Scalable Nearest Neighbor Search for Optimal Transport

Arturs Backurs
TTIC

Yihe Dong
Microsoft

Piotr Indyk
MIT

Ilya Razenshteyn
MSR Redmond

Tal Wagner
MIT

Nearest Neighbor Search for OT in High-Dimensional Spaces

Setting: Sparse distributions supported on a high-dimensional Euclidean space \mathbb{R}^d.

Goal: Given a collection of distributions μ_1, \ldots, μ_n, and a query distribution ν, find the nearest neighbor of ν in μ_1, \ldots, μ_n.

Example: Word-Mover Distance between text documents [Kusner et al. 2015]

Tree-based Methods for Fast OT

Classical method: Quadtree

1. Embed support in tree of nested hypercubes.
2. Solve OT on the tree metric (linear time).

Our method: Flowtree

Solve for the optimal flow on the tree, but compute its cost w.r.t. the original distance.

Taxonomy of fast approximate OT methods:

- Coarse linear time: Mean [Kusner et al. 2015], Overlap/TF-IDF, Quadtree
- Fine quadratic time: R-WMD [Kusner et al. 2015], Sinkhorn iterations [Cuturi 2013]
- "Slower" linear time: Flowtree

Results

Flowtree, unlike Quadtree, does not degrade in NN-accuracy as the datasets size n grows.

Random input model

--Flowtree --Quadtree

Worst-case analysis:
Based on [Andoni et al. 2008, Backurs & Indyk 2014]

Theorem: Flowtree finds an $O(\min\{\log^2 s, \log s \cdot \log(d\Phi)\})$-approximate nearest neighbor, where s is the max. support size, d is the dimension, Φ is the aspect ratio.

Note: This is independent of the dataset size n.

In comparison, Quadtree finds an $O(\log(sn) \cdot \log(d\Phi))$-approximate nearest neighbor, and the dependence on $\log n$ is necessary.

20newsgroups dataset:

- All methods:
- High-accuracy methods: