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Abstract
We consider the problem of labeling points on a
fast-moving data stream when only a small num-
ber of labeled examples are available. In our
setting, incoming points must be processed ef-
ficiently and the stream is too large to store in its
entirety. We present a semi-supervised learning
algorithm for this task. The algorithm maintains a
small synopsis of the stream which can be quickly
updated as new points arrive, and labels every
incoming point by provably learning from the
full history of the stream. Experiments on real
datasets validate that the algorithm can quickly
and accurately classify points on a stream with a
small quantity of labeled examples.

1. Introduction
In many real situations, unlabeled data is readily available,
whereas labeled data tends to be of a smaller size. This
motivates semi-supervised learning (SSL), which aims to
make heavy use of a large amount of unlabeled data along
with a limited amount of labeled data. For this problem,
the celebrated paper due to (Zhu et al., 2003a) provided a
principled offline approach with excellent results in practice.
Their algorithm casts the problem as label propagation on a
graph, where the nodes represent both labeled and unlabeled
data points, and the weight of an edge reflects similarity
between its endpoints. The labels are spread in the graph
by a random walk process that moves through the unlabeled
nodes until reaching a labeled node. The labeling computed
by this process is known as the harmonic solution.

In this paper, we consider the case where the data arrives in a
high-throughput stream, such as an electrocardiogram signal
or a video feed. The goal is to label each point upon arrival
as quickly as possible, ideally by means of semi-supervised
learning over all of the data seen so far, both labeled and
unlabeled. Example use cases include real-time monitor-
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ing of metrics arising from medical patient signals (ECG,
EEG, fall detection), data centers (network, I/O and CPU
utilization), or a camera mounted on a semi-autonomous car
(for road conditions and obstacle detection). In these sce-
narios, unlabeled data is continuously streaming, but only a
small number of manually labeled examples are provided –
either at the beginning of the stream or as occasional user
feedback. We want algorithms that leverage both inputs and
learn how to classify stream elements, such as ECG arrhyth-
mias, network intrusion alerts or driving conditions. Several
other applications are given in (Goldberg et al., 2008), who
defined a similar model, and in (Krempl et al., 2014).

In practice, this setting requires algorithms that run under
severe time and memory constraints, since the labels are
expected in real-time and the stream is generally too large
to fully store in the memory. This poses a major challenge:
How can we leverage the entire stream history to label a
new point, when we can only store a tiny fraction of it?

Problem Statement. Given a stream x1, x2, . . . of inter-
leaved labeled and unlabeled points, and a similarity func-
tion between pairs of points, label every incoming point xn
using sublinear time and sublinear space in n.

Our Solution. Our main contribution is Temporal Label
Propagation (TLP), a streaming SSL algorithm which is
theoretically sound and also works well in practice. Its pro-
cessing time for the nth point on the stream is independent
of n, and its storage space only scales as log n. At the same
time, it provably computes the harmonic solution on a simi-
larity graph that naturally describes the entire stream seen
so far, which we call a temporal vicinity graph. Thus, it
produces labels that utilize all of the labeled and unlabeled
points in the past. In comparison, using a batch (offline)
label propagation algorithm on the same graph would entail
computation and memory requirements that grow at least as
a linear function of the stream length n.

Our Techniques. The algorithm is based on graph re-
duction tools that originate in the theory of electric net-
works. The short-circuit operator (Campbell, 1922; An-
derson, 1971) is a way to compress a large graph G into
a much smaller graph H, that exposes only pre-specified
nodes of interest called terminals, while preserving some
global properties of G. We choose the terminals as the most
recent points on the stream, including the incoming point
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that we need to classify. Drawing on the electric interpre-
tation of the harmonic solution (Snell & Doyle, 2000), we
rigorously show that the labels of the terminals in G can
be computed directly from H. A related graph operation,
known as the star-mesh transform (Rosen, 1924), enables us
to maintain the compressed graphH of the temporal vicinity
graph over the stream by a sequence of simple local updates.

We evaluate our solution on several real datasets. Our results
demonstrate the advantage of TLP over alternative methods.

1.1. Related Work

Semi-supervised learning is a well-established field, and
a comprehensive overview is available in (Zhu, 2005;
Chapelle et al., 2009). The type of SSL algorithms that we
explore are graph-based, which have a long history of work,
including (Blum & Chawla, 2001; Szummer & Jaakkola,
2002; Zhu et al., 2003a; Joachims, 2003; Zhou et al., 2004;
2005; Belkin et al., 2004; 2005; Wang et al., 2008).

Graph construction is an important issue. Some prior ap-
proaches make deep use of domain knowledge (Levin et al.,
2004; Balcan et al., 2005), while others construct general
purpose graphs (Zemel & Carreira-Perpiñán, 2005; Wang
& Zhang, 2008; Jebara et al., 2009; Ghazvininejad et al.,
2011). This topic also plays a role in our paper, as we rely
on a graph construction that is suitable for temporal streams.

Graph-based SSL algorithms typically do not scale well with
the data size n, often requiring Ω(n2) computation time or
worse. Some authors suggested representing the graph by a
smaller “backbone” graph on which label propagation can
be performed much faster (Zhu & Lafferty, 2005; Delalleau
et al., 2005; Valko et al., 2010). Our work takes a related
approach through the construction of our compressed graph
H, but our compression based on the short-circuit operator
utilizes completely different ideas from these prior results.

Most of the algorithms mentioned above were designed
for the offline setting. Online SSL is a relatively new field
that has generated considerable interest (Zhu et al., 2009;
Krempl et al., 2014). Online graph-based algorithms were
proposed in (Huang et al., 2015) and (Ravi & Diao, 2016).
They are applicable to points arriving on a stream, but the
processing time and memory for the nth point is still Ω(n),
which is problematic as n grows. Non-graph-based online
SSL algorithms were given in (Goldberg et al., 2008; 2011;
Dyer et al., 2014).

A related issue is transduction vs. induction. Most graph-
based SSL algorithms are transductive, which means the
unlabeled data is fully given to them in advance. Inductive
algorithms can also label new test points (Zhu et al., 2003b;
Sindhwani et al., 2005; Delalleau et al., 2005). However,
they do not use the new points to learn how to label future
points, which is a desired goal in online/streaming SSL.

Closest in spirit to our work is (Valko et al., 2010) which
operates within similar time and memory constraints. Their
algorithm quantizes the stream into a small number of k
clusters via the online k-center algorithm of (Charikar et al.,
1997). A regularized harmonic solution is then computed
on the cluster centers. We experimentally compare this
algorithm to our approach in Section 6.

2. Preliminaries
Notation. Graphs discussed in this paper are weighted
undirected and we denote them by calligraphic letters. Vec-
tors will be written in boldface letters. Let G = (V,E,w)
be a graph with |V | = n and non-negative edge weights
{wx,y : (x, y) ∈ E}. The (weighted) degree of a node x is
deg(x) =

∑
y:(x,y)∈E wx,y .

Let G ∈ Rn×n be the Laplacian matrix of the graph G. Let

G =

[
Gaa Gab
Gba Gbb

]
be a block partition corresponding to a partition V = Va∪Vb
of the node set. Note that Gba = G>ab. It is well-known
that if G is connected then Gaa is invertible. In that case
let G/Gaa denote the Schur complement, i.e., G/Gaa =
Gbb −GbaG−1aaGab. Appendix A reviews some additional
background on graph matrices.

Offline Label Propagation. We review the algorithm
of (Zhu et al., 2003a), as it forms the basis of our approach
for learning on the stream. For simplicity, we describe the
binary classification setting with labels 1 (positive class)
and 0 (negative class). The input to the label propagation
algorithm is a weighted undirected graph G = (V,E,w), in
which a small subset of nodes Vl ⊂ V are labeled and the
rest Vu ⊂ V are unlabeled. The weight of an edge (x, y)
represents some measure of similarity between its endpoints.
The goal is to compute fractional labels in [0, 1] for the un-
labeled nodes that would facilitate a good partition into a
0-set and a 1-set.

The vector of fractional labels is denoted by f ∈ RV , with
f(x) representing the fractional label of x ∈ V . We separate
f into two parts fu ∈ RVu and fl ∈ RVl according to the
partition V = Vu ∪ Vl. The part fl is given as input, and fu
is the part we need to compute. The algorithm computes fu
by minimizing the following energy function of the graph:

min
fu

1

2

∑
(x,y)∈E

wx,y(f(x)− f(y))2. (1)

This is equivalent to minimizing 1
2 f
>Gf under the given

part fl, where G is the Laplacian of G.

Harmonic Solution. The minimizer fG of Equation (1)
is called the harmonic solution. Since the objective is a
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Figure 1. The short-circuit operator on graphs. The left graphs in (a), (b), (c) represent G in Definition 2.1. They have unit edge weights
and their terminals are the non-shaded nodes. The graphs on the right represent G〈Vt〉. Their edge weights appear in black. (a) Star-mesh
transform. (b) Short-circuiting two nodes at once. (c) The bottom two nodes are labeled. The harmonic solution (where blue = 0 and red
= 1) is denoted by red numbers on each node. It is the same on the top node before and after short-circuiting, as per Theorem 4.1.

convex quadratic, the gradient at fG is zero. This yields the
harmonic property of fG , which is that the value at each
unlabeled node equals the average at its adjacent nodes:

fG(x) =
1

deg(x)

∑
y:(x,y)∈E

wx,yf
G(y) ∀ x ∈ Vu. (2)

By solving this linear system we get a closed-form formula
for the unknown part fGu :

fGu = −G−1uuGulfl. (3)

Merging Labeled Nodes. In case there are more than a
single labeled node for a class, we can symbolically merge
them in G to just one labeled node per class. It does not
affect the harmonic solution on all the remaining unlabeled
nodes is (cf. Appendix B.1). We use v∗0 as the node formed
by merging the 0-class in Vl, and v∗1 as the node merging
the 1-class in Vl. Weights of parallel edges are summed.

2.1. Electric Networks

Our approach draws on the connection between label prop-
agation and the theory of electric networks, which was de-
scribed in (Zhu et al., 2003a) following (Snell & Doyle,
2000). View the similarity graph G as an electric network
where every edge (x, y) is a resistor with conductance wx,y .
Connect a +1V voltage source to all nodes in Vl labeled
with 1, and a ground source (0V) to all nodes in Vl labeled
with 0. The potentials induced at the unlabeled nodes are
equal to the harmonic solution.

Short-Circuit Operator. Suppose we have a large network
G with a small subset Vt of distinguished nodes, called termi-
nals. The short-circuit operator allows us to encode G into a
smaller network G〈Vt〉 whose only nodes are the terminals.
Definition 2.1. Let G = (V,E,w) be a connected graph
with a partition V = Vt ∪ Vs of its nodes. The short-
circuit operator produces a re-weighted graph G〈Vt〉 =
(Vt, E

′, w′), defined by the following operation. Let G de-
note the Laplacian matrix of G. The Schur complement
G/Gss = Gtt − GtsG−1ss Gst ∈ R|Vt|×|Vt| is a Laplacian
matrix of a graph on the nodes Vt (see Appendix A), and
this graph is the short-circuit graph G〈Vt〉.

See Figure 1b for illustration. We refer the reader to (Dorfler
& Bullo, 2013) for a more comprehensive study of this use-
ful notion. G〈Vt〉 is known to retain certain global electric
properties of G; most famously, it preserves the effective
resistance between every pair of terminals. The aforemen-
tioned connection to the harmonic solution suggests that
G〈Vt〉 could be useful for label propagation, and we will
prove this is indeed the case.

Star-Mesh Transform. Generally, computing G〈Vt〉 is as
expensive as computing the harmonic solution on all of
G, since both entail inverting a large Laplacian submatrix.
Therefore, it provides no substantial speed-up in the offline
setting. However, G〈Vt〉 can also be computed by a se-
quence of local operations, known as star-mesh transforms.
This will be useful for the streaming setting.

Definition 2.2. The star-mesh transform on a node xo in a
graph G = (V,E,w) is the following operation:

1. “Star”: Remove xo from G with its incident edges.

2. “Mesh”: For every pair x, x′ ∈ V such that (x, xo) ∈ E
and (x′, xo) ∈ E, add the edge (x, x′) to E with weight
wxo,xwxo,x′/deg(xo). If (x, x′) is already in E then add
the new weight to its current weight.

This is in fact a special case of the short-circuit operator,
with a single non-terminal xo (see Figure 1a). It is known
that G〈Vt〉 can be computed by sequential star-mesh trans-
forms on the non-terminals Vs = V \ Vt in G in an arbitrary
order. This is a direct consequence of the sequential prop-
erty of Schur complements (cf. (Zhang, 2005), Theorem
4.10; see also (Dorfler & Bullo, 2013), Lemma III.1).

3. The Streaming Algorithm
Consider a data stream {xi}∞i=1 in which some points are
labeled and most of the points are unlabeled. Our streaming
algorithm Temporal Label Propagation for binary labels1

is presented in Algorithm TLP. It maintains a graphH that
contains the most recent τ unlabeled points, plus two labeled
nodes v∗0 and v∗1 that represent all of the labeled points.

1The extension to multiple labels appears in Appendix B.2.
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When a new unlabeled point arrives, we add it to H and
evict the oldest unlabeled point by a star-mesh transform,
thus always maintaining τ+2 nodes. The harmonic solution
for the new point is then computed onH.

Let us give some intuition for the role of the star-mesh trans-
form in the algorithm. The premise of graph-based label
propagation is that an unlabeled point xo provides useful
information on the structure of the dataset as encoded by its
incident edge weights. The star-mesh transform removes
those edges, but meshes their weights with the remaining
graph, so that the information provided by xo remains en-
coded. As a result, while we lose the ability to compute the
harmonic solution for xo, we retain the ability to compute it
for the rest of the nodes as if xo were still in the graph. In the
consumer/provider terminology of Section 4, xo is removed
from the graph as a consumer but remains a provider. This
intuition is made rigorous in Theorem 4.1.

The computation time of Algorithm TLP for xn is indepen-
dent of n, and the space consumption scales only as log n.
At the same time, the fractional label computed for xn is
provably equal to the value of its harmonic solution on a suit-
able similarity graph associated with the entire stream seen
so far (we call it the temporal vicinity graph and define it
in Section 5.1). Thus, it performs label propagation through
all of the data from the past, both labeled and unlabeled.
These properties will be stated formally in Theorem 5.3.

4. Compression by Short-Circuiting
The essence of a streaming algorithm is in maintaining a
compressed representation of the stream, from which the
desired output can still be computed. In our case, the desired
output is the harmonic solution of the incoming point.

The challenge here is two-fold since the algorithm needs to
not only compress the data, but also update the compressed
representation as new points arrive. We handle the two
issues separately: in the current section we present an offline
(non-streaming) compression technique, which applies to a
more general setting of label propagation on arbitrary graphs.
It is useful for saving space, but does not yield faster running
time. Section 5 will show how to adapt it to streaming data
while achieving fast processing time per point. This will
necessitate choosing a specific graph construction which is
suitable for data streams.

Consumers and Providers in SSL. The compression
scheme we utilize is based on the following reasoning. In
graph-based SSL, every unlabeled node plays a dual role: it
is both a consumer whose own label needs to be computed,
and a provider that participates in computing the labels of
other nodes. Batch algorithms for label propagation do not
make this distinction – they compute labels for the entire
graph in one computation, rendering each unlabeled node

Algorithm TLP : Temporal Label Propagation
Initialization

Parameters: integer τ > 0, similarity measure Sim :
X× X→ R>0 where X is the domain of inputs
L0 ← ∅ // set of 0-labeled points
L1 ← ∅ // set of 1-labeled points
H = (Vh, E, w)← graph with Vh = {v∗0 , v∗1}, E = ∅

// v∗0 and v∗1 are nodes labeled with 0 and 1 respectively

On receiving a point xn ∈ X labeled b ∈ {0, 1}

Lb ← Lb ∪ {xn} // Merge xn into v∗b
for x in Vh :
wv∗b ,x ← wv∗b ,x + Sim(xn, x)

On receiving an unlabeled point xn ∈ X

Vh ← Vh ∪ {xn} // Add xn toH
Add (xn, v

∗
0) to E with weight

∑
x∈L0

Sim(xn, x)
Add (xn, v

∗
1) to E with weight

∑
x∈L1

Sim(xn, x)
for x in Vh \ {v∗0 , v∗1 , xn} do

Add (xn, x) to E with weight Sim(xn, x)
if |Vh| ≥ τ + 2 then // Star-mesh transform
xo ← oldest node in V \ {v∗0 , v∗1}
Remove xo fromH
for all pairs x 6= x′ in Vh do
wx,x′ ← wx,x′ +

wxo,xwxo,x′

deg(xo)

f ← harmonic solution onH // Label Propagation
return f(xn)

both a consumer and a provider. However, the distinction
can be useful when we only need to label one or few nodes,
as labeling the entire graph is redundant and potentially
wasteful. This will be relevant for the streaming setting
in Section 5, since a streaming algorithm only needs to label
the incoming point at each time step, so that point is the only
consumer. However, its label should ideally depend globally
on all of the past points, so they are all desired providers.

Our approach is to refine the representation of the input so
as to encode the non-consumers only by their provider role.
Ideally this would allow for a substantially more efficient
representation. We implement this idea for the harmonic
solution in the offline setting by using the short-circuit oper-
ator (Definition 2.1), as formalized next.

Let G = (V,E,w) be an arbitrary connected graph with a
partition V = Vl∪Vu into labeled and unlabeled nodes. Let
Vc ⊂ Vu be the subset of consumer nodes, i.e., those for
which we wish to compute the harmonic solution. We are
interested in the case where |Vc| � |V |. The consumer
labels depend globally on G, and hence all nodes in V
are designated as providers. We define the terminal set as
Vt = Vc ∪Vl, to include both the consumers and the labeled
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nodes. LetH = G〈Vt〉 be the result of short-circuiting the
non-terminals in G. Our main technical result is that the
harmonic solution of all consumers in G is preserved inH.
Theorem 4.1. Let fl be a vector of given labels for Vl. Let
fG and fH be the harmonic solutions on G and H respec-
tively. Then fG(x) = fH(x) for every consumer x ∈ Vc.

See Figure 1c for an illustration. As a result, the harmonic
solution for every consumer in G can be computed by label
propagation onH. At the same time,H has only |Vt| nodes
and is significantly cheaper to store:
Proposition 4.2. Let ω be the ratio of maximum to min-
imum edge weights in G. The storage size of H is
O(|Vt|2(log |V |+ logω)) bits.

In comparison, the storage size of G is O(|E|(log |V | +
logω)) bits, and since G is connected, |E| = Ω(|V |). Hence
the dependence on |V | is improved exponentially from |V |
(in G) to log |V | (inH).

Full details from this section are collected in Appendix C.
Theorem 4.1 and Proposition 4.2 are proven in Sections C.4
and C.5 respectively.
Remark 4.3. Let us put Theorem 4.1 in the context of
known results. It is well-known that for every fl, the energy
of the harmonic solutions (cf. eq. (1)) on G and H is the
same, i.e., 1

2 (fG)>GfG = 1
2 (fH)>HfH. However, for the

purpose of SSL, it is not enough to just preserve energy since
classification relies on the value of fG at specific nodes. We
therefore require the more general fact that the harmonic
solutions are equal at each unlabeled node that appears in
both G andH, namely fG(x) = fH(x) for every x ∈ Vc.

5. TLP Analysis
In the previous section we presented a compression scheme
for label propagation on an arbitrary graph G in the form of
a smaller re-weighted graphH. However, compression by
itself does not yield a streaming algorithm, as we also need
to efficiently update H along the stream. To this end, we
introduce a suitable similarity graph for streaming data.

5.1. The Temporal Vicinity Graph

Let X denote the domain of the inputs and let Sim : X×X→
R>0 be an associated similarity measure.
Definition 5.1. Let τ > 0 be an integer, and x1, x2, . . . ∈ X
be a stream of labeled/unlabeled data points. The temporal
vicinity graph up to timestep n, denoted by G(n)τ , is the
following graph:

• Nodes: The node set of G(n)τ is {x1, . . . , xn}.
• Edges: Every point (either labeled or unlabeled) is ad-
jacent to the previous τ unlabeled points, and to all the
previous labeled points.

• Weights: For every adjacent pair xi, xj , the edge weight
between them is wxi,xj = Sim(xi, xj).

Note that every incoming point xn defines a new graph G(n)τ ,
which contains the previous graph G(n−1)τ as its subgraph.

Let us explain the effect of this graph on the output labeling.
When choosing a graph construction for label propagation,
the placing of edges encodes a structure over which the
solution will be smooth. This means that adjacent nodes
will tend to have similar labels, as seen in Equation (1). One
can either opt for global smoothness (say, by placing all
possible edges), or incorporate domain knowledge.

Temporal vicinity promotes smoothness over consecutive
points in the stream. This is suitable for inherently ordered
data, where the context of each point is relevant for its la-
beling. For example, in an electrocardiogram feed, each
arrhythmia lasts several timesteps, and hence most consecu-
tive points have the same groundtruth label. Thus we should
favor smoothness across temporally adjacent points.

A useful analogy is the spatial vicinity graph structure,
which was used by (Levin et al., 2004) for propagating
colors through pixels in a grayscale image. Their graph
contains edges only between neighboring pixels, and the
edge weights reflect the similarity in grayscale intensity
of the connected pixels. The rationale is that neighboring
pixels are expected to have similar colors, in accordance to
their grayscale intensities, while distant pixels need not have
similar colors even if they have similar grayscale intensities.

The choice of parameter τ is data-dependent. Intuitively, it
should capture the context span of each point in the stream
– or how much the immediate past matters more than the
distant past. This is illustrated in Figure 2. In particular,
increasing τ does not monotonically improve the accuracy,
although it increases the time and space complexity of TLP.

Our analysis also supports several variations to the graph
construction, including connecting each point to the pre-
vious τ points (regardless of whether they are labeled or
unlabeled) or gradually decaying older edge weights over
time. For concreteness we opt for the variant defined above,
which connects every unlabeled point to all the previous
labeled points. This emphasizes the labeled data without
adversely affecting the running time of TLP, which is gov-
erned by the number of nodes and edges inH. In particular,
H remains a weighted clique on τ + 2 nodes regardless of
how the labeled and unlabeled nodes are connected.

5.2. Theoretical Guarantees of TLP

The key property of the temporal vicinity graph is that on
one hand it is a suitable graph construction for data streams,
while on the other hand we can maintain a compressed
representation of it along the stream by sequential star-mesh
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(a) Data stream (b) τ = 1 (c) τ = 2 (d) τ = 4 (clique)

Figure 2. (a) A stream of points x1, x2, . . . , x7 on the plane. x1 and x2 are labeled with red and blue. The rest of the points are unlabeled.
If the stream order is ignored, then x7 is equally likely to be blue or red. If the order matters, then x7 is more likely to be red, since it
appears in the context of x5, x6 which form a smooth path towards x1. (b),(c),(d) show the edges of the temporal vicinity graph for
τ = 1, 2, 4. The edge weights reflect the Euclidean distances and are omitted. The unlabeled points are colored by their blue/red fractional
labels in the harmonic solution. As τ increases, the effect of the distant past on x7 becomes more expressed, and it is less likely to be red.

transforms. Formally, at every timestep n, the graph H in
Algorithm TLP is the result of the short-circuit operator on
G(n)τ with the terminals Vh. Note that Vh is the node set of
H in Algorithm TLP, and is a subset of the nodes in G(n)τ .

Claim 5.2. At every timestep n,H = G(n)τ 〈Vh〉.

In conjunction with Section 4, we obtain the following guar-
antees for Algorithm TLP. Let χ = |X| be the data domain
size and let ω be the magnitude of similarities.2 For every n
let nl denote the number of labeled points up to timestep n.
Note that nl � n in the semi-supervised setting.

Theorem 5.3. For every timestep n in the stream, let xn be
the new received point. Algorithm TLP satisfies:

1. The fractional label f(xn) returned by Algorithm TLP
is equal to the harmonic solution for xn on G(n)τ .

2. The computation time at timestep n is O(τ3 + nl).

3. The storage size at timestep n is O(τ2 log(nω) + (nl +
τ) logχ) bits.

The proof appears in Appendix D. To appreciate the effect
of compression, note that computing the harmonic solution
directly on G(n)τ in timestep n would require Ω(nτ2) time
and Θ(nτ log(nω) + n logχ) storage space. In particular,
both are linear in the stream length n.

6. Experimental Evaluation
In this section, we experimentally demonstrate the effec-
tiveness of our temporal label propagation scheme on data
streams ranging from medical to computer vision domains.

Compared Methods. We compare Algorithm TLP with
the following approaches:

Sliding Window Label Propagation (SWLP): One simple
approach to label propagation on a stream is to store in
memory only the recent τ unlabeled points in a sliding
window fashion, in addition to all the labeled data. This

2ω = maxx,x′∈X Sim(x, x′)/minx,x′∈X Sim(x, x′). A point
takes logχ bits and a similarity value takes logω bits to store.

approach ignores the past entirely, while trivially yielding a
small memory footprint. This algorithm is identical to TLP
except that the star-mesh transform is replaced by usual node
deletion. It thus lets us directly evaluate the effectiveness of
the short-circuiting operation on the stream.

Quantized Label Propagation (QLP): The streaming algo-
rithm of (Valko et al., 2010), which was described in Sec-
tion 1.1. Here τ denotes the number of cluster centroids.

Inductive Label Propagation (ILP): The inductive SSL al-
gorithm of (Delalleau et al., 2005). It performs label prop-
agation on a given training set of labeled and unlabeled
nodes, and subsequent test points are then labeled by a ker-
nel regression step. However, the new test points are not
incorporated into the trained model. To apply this algorithm
to a stream, we use the first τ unlabeled points along with
the labeled data as the training set.

Note that each of the four algorithms works by choosing τ
unlabeled points to fully store in memory and to compute the
harmonic solution over. This determines both the memory
footprint and the computation time of label propagation,
since it is computed by inverting a τ×τ Laplacian submatrix
(cf. Equation (3)). The algorithms vary in their choice of
the τ points. Therefore, while the overall budget is matched,
the algorithms choose their own utilization of the budget,
permitting a direct comparison.

In addition, we include the following baseline:

Labeled-only Label Propagation (LOLP): This algorithm
labels every incoming point on the stream based only on
the labeled examples, without taking any unlabeled points
into account. We use this non-SSL baseline to evaluate the
advantage of making use of the unlabeled points.

We start with a visual demonstration of the three algorithms
on a toy dataset, and proceed to experiments on real data.

6.1. Visual Demonstration

A common demonstration of (offline) label propagation is
the two-rings setting, depicted in Figure 3a. In this setting,
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the data points are densely organized on two concentric
circles, and each circle has only a single labeled point at
its intersection with the x-axis (shown in red on the outer
circle and blue on the inner circle). Offline label propagation
classifies the circles correctly, as shown in Figure 3b.

To adapt this example to the streaming setting, we turn
each circle into a stream by ordering its points counterclock-
wise, starting from the labeled point on the x-axis. The two
streams generated from the two circles are interweaved at
random and presented to the algorithms as a single stream
of data. The goal is to label the outer circle as red and the
inner circle as blue.

Figure 3 shows of the behavior of the methods we compare.
For each method we present snapshots from three points of
time on the stream (ordered left-to-right from early to late).
Each snapshot shows the τ points stored in memory (we
use τ = 40) and colored according to their labeling by the
algorithm at that moment. The full videos are included in
the supplementary material of this paper (see Appendix F).

TLP (Figure 3c) stores the τ most recent points on the
stream, forming two “caterpillars” that crawl along the cir-
cles as new points arrive and old points get evicted. The
history of the stream is encoded in the edge weights between
the stored points by star-mesh transforms, so the algorithm
“remembers” the paths traversed by the caterpillars so far. In
particular, the points on those paths are encoded as providers
in the graph maintained by the algorithm. The classification
remains correct throughout the whole stream.

SWLP (Figure 3d) stores the τ last points as well, but it
does not encode the history of the stream. The classification
fails as soon as the caterpillars move away from the labeled
points on the x-axis.

QLP (Figure 3e) takes a different approach: instead of stor-
ing the τ recent points, it strategically chooses τ centroids
that quantize the stream seen so far. It fails when the stream
has become too long to quantize with only τ centroids.

ILP (Figure 3f) trains on the first τ unlabeled points and
uses them to label subsequent points, but it does not update
the learned model over time. It fails when the model no
longer captures the evolution of the stream over time.

LOLP is not depicted. It fails similar to SWLP and ILP,
and for the same reason.

6.2. Real Data

Datasets. We use 4 datasets arising from different domains:
(a) Incart-ECG (Goldberger et al., 2000): Dataset of ECG
timeseries from PhysioNet bank, annotated with heartbeat
arrhythmias. We use one ECG lead. The task is to clas-
sify atrial (positive) vs. ventricular premature contractions
(negative). Both are common arrhythmias that co-occur in

(a) Two-rings dataset (b) Batch label propagation

(c) Temporal Label Propagation (TLP)

(d) Sliding Window Label Propagation (SWLP)

(e) Quantized Label Propagation (QLP)

(f) Inductive Label Propagation (ILP)

Figure 3. Visualization of the compared algorithms. In (c)-(f), the
black circles are only depicted as a visual aid.

patients. Only the timeseries associated with the two ar-
rhythmias is provided to the algorithms for classification;
normal heartbeats are ignored. (b) Daphnet-Gait (Bachlin
et al., 2010): Annotated readings of 9 accelerometer sensors
of Parkinson’s disease patients that experience freezing of
gait during walking tasks. The goal is to detect gait freeze
(positive) vs. regular walking (negative). (c) Caltech10-
101 (Fei-Fei et al., 2006): Caltech-101 dataset consists of
images annotated by 101 object classes with about 800 im-
ages per class. We restrict ourselves to 10 classes. The
images were resized to 100× 200 (RGB) pixels. This data
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Dataset #Labeled examples τ Accuracy (in%) Avg. Time per point (in msec)
(per class) TLP (Ours) SWLP QLP ILP LOLP TLP (Ours) SWLP QLP ILP LOLP

Incart-ECG 2 5 94.9 69.6 58.9 52.6 70.0 0.052 0.051 0.071 0.054 0.050
Daphnet-Gait 6 100 75.9 56.3 70.9 44.6 72.0 15.8 15.0 104.3 15.4 14.7
Caltech10-101 10 10 80.9 78.1 78.9 80.6 78.9 51.4 51.3 110.6 171.6 49.3
CamVid-Car 3 10 95.9 80.6 54.5 86.9 72.4 426.4 424.2 877.6 623.6 420.8

Table 1. All of the compared algorithms are given the same labeled datapoints and unlabeled data stream. The results for Incart-ECG
and Daphnet-Gait are averaged over multiple patients. The results for Caltech10-101 are averaged over 5 runs each time with a different
ordering of the test stream. The standard deviation for the results across these runs is generally small for all of the approaches.

is non-temporal; we simulate a stream by generating ran-
dom permutations of the images. (d) CamVid-Car (Brostow
et al., 2009) (Cambridge-driving Labeled Video Database):
CamVid dataset consists of video sequences taken from
a moving vehicle in an urban environment with ground
truth, provided at a rate of 1Hz, of 32 semantic classes
for each pixel of the frames. We restrict ourselves to a
binary classification problem of detecting whether there
is a car in the frame (positive) or not (negative). We call
this the CamVid-Car dataset. For both the Caltech10-101
and CamVid datasets, we use the raw RGB features. The
properties of the datasets are summarized in Table 2.

Dataset #Datapoints #Features #Classes
Incart-ECG 1850408 1 2

Daphnet-Gait 476813 9 2
Caltech10-101 2461 100× 200× 3 10
CamVid-Car 577 720× 960× 3 2

Table 2. Properties of the experimental datasets.

Shingling. A useful technique when dealing with timeseries
data is to group consecutive sequences (N -grams) of points
into shingles. This lifts the data into a higher dimension N
and allows for a richer representation of inputs. For Incart-
ECG and Daphnet-Gait we use N = 50 and generate the
stream by taking the normalized difference between every
two consecutive shingles. The normalized shingle difference
is useful for capturing local shapes in the signal (such as
heartbeat arrhythmias) rather than absolute values.

Experimental Setting. We use the standard RBF similar-
ity, Sim(x,y) = exp(−‖x − y‖2/σ2). We set σ = 0.1
for Incart-ECG, Daphnet-Gait, and CamVid and σ = 10
for Caltech10-101. For the Incart-ECG, Daphnet-Gait, and
CamVid datasets we use the natural ordering of the stream,
whereas with Caltech10-101 dataset we generate a stream
by randomly permuting the images. The labeled examples
are given in the beginning of each stream, and we start the
labeling process once the mentioned amount of labels from
each class arrives. All experiments were performed on a 3.1
GHz Intel Core i7 machine with 16GB RAM.

Results. Table 1 presents our main experimental results.
We make the following observations:

(1) Short-circuiting matters: The comparison of TLP
to SWLP directly evaluates the effect of summarizing

the stream by the star-mesh transform, as they are oth-
erwise identical. As noticed in Table 1, it yields a sub-
stantial improvement in the accuracy on the temporally-
ordered datasets Incart-ECG, Daphnet-Gait, and CamVid-
Car, with almost no effect on the running time. This
corroborates the presumption that TLP is well suited for
streams that adhere to a temporal vicinity structure as
per Section 5.1. However, when there is no natural tempo-
ral ordering (such as with Caltech10-101 data), we did not
observe an advantage over the other methods.

(2) Small amount of labeled data suffice: Notice that we
use a very small amount of labeled data in each exper-
iment. For example, on the Incart-ECG dataset, TLP
can get to a 95% classification accuracy given only two
labeled examples of each type of arrhythmia.

(3) Computational speedup: Notice that on the timeseries
datasets, even with shingling, which increases the dimen-
sionality of the data by a factor of shingle size, TLP takes
few milliseconds per point. We remark that QLP is slower
than the other methods because of the iterative loop in the
k-center quantization step.

In Appendix E, we present additional experiments that show
how τ and labeled data size effects the performance of TLP.
We also present some visualizations of our approach on the
tested datasets.

7. Conclusion and Future Work
We presented a principled approach for adapting the label
propagation algorithm of (Zhu et al., 2003a) to streaming
data. There are many extensions and variants of this fun-
damental algorithm that address issues like regularization,
interpretability, noise in labels, and more. A possible direc-
tion of further research is using our methods to adapt these
extensions to the streaming setting as well.

Recently, there has been a surge of theoretical work on fast
computation of approximate short-circuit graphs and on
maintaining them dynamically (Durfee et al., 2017; 2018;
Goranci et al., 2017; 2018). It is not directly applicable to
label propagation since they approximate the energy but not
the values at individual nodes (see Remark 4.3). In light
of our work, we are interested if these results could have
implications for SSL in dynamic settings.
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A. Background on Algebraic Graph Theory
We briefly review some basic algebraic graph theory definitions used in our paper. We denote by 0 and 1 the all-0’s and
all-1’s vectors of dimension implied by context. We also use {1} to denote the linear subspace spanned by 1.

Graph Laplacians and Connected Laplacians. A matrix G ∈ Rn×n is called a graph Laplacian matrix if it satisfies the
following properties: (i) G is symmetric; (ii) all off-diagonal entries are non-positive (i.e., Gij ≤ 0 for every i 6= j); (iii)
G1 = 0.

Let G = (V,E,w) be an undirected weighted graph (with non-negative edge weights) whose weighted adjacency matrix
is W . Its Laplacian matrix G is defined as G = D −W , where D is the diagonal matrix of weighted node degrees. It is
straightforward to verify that G indeed satisfies the properties (i)-(iii) stated above.

Conversely, any Laplacian matrix G ∈ Rn×n defines an undirected weighted graph G on n nodes given as follows. The
nodes of G correspond to the rows of G, and we identify them with {1, 2, . . . , n}. For every pair of nodes i 6= j, there is an
edge between them in G iff Gi,j is strictly negative and, in that case, the (positive) edge weight is −Gi,j .

Note that property (iii) states that 1 ∈ ker(G). It is well-known that G is a connected graph if and only if this is the entire
kernel, i.e., ker(G) = {1}. In this case we say that G is a connected Laplacian matrix.

Laplacian Schur complements. Let V = Va ∪ Vb be a partition of the node set of G. Write the Laplacian G in a
corresponding block form,

G =

[
Gaa Gbb
Gba Gbb

]
.

If G is a connected graph then the principal submatrix Gaa is invertible by a theorem due to Taussky (cf. (Horn & Johnson,
1990), Corollary 6.2.27). Therefore the Schur complement G/Gaa = Gbb − GbaG−1aaGab is well-defined. By closure
properties of Schur complements, it turns out that G/Gaa is a connected Laplacian matrix. We refer the reader to (Dorfler &
Bullo, 2013) for detailed proofs of these facts. Note that as per above, the Laplacian matrix G/Gaa defines a graph on the
nodes Vb, and this is the graph denoted by G〈Vb〉 in Definition 2.1.

B. Extensions of Label Propagation
B.1. Merging Multiple Labeled Nodes

Let G = (V,E,w) be a graph with a partition of the node set V = Vl ∪ Vu into labeled and unlabeled nodes. Let
Vl = V 0

l ∪ V 1
l be the partition of the labeled node into those labeled 0 and those labeled 1. Let G∗ be the graph resulting

from G by merging all nodes in V 0
l into a single node v∗0 , and similarly merging all nodes in V 1

l into a single node v∗1 . The
weights of any resulting parallel edges in G∗ are summed together.

Claim B.1. The harmonic solution on G and on G∗ is the same on all of the unlabeled nodes.

This can be seen by the random walk interpretation of the harmonic solution which was given in (Zhu et al., 2003a), in
which the labeled nodes form a fully absorbing boundary. Specifically, the harmonic solution f(x) on G at an unlabeled
node x ∈ Vu equals the probability that a random walk on G starting at x will hit a node in V 1

l before hitting any node in V 0
l .

The proof of the above claim is straightforward by observing that the random walk processes on G and on G∗ are the same.

B.2. Multi-class Labeling

In Section 3, we stated Algorithm TLP for binary classification. The algorithm extends to multi-class classification in a
natural way, similarly to the offline setting, as we now detail. Suppose there are β > 2 possible labels. We initializeH with
a supernode v∗k and a set Lk for every k = 1, . . . , β. After the first τ unlabeled points on the stream were seen,H would
always have τ + β nodes, of which τ are unlabeled and β are labeled.

Node insertion and node removal by the star-mesh transform remain the same. The label propagation step is replaced with
the standard multi-label variant of (Zhu et al., 2003a). It is computed by the formula F = −H−1ττ · Hτl. The resulting
matrix F is of order τ × β, and its (i, k)-entry equals the probability that a random walk that starts at the ith unlabeled
node would hit v∗k before any v∗k′ for k′ 6= k. This is in fact equivalent to running β parallel 1-versus-all invocations of the
binary classification variant of Algorithm TLP, one for each of the β classes. The new point xn in H is given the label
k∗ = argmaxk {Fxn,k}.
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C. Missing Details from Section 4
In this section we prove Theorem 4.1 and Proposition 4.2, and elaborate on certain connections that arise from our analysis
to prior work.

Notation. As before, we denote by 0 and 1 the all-0’s and all-1’s vectors of dimension implied by context, and we use {1}
to denote the linear subspace spanned by 1.

C.1. Electric Interpretation

For the sake of intuition, we review the interpretation of the harmonic solution in terms of electric networks. Let G(V,E,w)
be an undirected weighted connected graph, with a partition V = Vl ∪ Vu of its nodes into labeled and unlabeled nodes. We
view G as an electric circuit in which each edge (x, y) ∈ E is a resistor with electric conductance wx,y (or equivalently,
electric resistance w−1x,y). Given a vector of labels fl ∈ RVl for the labeled nodes, we connect each node x ∈ Vl to an external
power source and fix its electric potential to fl(x). This sends electric flow through G and induces electric potentials at the
unlabeled nodes Vu. The harmonic solution fG ∈ RV on G is the resulting vector of electric potentials at all nodes.

Next, we recall the electric interpretation of the graph Laplacian due to (Kirchhoff, 1847). Let f ∈ RV be a vector of
electric potentials at the nodes of G. For every edge (x, y) ∈ E, following Ohm’s law, we define the electric current ix,y
flowing from x to y as the product of conductance by potential difference: ix,y = wx,y(f(y)− f(x)). Note that iy,x = −ix,y .
The net electric current at a node x, denoted henceforth z(x), is defined as the sum of currents on the edges incident to x:

z(x) =
∑

y:(x,y)∈E

ix,y =
∑

y:(x,y)∈E

wx,y(f(x)− f(y)) = deg(x)f(x)−
∑

y:(x,y)∈E

wx,yf(y).

By the definition of the graph Laplacian, the latter right-hand side is the value at entry x of the vector Gf , where G is the
Laplacian matrix of G. Letting z ∈ RV denote the vector of net electric currents, we have z = Gf . Thus the Laplacian is the
linear operator that maps electric potentials to net electric currents.

Lemma C.1 (Kirchhoff’s Current Law). Let zG = GfG be the vector of net electric currents induced by the harmonic
solution fG on G. Let zGu and zGl denote its restriction to Vu and to Vl respectively. Then zGu = 0, and zGl = (G/Guu)fl.

Proof. That zGu = 0 is a rearrangement of the harmonic constraints from Equation (2). For zGl we have zGl = (GfG)l =
Gluf

G
u +Gllfl = (−GluG−1uuGul +Gll)fl = (G/Guu)fl, where we have plugged Equation (3) for fGu .

C.2. Shifted Harmonic Solutions

The reverse mapping of the Laplacian (from z to f ) is non-unique. The reason is that we can add a constant σ ∈ R to all
electric potentials without changing the net electric currents as they depend only on potential differences. In other words,
Gf = G(f + σ1) for every σ ∈ R. This motivates the following notion.

