/2. In addition, the system
has to be robustly stable with respect to small disturbances
in power injections, which are always present in the modern
power system with high penetration of renewables.

A similar problem was considered in [5], where the same
authors proposed an input-output stability framework to quan-
tify the robustness against disturbances of the system oper-
ating at an equilibrium point. Differently, in this letter, the
robustness against disturbances of the post-fault trajectory is
considered, where the fault-dependent scenario is included in
the assessment.

Technically, to analyze these new power system stability
specifications, this letter brings the following novelties:

• First, we introduce a new class of Lyapunov func-
tions for the power system transient stability analysis.
Unlike the energy function and usual Lyapunov func-
tions for the power system stability analysis [6], [7],
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the Lyapunov functions proposed here are convex on
the whole state space. This key property leads to
a convex-optimization-based stability certificate, which
allows us to quickly assess the safe and robust transient
stability of the power system.

• Second, we develop the ideas of Lyapunov function fam-
ily approach [7], [8] to our new class of convex Lyapunov
functions characterized by the solution of a linear matrix
inequality (LMI). Each function in this new family of
convex Lyapunov functions can provide an estimate of the
stability region within the operational constraints, offering
the adaptation of our stability certificate to given contin-
gencies [7] and reducing the conservativeness of the other
Lyapunov function-based stability analyses.

• Third, we use Input-to-State Stability (ISS) argu-
ments [9], [10] to analyze the stability and robustness
of the post-fault dynamics with respect to disturbances in
the power injections. In particular, we establish a mea-
sure of robustness for transient stability, which quantifies
the maximum disturbance that the post-fault dynamics
can incorporate, while maintaining its transient stability
within the operational constraints. Due to the physics of
the nonlinear power flow, there are possibly several equi-
librium points that co-exist with their own stability region,
therefore, the electric power system lacks global stability.
As a result, in our analysis, we consider a local version
of ISS [11].

The remaining of this letter is organized as follows. In
Section II, we present the model of the multi-machine power
system, and we mathematically formulate the considered
problem. In Section III, we introduce the new class of convex
Lyapunov functions, which we then use to assess the transient
stability under operational constraints. Section IV presents a
local version of ISS, which is then used to compute a bound
on the maximum disturbance that can enter in the post-fault
dynamics. Finally, Section V demonstrates our stability cer-
tificates on the IEEE 9 bus system, and Section VI concludes
this letter.

II. POWER SYSTEM MODEL

In the following we will make use of the following notation.
We denote by 0, 1, and I the zero matrix, the all-ones vector,
and the identity matrix, of appropriate dimensions, respec-
tively. Given a vector x and two matrices A and B, let diag(x)
and diag(A,B) denote the diagonal matrix with the elements
of x on the diagonal, and the block-diagonal matrix with the
matrices A and B on the diagonal, respectively. Moreover, we
will use the notation σmin(A) and σmax(A) to denote the min-
imum and the maximum eigenvalues of A, respectively. The
inequalities ≺, �, � and � define the matrix inequalities.
Finally, we denote by ‖·‖, ‖·‖∞, and ‖·‖L∞ the Euclidean,
infinity, and L∞ norms, respectively.

A. Swing Equation Model

The aging power grid with stressed load suffers from sev-
eral contingencies. During a contingency, the system evolves
according to the fault-on dynamics, moving away from the
pre-fault equilibrium point. After the contingency is cleared
or self-clears, the system experiences the post-fault dynamics.
The post-fault dynamics is said to be transiently stable if the

state of the system converges to a stable post-fault equilibrium
point. In this letter, we consider the swing equation model to
describe the post-fault dynamics of the multi-machine power
system. This is a simplified dynamic model, that focuses on
the relationship between the active power and the angles over
the lossless power network with constant voltages.

A generator i is characterized by its rotor angle θi and its
angular velocity ωi = θ̇i, and its dynamics is described by the
following equations:

θ̇i = ωi

miω̇i + diωi = Pi − Pe,i (1)

where mi and di are its dimensionless moment of inertia
and damping action, respectively. Moreover, Pi and Pe,i are
its effective dimensionless mechanical torque acting on the
rotor and its effective dimensionless electrical power output,
respectively. The electrical power output is given by

Pe,i = GiV
2
i +

∑

j∈Ni

yij sin θij (2)

Here, θij = θi − θj, and yij = BijViVj, where Bij is the
(normalized) susceptance of the line connecting the generators
i and j. The value of Vi represents the voltage magnitude at the
terminal of the ith generator and it is assumed constant. Finally,
Nj is the set of neighboring generators of the ith generator.

The multi-machine power system is described by an undi-
rected graph G(N , E), where N = {1, . . . , n} is the set of
generators and E ⊆ N × N is the set of transmission lines
connecting the n generators. Let E denote the incidence matrix
of the graph.

We define θ , ω, P as the vectors obtained by stacking the
scalars θi, ωi, Pi, respectively, for i ∈ N . Moreover, we define
the diagonal matrices M and D, which have the elements mi
and di on the diagonal, respectively, for i ∈ N . Finally, we
define the diagonal matrix Y , which has the elements yij on
the diagonal, for (i, j) ∈ E .

Using the vector notation, the multi-machine power system
can be described by:

θ̇ = ω

Mω̇ + Dω = P − EY sin
(
ETθ

)
(3)

The system (3) is invariant under the transformations θ →
θ + ω̃t, ω → ω + ω̃ and P → P + Dω̃ for any constant
vector ω̃ ∈ Rn, ω̃ ∈ Span{1}. Without loss of generality, we
assume that the angular velocity ω is defined with respect to
the synchronous rotations ω̃. In normal conditions, the system
reaches a synchronized state where all the machines rotate
with the same angular velocity, and the angles of the machines
are following a circular trajectory with θ = θ∗ + ω̃t with θ∗
satisfying the following algebraic equations:

P = EY sin
(
ETθ∗) (4)

The equilibrium point
[
θ∗, 0

]
is not unique, since evey uni-

form shift c ∈ R in the rotor angles,
[
θ∗ + c1, 0

]
, results in

another equilibrium point. However, the equilibrium point is
uniquely characterized by the angle differences contained in
the vector ETθ∗, and which solve the system (4). In order to
have an unique equilibrium point, we assume the existence of
an infinite bus in the system, which will be used as a reference
angle.
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In practical situations the steady state equilibrium cor-
responds to relatively small deviations in angles, so that
generally ‖ETθ∗‖∞ < π/2 [12].

B. Lur’e System Representation

The system (3) can be rewritten in a Lur’e form, i.e., as
a linear system with a nonlinear state feedback. To do so,
we linearize the system around the equilibrium [θ∗, 0], and,
by defining the system state as x = [(θ − θ∗)T , ωT ]T , the
network equations (3) can be rewritten in a compact form as
ẋ = Ax − Bφ(z), z = Cx, where φ represents the nonlinear
state feedback, and the matrices A, B, C are equal to:

A =
[

0 I
−M−1EY diag

(
cos

(
ETθ∗))ET −M−1D

]
,

B =
[

0
M−1EY

]
, C = [

ET 0
]

where the nonlinearity φ ∈ R|E | is composed by the fol-
lowing elements φk = (sin θij − sin θ∗

ij ) − cos θ∗
ij (θij − θ∗

ij ),
where k ∈ {1, . . . , |E |} corresponds to the edge (i, j) in the
network. Notice that the nonlinearity φ is decentralized, i.e.,
φ(z) = [φ1(z1), . . . , φ|E |(z|E |)].

The analysis carried out in this letter is based on the obser-
vation that the nonlinearity φk(zk) can be lower and upper
bounded by two linear functions δkzk and δkzk, i.e.,

φk(zk)

zk
∈ [
δk, δk

]
(5)

where δk and δk are functions of the set where zk is restricted.
In other words, by restricting the values of zk to smaller sets,
tighter bounds on the nonlinearity φk(zk) can be obtained.

In our case, zk = θij − θ∗
ij , so restricting zk translates into

restricting the differences between the angles of the neigh-
boring generators. From a practical perspective, large angle
differences are strongly undesired, and it is common practice
to consider angle differences which do not greatly exceed π/2.
In the following lemma, we show how the nonlinearity can be
bounded as in (5) in two sets of practical interest.

Lemma 1: The nonlinearity φk(zk) is bounded by the linear
functions δkzk and δkzk, where

i) δk = − cos θ∗
ij and δk = 1 − cos θ∗

ij inside the set P1 =
{x : θij ∈ [ − π − θ∗

ij , π − θ∗
ij ], ∀ (i, j) ∈ E}.

ii) δk = ξk − cos θ∗
ij and δk = 1 − cos θ∗

ij inside the set
P2 = {x : θij, θ

∗
ij ∈ [ − π/2, π/2], ∀ (i, j) ∈ E}, where

ξk = 1 − sin |θ∗
ij |

π/2 − |θ∗
ij |
. (6)

Proof: Since φk(zk)/zk is equal to

sin θij − sin θ∗
ij

θij − θ∗
ij

− cos θ∗
ij ,

and | sin θij − sin θ∗
ij | ≤ |θij − θ∗

ij |, ∀ θij, the upper bound can
be chosen as δk = 1 − cos θ∗

ij inside both P1 and P2.
Inside P1, the function sin θij−sin θ∗

ij = 0 in the equilibrium
θij = θ∗

ij , and on the boundary. Therefore, the lower bound can
be chosen as δk = − cos θ∗

ij .

Moreover, sin θij − sin θ∗
ij has a maximum in θij = π/2,

equal to 1 − sin θ∗
ij , and a minimum in θij = −π/2, equal to

−1 − sin θ∗
ij . Therefore, inside P2, the lower bound can be

chosen as δk = ξk − cos θ∗
ij , with ξk defined in (6).

The lower bounds in Lemma 1 can be tighten if opera-
tional constraints on θij, ∀(i, j) ∈ E , are imposed. Indeed,
when restricting the angle differences inside a set P , with
P2 ⊂ P ⊂ P1, an optimized lower bound δk = ϕk − cos θ∗

ij
can be found for the nonlinearity φk, with ϕk ∈ (0, ξk).

Remark 1: The stability analysis proposed in this letter
holds for a general Lur’e system. This allows the direct exten-
sion of our methodology and results to more general power
system models, which can be written in a Lur’e form with
the nonlinearity composed by the same elements. For exam-
ple, in [5] we consider a structure-preserving model with first
order turbine governor dynamics.

C. Problem Formulation

We consider practical operational constraints defined as sets
of the form P = {x : |θij| ≤ θ ij, ∀(i, j) ∈ E}, with P2 ⊆ P ⊆
P1, and S = {x : |ωi| ≤ ωi, ∀i ∈ N }.

Now let ηi, for i ∈ N , define a norm-bounded time-varying
disturbance, i.e., |ηi| ≤ ηi, entering in the dynamics of the ith

generator as follows:

θ̇i = ωi

miω̇i + diωi = Pi −
∑

j∈Ni

yij sin θij + ηi (7)

Therefore, the disturbed system model can be written in a
Lur’e form as ẋ = Ax − Bφ(z)+ Hη, z = Cx, where

H =
[

0
M−1

]
(8)

The problem can be now mathematically formulated as fol-
lows. Let x∗, xf and x(t) define the post-fault equilibrium point,
the fault-cleared state (the state of the system when the fault
is cleared), and the state of the system during the post-fault
dynamics, respectively. Moreover, let X define a region in the
state space, inside the operational constraints, i.e., X ⊆ P∩S.
The analysis carried out in this letter concentrates on com-
puting in a scalable way the maximum region X and the
associated bound η on the disturbance such that the following
two conditions hold:
(i) xf ∈ X and η = 0 ⇒ x(t) ∈ X and x(t) → x∗

