Where do planets come from?

Where do planets come from?

Where do planets come from?

Planets

orbit stars

NASA

What can the Solar System tell us?

protoplanetary disk

Think of Saturn's rings like a protoplanetary disk

Saturn

Cassini Mission 7.19.2013 NASA/JPL/SSI

planets form around a star in a protoplanetary disk

How long?

Expect a planet in ~10 million years

(short compared to a star's lifetime)

If we can't watch it form, How do we know?

If we can't watch it form, How do we know?

meteorites

leftover from planet formation

older than the Earth

composition is important

composition is important

planets form from dust, gas, & ice

dust

planet growth

atmosphere addition

Orbits and meteorites aren't enough.

Directly observe protoplanetary disks

Where to look?

star forming regions

proplyd -Surface seen in silhouette

How can we observe what's happening inside protoplanetary disks?

millimeter waves

let us look below the surface

How can we resolve disks?

480m (1mm)

Taurus Distance: 450 ly Neptune's Orbital Diameter: 60 AU 900m (3mm)

Radio interferometry

Telescope size needed

~1000m (1mm)

Neptune's orbit at the distance of Taurus

Many antennae = 1 bigger antenna

Seeing the midplane

HL Tauri CARMA (~2km)

(1 AU = Earth-Sun distance)

Put more telescopes higher up

OBSERVATORY

1,350 MTS. ALTITUDE

JAPAN

VERY LARGE ARRAY (VLA)2,133 MTS. ALTITUDE

LA SILLA OBSERVATORY 2,400 MTS. ALTITUDE

CHILE

2,635 MTS. ALTITUDE * CHILE *

VERY LARGE

TELESCOPE

SMA OBSERVATORY 4,267 MTS.

CBSERVATORY

5.000 MTS. ALTITUDE

Why?

ALMA (Atacama Large Millimeter Array)

Name: **HL Tauri**

Planet's First Picture

Size: 200 AU

November 2014

Name: **HL Tauri**

Planet's First Picture

Size: 200 AU

November 2014

Wavelength: 1mm Source: Dust

Uranus's orbit Neptune's orbit

Much bigger than the Solar System

Other indications of planets?

Indications of planets?

spiral arms

SAO 206462

Indications of planets?

SAO 206462 Ks 5^N

Simulations can create spirals due to planets

Can we see forming planets?

Sallum et al. 2015

Forming planets?

Where do planets come from?

How do we know?

Planets come from

dust, gas, & ice

protoplanetary disks

(our best prospect for future study)

Come see the meteorites in the auditorium.

Please don't touch the samples.