Definition C.2. Let fG the harmonic solution on G for a given label vector fl ∈ RVl . For every σ ∈ R, we call f̃G = fG+σ1
a shifted harmonic solution.

Shifted harmonic solutions arise naturally in the analysis of label propagation, and they have also been used for regulariza-
tion (Belkin et al., 2004), and for thresholding the harmonic solution in order to produce a binary classification (Zhu et al.,
2003a). We will elaborate somewhat on these applications in Appendix C.6.

To put this definition in context, recall that the (non-shifted) harmonic solution fG is the unique minimizer of the energy
function of G (cf. Equation (1)), under the constraint that its restriction to Vl is equal to the given label vector fl. A shifted
harmonic solution f̃G = fG + σ1 attains the same energy, namely 1

2 (f̃G)>Gf̃G = 1
2 (fG)>GfG , but its restriction to Vl

equals fl + σ1 and not fl.

C.3. Generalized Laplacian Inverses

In view of the non-invertibility of the Laplacian, we turn to the theory of generalized matrix inverses.

Definition C.3. A g-inverse of G is any matrix G# satisfying GG#G = G.

A g-inverse maps an image of G back to one of its pre-images:
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Claim C.4. If G# is a g-inverse of a connected Laplacian G, then for every f , G#Gf = f + σ1 for some σ ∈ R.

Proof. G = GG#G implies G(f −G#Gf) = 0, thus f −G#Gf ∈ ker(G). Since G is connected, ker(G) = {1}.

Shifted Harmonic Solutions by Generalized Inverses. Let G(V,E,w) be a connected graph with a partition V = Vl∪Vu
into labeled and unlabeled nodes, and let G denote its Laplacian. Let fl ∈ RVl be a given vector of labels on Vl, and let fG

be the associated harmonic solution. Claim C.4 for fG can be rephrased as follows:
Claim C.5. If G# is a g-inverse of G, then G#GfG is a shifted harmonic solution.

Next, let us introduce a piece of notation that will be useful. Let M be any matrix that can be written in block-form

corresponding to the partition V = Vl ∪ Vu, as M =

[
Muu Mul

Mlu Mll

]
. We will henceforth use M∗l to denote the |V | × |Vl|

submatrix M∗l =

[
Mul

Mll

]
. Since Lemma C.1 asserts that (GfG)u = 0 and (GfG)l = (G/Guu)fl, we observe:

Claim C.6. For every M , we have MGfG = M∗l(G/Guu)fl.

Combining this with Claim C.5, we obtain:
Lemma C.7. If G# is a g-inverse of G, then G#

∗l(G/Guu)fl is a shifted harmonic solution for fl on G.

This lemma turns out to be useful in analyzing label propagation. It provides a formula for computing a shifted harmonic
solution from the given labels fl and an arbitrary g-inverse of G. The flexibility of being able to choose any g-inverse will
facilitate the proof of Theorem 4.1. In particular, we will choose a certain g-inverse that depends on the set of consumers.

Furthermore, the lemma can be used to directly compute the Interpolated Regularization algorithm of (Belkin et al., 2004)
and the Class Mass Normalization step of (Zhu et al., 2003a), by identifying their suitable g-inverses. We will explore these
connections in Appendix C.6.

Banachiewicz-Schur Form. So far we discussed properties of arbitrary g-inverses of G. Now we introduce a concrete
choice of g-inverse. There are various Laplacian g-inverses that are well-known and well-studied, and different choices are
useful for different purposes. Most important to us is a class of g-inverses known as the Banachiewicz-Schur form (Rohde,
1965), which arises from generalizing Schur’s matrix identity to non-invertible matrices, and is suitable in the presence of a
distinguished subset of nodes Vt ⊂ V (that we call terminals) in the graph.
Definition C.8. Let G(V,E,w) be a connected graph with a partition V = Vt ∪ Vs of the nodes. Let H = G〈Vt〉 be the
short-circuit graph on Vt, whose Laplacian is the Schur complement H = G/Gss. Let H# be an arbitrary g-inverse of H .
The Banachiewicz-Schur g-inverse G(H#) of G is defined as

G(H#) =

[
G

(H#)
ss G

(H#)
st

G
(H#)
ts G

(H#)
tt

]
=

[
G−1ss +G−1ss GstH

#GtsL
−1
ss −G−1ss GstH#

−H#GtsG
−1
ss H#

]
.

This definition allows us to “lift” a g-inverse of H into a g-inverse of G. It can be checked by direct block-multiplication
that G(H#) is a g-inverse of G for every H#, i.e., GG(H#)G = G.

C.4. Proof of Theorem 4.1

We are now ready to prove Theorem 4.1, restated next.
Theorem 4.1 (restated). Let G = (V,E,w) be a connected graph, with a partition V = Vl ∪ Vu and a subset Vc ⊂ Vu. Let
H = G〈Vl ∪ Vc〉 be the short-circuit graph on Vl ∪ Vc. Let fl ∈ RVl be a vector of labels for Vl, and let fG and fH be the
corresponding harmonic solutions on G andH. Then fG(x) = fH(x) for every x ∈ Vc.

Proof. Let G and H denote the Laplacians of G and H respectively. We recall the terminology we use: Vl and Vu are
the labeled and unlabeled nodes, and Vc are the consumers. We denote Vt = Vl ∪ Vc and call these the terminals, and
Vs = V \ Vt the non-terminals. Overall we have the following block forms of G and H:

G =

[
Gss Gst
Gts Gtt

]
=

 Gss Gsc Gsl
Gcs Gcc Gcl
Gls Glc Gll

 =

[
Guu Gul
Glu Gll

]
, and H =

[
Hcc Hcl

Hlc Hll

]
.
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Claim C.9. G/Guu = H/Hcc.

Proof. By Definition 2.1 we have H = G/Gss. Taking the short-circuit operator w.r.t. Vc on both sides yields H/Hcc =
(G/Gss)/(G/Gss)cc = G/Guu, where the last equality is by the quotient property of Schur complements, since Vu =
Vs ∪ Vc (cf. (Zhang, 2005), Theorem 1.4; the equivalent graphic chain of equalities isH〈Vl〉 = (G〈Vt〉)〈Vl〉 = G〈Vl〉).

To prove Theorem 4.1, fix an arbitrary g-inverse H# of H . we will use H#
∗l denote its |Vt| × |Vl| submatrix

[
H#
cl

H#
ll

]
. We

use H# to construct the Banachiewicz-Schur g-inverse G(H#) of G. Denote f̃G = G
(H#)
∗l (G/Guu)fl. By Lemma C.7,

f̃G is a shifted harmonic solution on G. Its restriction to Vt is f̃Gt = G
(H#)
tl (G/Guu)fl = H#

∗l (H/Hcc)fl, where we have

plugged Claim C.9, and used the fact that G(H#)
tt = H# in the Banachiewicz-Schur form (Definition C.8), and in particular

G
(H#)
tl = H#

∗l (since Vl ⊂ Vt). By Lemma C.7 applied toH, we now find that f̃Gt is a shifted harmonic solution onH.

Let fG and fH be the (non-shifted) harmonic solutions for fl on G and H respectively. We showed that on one hand
f̃G = fG + σ1 for some σ ∈ R, and on the other hand f̃Gt = fH + σ′1 for some σ′ ∈ R. Together, fGt = fH + (σ − σ′)1.
However, every labeled node x ∈ Vl satisfies fG(x) = fH(x) = fl(x) since its given label fl(x) remains fixed in the
harmonic solution on any graph. Therefore σ − σ′ = 0, implying fGt = fH. The theorem follows since Vc ⊂ Vt.

C.5. Proof of Proposition 4.2: Storage Size ofH

Proposition 4.2 (restated). Let G = (V,E,w) be a connected graph, and Vt ⊂ V . Let ω be the ratio of maximum to
minimum edge weights in G. LetH = G〈Vt〉. ThenH can be stored in O(|Vt|2(log |V |+ logω)) bits.

Proof. Let G and H be the Laplacians of G and H respectively. Denote Vs = V \ Vt. By Definition 2.1, H = Gtt −
GtsG

−1
ss Gst. Thus, each entry of H is a cubic polynomial with O(|V |2) monomials over entries of magnitude ω. Hence

each of the |Vt|2 entries of H can be stored in log(|V |2ω3) bits. Storing the Laplacian is sufficient to store the graph.

C.6. Interpolated Regularization and Class Mass Normalization

In this section we take a short detour, to explore some connections between our analytic framework to prior work on label
propagation, and in particular the Interpolated Regularization (IR) algorithm of (Belkin et al., 2004) and the Class Mass
Normalization (CMN) step of (Zhu et al., 2003a). The main takeaways are:

• Both IR and CMN arise as shifted harmonic solutions from natural choices of Laplacian g-inverses (via Claim C.5).

• Both can be seen as cases of a principled way to generate shifted harmonic solutions, by plugging a chosen subset of
nodes as terminals in the Banachiewicz-Schur g-inverse and evoking Claim C.5. Specifically, IR chooses all nodes V ,
and CMN chooses the unlabeled nodes Vu.

• Consequently, both can be computed directly by evoking Lemma C.7 with their associated g-inverse.

As usual, let G(V,E,w) be a connected graph with a partition V = Vl ∪ Vu into labeled and unlabeled nodes, and Laplacian
matrix G. Suppose we have a given label vector fl ∈ RVl , and denote by fG its harmonic solution on G.

Moore-Penrose Pseudoinverse. The most well-known and well-studied Laplacian g-inverse is the Moore-Penrose pseu-
doinverse, denoted henceforth by G†. We recall that G† is a matrix that satisfies the following properties: (i) GG†G = G;
(ii) G†GG† = G†; (iii) G†G is symmetric; (iv) GG† is symmetric. It is known to exist and to be unique, and it can be
computed efficiently by inverting the non-zero eigenvalues along the same eigenvectors in a spectral decomposition of G.

Interpolated Regularization. Recall that by Claim C.5, any g-inverse of G maps GfG to a shifted harmonic solution. We
observe that the Interpolated Regularization solution is obtained in this way from the Moore-Penrose pseudo-inverse.

Proposition C.10. Let f̃ be the solution of the Interpolated Regularization algorithm. Then f̃ = G†GfG

Proof. f̃ is defined in (Belkin et al., 2004) as a shifted harmonic solution f̃ = fG + σ1 that satisfies
∑
x∈V f̃(x) = 0. By

combining the two, we find that σ = − 1
|V |
∑
x∈V fG(x) = − 1

|V | (f
G)>1. As a result, we see that f̃G is the orthogonal
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projection of f on the subspace {1}⊥, which is the image of G. The Moore-Penrose pseudoinverse has the property that
G†G is the orthogonal projection on im(G), and therefore f̃ = G†GfG .

From Claim C.6, we get the following instantiation of Lemma C.7 (using the notationG†∗l as defined earlier in Appendix C.3).

Corollary C.11. The formula G†∗l(G/Guu)fl computes the Interpolated Regularization solution.

Class Mass Normalization (CMN). It was noted already in (Belkin et al., 2004) that IR is related to the CMN step of (Zhu
et al., 2003a). To make this connection explicit, let us present a certain generalized form of CMN for binary classification.
Fix a subset of nodes Vr ⊂ V , and define the Vr-mass of the harmonic solution fG as m(Vr) =

∑
x∈Vr

fG(x). CMN
assumes we have prior knowledge that the expected class proportions are q and 1− q (for some 0 < q < 1), and classifies an
unlabeled point x as 0 if and only if q

m(Vr)
fG(x) ≤ 1−q

|Vr|−m(Vr)
(1− fG(x)). For q = 1/2 (which we will assume henceforth),

this becomes simply fG(x) ≤ 1
|Vr|m(Vr).

CMN as defined in (Zhu et al., 2003a) uses Vr = Vu. Alternatively, if we choose Vr = V , then the rule to classify x as
0 becomes fG(x) ≤ 1

|V |m(V ) = 1
|V | (f

G)>1, which is the negative shift of the IR solution. Therefore, thresholding the
fractional labels of IR at zero is equivalent to CMN with the mass m(V ).

We observed in Proposition C.10 that IR is the shifted harmonic solution obtained from inverting GfG with the Moore-
Penrose pseudo-inverse G†. It is natural to ask what is the g-inverse that yields the CMN variant defined in (Zhu et al.,
2003a), i.e., with the mass m(Vu). The answer turns out to be the Banachiewicz-Schur g-inverse of G which is constructed
from the Moore-Penrose pseudo-inverse of the short-circuit graph G〈Vu〉.
Proposition C.12. LetH = G〈Vu〉, let H be its Laplacian, let H† be its Moore-Penrose pseudo-inverse, and let G(H†) be
the associated Banachiewicz-Schur g-inverse of G. Let f̃ = G(H†)GfG . Then thresholding f̃ at zero classifies the points
according to the Class Mass Normalization rule of (Zhu et al., 2003a) with the prior assumption of balanced classes.

Proof. The following identity can be verified directly (see also (Rohde, 1965)):

G(H†)G =

[
H†H 0

G−1ll Glu(Iu −H†H) Il

]
,

where Iu and Il denote the identity matrices of order |Vu| and |Vl| respectively. It follows that the restriction of f̃ =

G(H†)GfG to Vu is H†HfGu , which is the orthogonal projection of fGu on im(H), which equals fGu − ( 1
|Vu| (f

G
u )>1) · 1 =

fGu − 1
|Vu|m(Vu) · 1. In particular, for every x ∈ Vu we have f̃(x) = fG(x)− 1

|Vu|m(Vu). On the other hand, by Claim C.5,

f̃ = fG + σ1 for some σ ∈ R, and therefore σ = − 1
|Vu|m(Vu). Consequently, thresholding f̃ at 0 is equivalent to CMN

with the mass m(Vu) and the prior assumption of balanced classes (q = 1/2).

By Claim C.6, we get the following application of Lemma C.7.

Corollary C.13. Given a label vector fl, computing f̃ = G(H†)(G/Guu)fl and thresholding f̃ at zero produces the same
binary classification of the points as the CMN rule of (Zhu et al., 2003a) with the prior assumption of balanced classes.

More generally, we could replaceH = G〈Vu〉 in Proposition C.12 and Corollary C.13 byH = G〈Vr〉 for any ∅ 6= Vr $ V ,
and obtain analogous results (by the same proofs) for CMN with the mass m(Vr) and the prior assumption of balanced
classes. In particular, using G(H†) as the g-inverse in Claim C.5 or in Lemma C.7 would yield a shifted harmonic solution
whose shift equals − 1

|Vr|m(Vr).

D. Missing Details from Section 5

Claim 5.2 (restated). For every timestep n in Algorithm TLP, the graphH maintained by the algorithm equals G(n)τ 〈Vh〉.

Proof. Algorithm TLP computesH by sequential star-mesh transforms on all but the τ recent unlabeled points, i.e., on all
nodes in G(n)τ except Vh. Importantly, the star-mesh transform depends only on the neighborhood of the evicted node. TLP
evicts a node only after the next τ unlabeled points have been seen, and thus its neighborhood in G(n)τ is fully known. As
per Section 2.1, this produces G(n)τ 〈Vh〉.
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Theorem 5.3 (restated). Given a data domain X with a similarity measure Sim : X × X → R>0, denote χ = |X| and

ω =
maxx,x′∈X Sim(x,x′)

minx,x′∈X Sim(x,x′) . Let x1, x2, . . . ∈ X be a data stream. For every n, let nl denote the number of labeled points seen
up to timestep n, and let xn be the new received point. Algorithm TLP satisfies the following for every n:

1. The fractional label f(xn) returned by Algorithm TLP is equal to the harmonic solution for xn on G(n)τ .

2. The computation time at timestep n is O(τ3 + nl).

3. The storage size at timestep n is O(τ2 log(nω) + (nl + τ) logχ) bits.

Proof. 1. By Claim 5.2, it suffices to show that the short-circuit operator preserves the harmonic solution on terminal nodes.
This is proven in Theorem 4.1.

2. H has τ + 2 nodes. Node insertion takes O(nl + τ) time (note that nl = |L0| + |L1|), and the star-mesh transform
takes O(τ2) time. The computation time of the harmonic solution onH by Equation (3) is governed by inverting its τ × τ
Laplacian submatrix that corresponds to the unlabeled nodes, which can be done in time O(τ3), or (theoretically) in time
O(τ c) where c < 3 is the matrix multiplication constant (Le Gall, 2014).

3. By Claim 5.2,H = G(n)τ 〈Vh〉. By Proposition 4.2, storingH takes O(τ2 log(nω)) bits. Storing the nl labeled and the τ
unlabeled data points that are included in Vh takes (nl + τ) logχ additional bits.

E. Additional Experiments
Dataset Details. In Caltech10-101, the 10 object classes we use are Airplanes, Chair, Faces, Helicopter Lobster, Motorbikes,
Pizza, Strawberry, Stop Sign, and Sunflower. In CamVid-Car, we use the video sequences labeled “0016E5”, “0006R0”, and
“Seq05VD” which have both positive and negative labels. For both datasets, we use the raw RGB features. We expect the
results to improve with better feature generation techniques.