(ii) xf ∈ X and ‖η‖L∞ ≤ η ⇒ x(t) ∈ X
Notice that the first condition corresponds to the classical

transient stability assessment using Direct Methods, with the
difference that in our formulation the state is not allowed to
violate the operational constraints. The second condition aims
at computing a robustness measure of the transient stability,
defined as the amount of disturbance η that can enter in the
post-fault system dynamics such that the trajectory x does not
leave the region X .

III. TRANSIENT STABILITY ANALYSIS

In this section we concentrate on the first condition stated
in Section II-C. We thus analyze the undisturbed system (η =
0) and propose a scalable method to construct an invariant
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set X inside the operational constraints. Moreover, we prove
that in the absence of the disturbance, the post-fault dynamics
converges to the post-fault equilibrium (x(t) → x∗) if the fault-
cleared state resides inside this set (xf ∈ X ). In Section IV
we will focus on the second condition and propose a robust
stability certificate, by finding a bound η on the disturbance η
such that the set computed in this section remains invariant.

A. Convex Lyapunov Function

In order to construct an invariant set X inside the opera-
tional constraints we use Lyapunov arguments. We propose
the following Lyapunov function candidate:

V(x) = xTPx + 2
|E |∑

k=1

λk

∫ zk(x)

0

(
δks − φk(s)

)
ds (9)

where P = PT ∈ Rn×n is positive definite, and λk, k ∈
{1, . . . , |E |}, are non-negative scalars.

In the following lemma we prove the convexity of V(x), a
feature of great importance for the scalability of the proposed
method.

Lemma 2: The Lyapunov function candidate V(x) defined
in (9), with δk = 1−cos θ∗

ij , is strongly convex for all x ∈ R2n.
Proof: The Hession of V(x) can be computed as P +

diag(L, 0), with L = E diag(2λk(1−cos θij))k∼(i,j)∈EET , where
k ∼ (i, j) indicates that k refers to the edge (i, j). Since
1 − cos θij ≥ 0, ∀(i, j) ∈ E , the matrix L is a sym-
metric Laplacian matrix and therefore positive semi-definite.
Therefore, the Hessian is lower-bounded by σmin(P)I and V(x)
is a strongly convex function.

B. Transient Stability Under Operational Constraints

Recall the sets P and S which correspond to the operational
constraints. Let P−

ij define the boundary of P corresponding
to the equality θij = −θ ij, and P+

ij the boundary corresponding
to the equality θij = θ ij. We now consider the following set of
2|E | optimization problems, two for every edge (i, j) ∈ E :

V−
ij = min

x
V(x) V+

ij = min
x

V(x)

s.t. x ∈ P−
ij s.t. x ∈ P+

ij

ωi ≤ ωj ωi ≥ ωj (10)

Now let S−
i define the boundary of S corresponding to the

equality ωi = −ωi and S+
i the boundary corresponding to the

equality ωi = ωi. We now consider the following set of 2n
optimization problems, two for every node i ∈ N :

W−
i = min

x
V(x) W+

i = min
x

V(x)

s.t. x ∈ S−
i s.t. x ∈ S+

i (11)

Since V(x) is a convex function and the constraints are lin-
ear, the optimization problems in (10) and (11) are convex. As
a consequence, their solutions can be obtained in polynomial
time.

Before stating the main result of this section, we define
the matrices � = diag(λk)k∈{1,...,|E |}, 
 = diag(δk)k∈{1,...,|E |},

 = diag(δk)k∈{1,...,|E |}, and

R =
[

R11 R12
RT

12 R22

]
(12)

where R11, R12 and R22 are defined as:

R11 := AT(
P + CT�
C

) + (
P + CT
�C

)
A

− 2CT
�
C

R12 := −PB − ATCT�+ CT(
+
)�

R22 := −2�

with � ∈ R|E |×|E | a positive definite diagonal matrix.
Theorem 1: Let Vmax = min{V∗,W∗}, with V∗ =

min{V−
ij ,V+

ij }(i,j)∈E and W∗ = min{W−
i ,W+

i }i∈N . If R � 0,
the set X = {x : V(x) ≤ Vmax} ∩ P is an invariant set inside
the operational constraints. Moreover, any trajectory of the
system (3) originating inside this set converges to the post-fault
equilibrium point.

Proof: The derivative of V along the system trajectory,
V̇(x) = ẋTPx + xTPẋ + (
z − φ)T�ż + żT�(
z − φ), can
be written as V̇(x) = [xT φT ] Q [xT φT ]T , with

Q =
[

Q11 Q12
QT

12 0

]

where

Q11 := AT(
P + CT�
C

) + (
P + CT
�C

)
A

Q12 := −PB − ATCT�

The sector bound (5) implies 2(φ − 
z)T�(φ − 
z) ≤ 0
inside P , for any diagonal matrix � � 0. This condition can
be written in an LMI form as [xT φT ] Q̃ [xT φT ]T ≤ 0, with

Q̃ =
[

2CT
�
C −CT(
+
)�

−�(
+
)C 2�

]

Notice that [xT φT ] Q̃ [xT φT ]T = 0 only at the equilibrium
and at some points on the boundary of P . Using the S-lemma,
we obtain the sufficient stability condition R = Q − Q̃ �
0 inside P . Therefore, if R � 0, then V̇(x) < 0, and the
Lyapunov function V(x) is decreasing inside P .

Now, notice that V(x) = W∗ is the minimum level set of
V(x) that intersects the boundary of S. On the other hand,
V(x) = V∗ is the minimum level set of V(x) that intersects the
out-flow boundary of P , composed by the boundary segments
characterized by |θij| = θ ij and θijθ̇ij = θij(ωi − ωj) ≥ 0. By
doing so, the level set V(x) = V∗ may intersect the boundary
of P , but only on the segments which don’t allow the system
trajectory to escape P .

In conclusion, X = {x : V(x) ≤ Vmax} ∩ P is an invariant
set contained in P ∩ S.

Therefore, an invariant set contained inside the polytope of
operational constraints is computed using the set of 2(|E |+n)
convex optimizations (10) and (11), whenever the LMI condi-
tion R � 0 is satisfied.

IV. ROBUSTNESS MEASURE OF TRANSIENT STABILITY

In this section we concentrate on the second condition stated
in Section II-C. We thus analyze the effect of the distur-
bance η on the dynamics of the power system. Specifically,
we will find an L∞ bound η on η such that the set X
defined in Theorem 1 remains invariant. The methodology
used builds upon a local version of the Input-to-State Stability
(ISS) theory, as described in the following.
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A. Local Input-to-State Stability

Before moving on to the stability concepts, we recall the
definitions of comparison functions. A continuous function
γ : R+ → R+ is said to be of class K if it is strictly increasing
and γ (0) = 0. It is of class K∞ if, in addition, it is unbounded.
A continuous function β : R+ × R+ → R+ is said to be of
class KL if, for fixed t, the function β(·, t) is of class K and,
for fixed s, the function β(s, ·) is strictly decreasing and tends
to 0.

Recall the power system dynamics written in Lur’e form:

ẋ = Ax − Bφ(Cx)+ Hη (13)

Let � define a local region of initial states for the
system (13) with η = 0, i.e., a compact positively invariant
set (containing the post-fault equilibrium point as an interior
point). Moreover, let � define a local region of external inputs
(disturbances) η, defined as � = {η : ‖η‖L∞ ≤ η}.

In the following we will introduce the concepts of local
Input-to-State Stability (LISS) and LISS-Lyapunov function.

Definition 1: The system (13) is LISS if there exist func-
tions β ∈ KL and γ ∈ K such that for any initial state x0 ∈ �
and disturbance η ∈ �,

‖x(t, x0, η)‖ ≤ β(‖x0‖, t)+ γ (‖η‖L∞), ∀ t ≥ 0. (14)

Definition 2: A smooth function V(x) : � → R+ is called a
LISS-Lyapunov function if there exist functions ψ1, ψ2 ∈ K∞,
χ ∈ K∞, and ψ ∈ K such that for any initial state x0 ∈ �

and disturbance η ∈ �,

ψ1(‖x‖) ≤ V(x) ≤ ψ2(‖x‖), ∀ x ∈ �
V̇(x) ≤ −ψ(‖x‖), ∀ x ∈ �, ‖x‖ ≥ χ(‖η‖L∞) (15)

These two concepts are equivalent, as stated in the following
lemma.

Lemma 3 [11]: The system (13) is LISS if and only if it
admits a LISS-Lyapunov function.

These concepts will be used in the following to prove that
the system (13) is LISS, and to find a robust stability certificate
for the transient stability assessment.

B. Robust Stability Certificate

In the following we use the concepts stated above to propose
a method to compute a local region of external disturbances
�, such that for η ∈ � and � = X (with X defined in
Theorem 1), the system (13) is LISS.

Consider the following set of 2|E | convex optimization
problems:

V̂−
ij = min

x
V(x) V̂+

ij = min
x

V(x)

s.t. x ∈ P−
ij s.t. x ∈ P+

ij (16)

Now let V̂∗ = min{V̂−
ij , V̂+

ij }(i,j)∈E . We define V̂max =
min{V̂∗,W∗}. Notice that V(x) = V̂max defines the maximum
level set of V(x) which resides completely inside the polytope
P ∩ S. As a consequence, V̂max ≤ Vmax.

We are now ready to state the main result of this section.
Theorem 2: Consider the local region of initial states � =

X , with X defined in Theorem 1. If the matrix R in (12)

satisfies R ≺ 0, then the system (13) is LISS with a local
region of external disturbances � = {η : ‖η‖L∞ < η},

η = σmin(−R)

2‖PH‖√σmax(P)+ μ ‖C‖2

√
V̂max (17)

where μ = max{λk(δk − δk)}k∈{ ...|E |}.
Proof: The function V(x) can be lower and upper bounded

ψ1‖x‖2 ≤ V(x) ≤ ψ2‖x‖2, with ψ1 = σmin(P) and ψ2 =
σmax(P)+ μ‖C‖2.

The lower bound is obtained from the quadratic function
xTPx, since λk(δks −φk(s)) ≥ 0. The upper bound is obtained
in a similar way, by noticing that λk(δks − φk(s)) ≤ λk(δks −
δks) ≤ μs.

The derivative of V(x) with respect to time is

V̇(x) =
[

x
φ

]T

Q

[
x
φ

]
+ 2xTPHη (18)

with matrix Q defined in the proof of Theorem 1. Therefore
V̇(x) can be locally bounded as

V̇(x) ≤ −σmin(−R)‖x‖2 + 2‖PH‖‖x‖‖η‖L∞ (19)

Now, for η ∈ � = {η : ‖η‖L∞ < η}, with η defined in (17),
V(x) can be rewritten in the form of Definition 2, concluding
that V(x) is a LISS-Lyapunov function and the system (13) is
LISS.

Notice that the level set used in (17) to compute the upper
bound on η is V(x) = V̂max. The reason why we cannot use
Vmax is because V(x) = Vmax intersects the boundary of P and,
with the disturbance η, the trajectory may not be pushed back
inside of P once it touches its boundary. Therefore, a level set
which is completely inside the operational constraints needs
to be used.

This result ensures that the set X remains invariant for any
disturbance η, with ‖η‖L∞ < η. The following corollary trans-
lates Theorem 1 and Theorem 2 in a robust transient stability
certificate for power systems.

Corollary 1: Consider a power system described by the
Lur’e representation model (13). Let |θij| ≤ θ ij, ∀(i, j) ∈ E , and
|ωi| ≤ ωi, ∀i ∈ N , define some operational constraints on the
angle differences of neighboring generators and frequencies,
respectively. Moreover, let η define a time-varying disturbance,
entering in the post-fault system dynamics as described in
Section II-C. If R ≺ 0, and the fault-cleared state resides
in the set X , and ‖η‖L∞ < η, with X and η defined in
Theorem 1 and 2, then the post-fault trajectory will never
escape the set X , i.e., will never violate the operational con-
straints. Moreover, the post-fault trajectory will converge to the
set {x : V(x) < V̂max}. In particular, if η = 0, the post-fault
trajectory will converge to the post-fault equilibrium point.

V. NUMERICAL VALIDATION

This section presents a numerical validation of the method-
ology proposed in this letter. For illustration, we consider a
single-machine infinite-bus (SMIB) system and plot its phase
portrait in Figure 1. The dashed black contour represents the
biggest invariant set, computed as the maximum level set of the
Lyapunov function V(x) inside the region of attraction. Notice
that although this level set covers a big portion of the region
of attraction, it violates the operational constraints |θ | ≤ 3π/4
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Fig. 1. Phase portrait and invariant sets for a SMIB system.

Fig. 2. Generators frequency dynamics for the IEEE 9 bus system with
fault-cleared state inside the set X .

rad and |ω| ≤ π rad/s, represented by the dashed horizontal
and vertical lines.

Another level set is then computed using the methods
presented in Section III, and plotted with a continuous black
color. Notice that this new level set intersects the angle con-
straints only on the red dashed half-lines, which forbid the
system trajectories to escape. The invariant set X is defined
as the intersection of the new sublevel set with the region
confined by the angle constraints. It can be seen from the
phase portrait that any system trajectory starting inside X will
converge to the post-fault equilibrium point.

We now consider the IEEE 9 bus system and compute a
robustness measure of transient stability, i.e., an L∞-norm
bound η on the disturbance η entering in the post-fault system
dynamics such that the set X remains invariant. A Kron-
reduction was applied to the network, and damping coefficients
of 10 p.u. were added to reflect the effect of the primary
frequency control action. We consider the following opera-
tional constraints: |θij| ≤ π/6 rad, ∀(i, j) ∈ E , and |ωi| ≤ π

rad/s, ∀i ∈ N . Using the expression (17), presented in
Theorem 2, we obtain η = 0.0026.

Notice that such a small value is expected and is mainly
due to the fact that η represents the bound on the maximum
disturbance magnitude entering in the post-fault trajectory
originating at the worst-case fault-cleared state inside the set

X . Since the fault-cleared state can reside very close to the
actual boundary of the region of attraction, a very small dis-
turbance can push the trajectory outside of the region of
attraction, allowing therefore a very small robustness margin.

In Figure 2, the time domain simulation confirms that if
the fault-cleared state resides inside the set X , the frequency
constraints are not violated.

VI. CONCLUSION

In this letter we considered the problem of quantifying the
robustness of power systems transient stability, with consider-
ation of operational constraints over frequency deviation and
angular separation. To this end, we first proposed a novel
convex Lyapunov function, which we employed to efficiently
compute an invariant set inside the region of attraction of the
post-fault equilibrium point and the operational constraints.
If the fault-cleared state resides inside this set, the undis-
turbed post-fault dynamics will converge to the post-fault
equilibrium point, and it will never violate the operational
constraints.

We then used local ISS notions and proposed a bound
on the magnitude of the disturbance entering in the post-
fault system dynamics such that the previously computed set
remains invariant. If the fault-cleared state resides inside this
set, the disturbed post-fault dynamics will never escape, i.e.,
it will never leave the region of attraction of the post-fault
equilibrium point or violate the operational constraints.
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