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Theoretical Results

Parameters:
n - num. points; d - dimension; @ - ratio of maximum to
minimum distance (captures numerical range)

Introduction

Metric embedding:
Starting point of many algorithms

QuadSketch:
Algorithm Description

Construction
* Step 1: Randomly shifted grids
Enclose points in hypercube.
Refine into sub-cubes by halving each dimension.
Repeat refinement for L levels.
Shift grids by a uniformly random vector.

Theorem: Given ¢,0 > 0, set

(16 . d> - log @
A = log 3

) and L =A+logd.

Real-world objects
(images, text, etc.)

High-dimensional feature vectors
(image descriptors, word2vec, etc.)

e Step 2: Quadtree

QuadSketch guarantees: For every point Xx,

Privy |Ix -yl € (1

te)llx—yll>1-46.

Construct high-dimensional quadtree from grids:
* The root is the enclosing hypercube.
* For every non-empty sub-hypercube, add child node.

* |In particular, (1 + €)-approximate nearest neighbors
are preserved with probability 1 — 0.
e Construction time: O(ndL).

Goal: Compress vectors while approximately
preserving distances.
 Many algorithms for data analysis and machine

learning rely on distances
E.g.: Nearest neighbor queries

Benefits of compression:

Time: Speed-up linear scan of data

* Step 3: Pruning
For every tree path longer than A:

Replace the path after the top A nodes with a long edge.

The compressed representation is the pruned quadtree.

* Compressed size: O(ndA + nlogn) bits.

Comparison with prior work:
For d = ©(e~%logn) by dimension reduction, and ® = poly(n)

* Space: Fit on memory-limited devices like GPUs C Reference Bits per coordinate  Construction time
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Contribution * In each dimension, concatenate bits along edges in path. 7 = (11,01) ’
* |flong edge, concatenate zeros instead. This work O(loglogn +1log(1/€)) O(e *n)
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