Sensitivity/Specificity Results. Table 3 reports the sensitivity (true positive rate or recall) and specificity (true negative rate)
for the experiments in Table 1. We notice our algorithm achieves results which have both high sensitivity and specificity on
the binary classification tasks, more than the compared algorithms. In other words, TLP does equally well on identifying
both the classes.3 In Figure 4, we show a few example points correctly/incorrectly classified by our approach.

Dataset #Labeled examples τ Sensitivity/Specificity (in%)
(per class) TLP (Ours) SWLP QLP ILP LOLP

Incart-ECG 2 5 95.1/94.5 64.3/88.0 62.2/55.3 97.0/6.4 67.9/72.0
Daphnet-Gait 6 100 75.7/68.4 51.5/1 61.9/78.0 88.0/9.6 95.2/48.8
Caltech10-101 10 10 49.6/97.6 45.2/97.3 10.8/90.2 50.9/97.5 45.1/97.2
CamVid-Car 3 10 96.8/92.2 80.7/78.9 62.1/9.5 82.3/96.0 94.8/28.6

Table 3. Sensitivity/specificity results in our experiments.

Effect of τ and labeled data on TLP. We present experiments that highlight the role of number of labeled datapoints and
τ in our proposed approach (see Figure 5). In all our experiments, we noticed a small set of labeled data from each class
suffices to get good performance. In Figure 5a, we show the change in performance of our TLP approach when we increase
from 1 to 7 labeled datapoints. As expected with more labeled data the performance of our approach generally improves
before tapering off. However, since we use such low quantities of labeled data, adding more labeled data (especially, in
presence of some label noise), we do expect some minor variation in the performance. The relationship between τ and
performance is not as simple (Figure 5b), as per the discussion in Section 5.1.

F. Concentric Circle Demonstrations
We accompany this paper with videos demonstrating the behavior of Algorithm TLP and of the other algorithms tested
in Section 6 in the setting of labeling concentric circles, as depicted in Section 6.1. The content of the videos is detailed
below, along with 3 snapshots from each video, ordered left-to-right.

3On the Caltech10-101, the average sensitivity is lower because all the approaches perform poorly on certain classes of images such as
Lobster, Chair, and Pizza, which have a smaller representation in the dataset.



Semi-Supervised Learning on Data Streams via Temporal Label Propagation

0 1000 2000
3.0

2.5

2.0

1.5

1.0

0.5

0.0
Labeled data for atrial premature contraction

0 1000 2000
3.0

2.5

2.0

1.5

1.0

0.5

0.0
Labeled data for ventricular premature contraction

0 1000 2000
3.0

2.5

2.0

1.5

1.0

0.5

0.0

0.5
Atrial premature contraction correctly identified

0 1000 2000
3

2

1

0

1

2
Atrial premature contraction incorrectly identified

0 1000 2000
4

3

2

1

0

1
Ventricular premature contraction correctly identified

0 250 500 750
3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
Ventricular premature contraction incorrectly identified

(a)
(b)

Figure 4. (a) Results on Incart-ECG using a single training example with Algorithm TLP. Column 1 shows the original training datapoint
per object class. Overlayed in red is the ground truth annotation of the location of the arrhythmia. Column 2 shows data points that were
correctly classified. Column 3 shows data points that were incorrectly classified. (b) Results on multi-class classification on Caltech10-101
using a single training example with Algorithm TLP. The classes shown are: Motorbikes, Stop Sign, Sunflower, and Faces. Column 1
shows the original training datapoint per object class. Column 2 shows a sample set of images that were correctly classified. Column 3
shows a sample set of images within the object class were incorrectly classified. Column 4 shows a sample set of false positives obtained
for the object class.
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Figure 5. (a) The improvement in the performance of our approach with more labeled data. The plot shows that even very few labeled
datapoints suffices to get a good classification performance. (b) The variation of the performance with τ . The parameter τ is a dataset
dependent parameter that intuitively should be picked to capture how a point is influenced by its immediate versus long term past.

Angular Streaming Order. We generate a stream for binary classification as follows. We start with two labeled points on
the x-axis. In the videos they are colored blue and red. All subsequent points are unlabeled. At every time step, the angle of
the next input point in the stream keeps smoothly progressing counterclockwise starting at the x-axis. The circle on which
the point resides is chosen uniformly at random. The point is then given to the algorithm for classification. The black outline
of the circles is depicted in the videos only as a visual aid, and is not part of the input to the algorithms.

The first 4 videos demonstrate the performance of TLP, SWLP, QLP and ILP in the above settings. Each of the algorithm
is given a budget of τ unlabeled points to store in memory, along with all the labeled points. All of the algorithms are based
on computing label propagation on the stored points in every timestep. We set τ = 40.

Video 1: Temporal Label Propagation (TLP). This video demonstrates the performance of TLP on the stream described
above. The points shown on the circles are the points that are currently present in the compressed graphH. In TLP, these
are the most recent τ unlabeled points (plus the two initial labeled points), which form the two “caterpillar” crawling along
the circles. Even though the graph only contains the last τ points, the history of the stream is embedded in the edge weights,
by the successive star-mesh transforms. As a result, the caterpillars “remember” the paths they traversed so far at every
timestep, and their labeling of the new points depends on all of the past points. Consequently, TLP continues to classify the
points correctly throughout the entire stream. See the accompanying file: “TLPAngularStream.mov”.
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Figure 6. Temporal Label Propagation (TLP) on points in angular order.

Video 2: Sliding window Label Propagation (SWLP). This video demonstrates the performance of SWLP on the same
setting. At any point, label propagation is performed on the most recent τ points, but without a summary of the history of
the stream. As a result, the classification fails as soon as the caterpillars move sufficiently far from the labeled points. See
the accompanying file: “SwLPAngularStream.mov”.

Figure 7. Sliding-Window Label Propagation (SWLP) on points in angular order.

Video 3: Quantized Label Propagation (Valko et al., 2010) (QLP). This video demonstrates the performance of QLP
on the same setting. Here, the compressed graph does not contain the most recent τ points, but rather τ cluster centers
chosen by the algorithm to represent the stream so far. The video shows them in grey and demonstrates how the algorithms
maintains a quantized version of the stream seen so far. The classification is successful at first, but fails when τ becomes too
small to successfully quantize the input stream – more precisely, when the difference between the centroids substantially
exceeds the difference between the circle radii. See the accompanying file: “QLPAngularStream.mov”.

Figure 8. Quantized Label Propagation (QLP) on points in angular order.

Video 4: Inductive Label Propagation (Delalleau et al., 2005) (ILP). This video demonstrates the performance of ILP
on the same setting. This is an inductive but not an online SSL algorithm, which means that new incoming points can
be classified, but they are not used for learning how to label future points. Specifically, once the first τ unlabeled points
arrive, the algorithm performs a training step by label propagation on those points together with the labeled points. Every
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subsequent point is labeled by kernel regression on the labels of the training points, but is not incorporated into the trained
model. As a result, the algorithm fails once the stream moves away from the initial portion of τ points, and the trained
model no longer reflects the evolving nature of the stream over time. See the accompanying file: “ILPAngularStream.mov”.

Figure 9. Inductive Label Propagation (ILP) on points in angular order.

Video 5: Multi-label TLP. Here the stream is generated the same as above, but with 4 instead of 2 circles. The video
presents the performance of the multi-label variant of TLP, described above in Appendix B.2. Again, the classification
remains correct throughout the stream. Here, we set τ = 100. See the accompanying file: “TLPMultiLabel.mov”.

Figure 10. Temporal Label Propagation (TLP) on multiple labels.

Video 6: TLP on Random Streaming Order. In the final video, we stream the points at a random order instead of the
angular order. At every step we pick a uniformly random angle and place the next point at that angle on one of the two
circles at random. We run TLP on the resulting stream. At first, the classification fails since there is no notion on smoothness
over time. However, the successive star-mesh transform continuously accumulate structural information into the edge
weights ofH. Finally, at a certain time (around 0:08), enough information has been accumulated, and from then onwards
the classification is correct. Here, we set τ = 200. This behavior suggests that TLP could possibly be beneficial also to
non-temporally ordered data, perhaps with a larger setting of τ . However, we did not observe this effect in our experiments
on real data (specifically on the Caltech10-101 dataset). See the accompanying file: “TLPRandomStream.mov”.

Figure 11. Temporal Label Propagation (TLP) on randomly ordered points.


