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Nearest Neighbor Search for OT

in High-Dimensional Spaces

Setting: Sparse distributions supported on

a high-dimensional Euclidean space R?.

Goal: Given a collection of distributions

Uy, ..., Uy, and a query distribution v, find

the nearest neighbor of vin u4, ..., W,,.

Example: Word-Mover Distance between

text documents [Kusner et al. 2015]
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Tree-based Methods for Fast OT

Classical method: Quadtree

[Charikar 2002, Indyk & Thaper 2003, Le et al. 2019]

1. Embed support in tree of nested hypercubes.

2. Solve OT on the tree metric (linear time).
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Our method: Flowtree

Solve for the optimal flow on the tree, but
compute its cost w.r.t. the original distance.

Taxonomy of fast approximate OT methods:

 Coarse linear time: Mean [Kusner et al. 2015],
Overlap/TF-IDF, Quadtree

* Fine quadratic time : R-WMD [Kusner et al. 2015],
Sinkhorn iterations [Cuturi 2013}

* "Slower” linear time: Flowtree
Nearly as accurate and much faster than quadratic
time methods.

Flowtree, unlike Quadtree, does not degrade
in NN-accuracy as the datasets size n grows.
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Worst-case analysis:
Based on [Andoni et al. 2008, Backurs & Indyk 2014]

Theorem: Flowtree finds an

O(min{log2 s,logs - log(dCP)})-approximate
nearest neighbor, where s is the max. support
size, d is the dimension, @ is the aspect ratio.
Note: This is independent of the dataset size n.

In comparison, Quadtree finds an O(log(sn) -
log(d®d))-approximate nearest neighbor, and
the dependence on log n is necessary.
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