Practical Data-Dependent Metric Compression with Provable Guarantees

Introduction

Metric embedding: Starting point of many algorithms

- Real-world objects (images, text, etc.)
- High-dimensional feature vectors (image descriptors, word2vec, etc.)

Goal: Compress vectors while approximately preserving distances.
- Many algorithms for data analysis and machine learning rely on distances
- E.g.: Nearest neighbor queries

Benefits of compression:
- Time: Speed-up linear scan of data
- Space: Fit on memory-limited devices like GPUs

 (Johnson, Douze, Jégou 2017)
- Communication: Facilitate distributed architectures

Our algorithm:
- Simple to describe and implement
- Provably pointwise guarantees
- Matches or outperforms state-of-the-art in the high-precision regime

Previous work: Either heuristic or impractical.

Heuristic algorithms:
- Lack provable guarantees - may be unsuitable for non-standard datasets
- Optimize for average accuracy - may perform undesirably on individual queries
- Solve a global optimization problem on the dataset (e.g. k-means) - slow or infeasible in high precision regime

Theoretical algorithms: Unsuitable for implementation despite asymptotic guarantees, due to large hidden constants, underlying combinatorial complexity, etc.

QuadSketch:

Algorithm Description

Construction

- **Step 1:** Randomly shifted grids
 Enclose points in hypercubes. Refine into sub-cubes by halving each dimension. Repeat refinement for \(\Lambda \) levels. Shift grids by a uniformly random vector.

- **Step 2:** Quadtree
 Construct high-dimensional quadtree from grids:
 - The root is the enclosing hypercube.
 - For every non-empty sub-hypercube, add child node.

- **Step 3:** Pruning
 For every tree path longer than \(\Lambda \):
 Replace the path after the top \(\Lambda \) nodes with a long edge.

The compressed representation is the pruned quadtree.

Recovery

To recover the approximation \(\bar{x} \) of a point \(x \):
- Follow path from root to leaf containing \(x \).
- In each dimension, concatenate bits along edges in path.
- If long edge, concatenate zeros instead.

Theoretical Results

Parameters:
- \(n \) - num. points; \(d \) - dimension; \(\Phi \) - ratio of maximum to minimum distance (captures numerical range)

Theorem: Given \(\epsilon, \delta > 0 \), set

\[
\Lambda = \log\left(\frac{16 \cdot d^{1.5} \cdot \log \Phi}{\epsilon \cdot \delta}\right) \quad \text{and} \quad L = \Lambda + \log \Phi.
\]

QuadSketch guarantees: For every point \(x \),

\[
\Pr[|y - \bar{y}| \leq (1 \pm \epsilon)|x - y|] > 1 - \delta.
\]

- In particular, \((1 + \epsilon)\)-approximate nearest neighbors are preserved with probability \(1 - \delta \).
- Construction time: \(\tilde{O}(nd\Lambda + n \log n) \) bits.

Comparison with prior work:
For \(d = O(\epsilon^{-2} \log n) \) by dimension reduction, \(\Phi = \text{poly}(n) \)

<table>
<thead>
<tr>
<th>Reference</th>
<th>Bits per coordinate</th>
<th>Construction time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vanilla bound</td>
<td>(O(\log n))</td>
<td>--</td>
</tr>
</tbody>
</table>
| (Indyk, Wagner 2017) | \(O(\log(1/\epsilon)) \) | \(\tilde{O}(n\Lambda + \epsilon^{-2} n) \) for \(\epsilon \in (0.1) \)
| This work | \(O(\log\log n + (1/\epsilon)) \) | \(\tilde{O}(\epsilon^{-2} n) \) |

Experiments

- **Accuracy:** fraction of correct nearest neighbors
- **Size:** bits per coordinate

Datasets:

<table>
<thead>
<tr>
<th>Datasets</th>
<th>(n)</th>
<th>(d)</th>
<th>(\Phi)</th>
</tr>
</thead>
</table>
| SIFT | 1M | 128 | \(\geq 83.2 \) *
| MNIST | 60K | 784 | \(\geq 9.2 \) *
| NYC Taxi ridership | 8,874 | 48 | 49.5 |
| Diagonal (synthetic) ** | 10K | 128 | 20,478,740.2 |

* Estimated on a random sample.
** Random points on a line, embedded in a 128-dimensional space.

References:

