Private Kernel Density Estimation without the Curse of Dimensionality

The Gaussian KDE of a dataset \(x_1, \ldots, x_n \in \mathbb{R}^d \) is the function that maps \(y \in \mathbb{R}^d \) to \(\frac{1}{n} \sum_{i=1}^{n} e^{-\|y-x_i\|^2} \).

Differentially private Gaussian KDE:

- **Curator**
 - Has private dataset \(x_1, \ldots, x_n \in \mathbb{R}^d \)
 - Releases a function \(\tilde{K} : \mathbb{R}^d \to \mathbb{R} \)
 - \(\tilde{K} \) must be \(\epsilon \)-DP w.r.t. the dataset
 - \(\tilde{K} \) should approximate the Gaussian KDE

- **Client**
 - Receives \(\tilde{K} \)
 - For each query \(y \in \mathbb{R}^d \), w.h.p.:
 \[
 \tilde{K}(y) \approx \frac{1}{n} \sum_{i=1}^{n} e^{-\|y-x_i\|^2}
 \]

Our results:
- High dimensions: \(\epsilon \)-DP, error \(\sim 1/\sqrt{n} \), runtime linear in \(d \) \(\rightarrow \) no curse of dimensionality
- Low dimensions: \(\epsilon \)-DP, error \(\sim (\log n)^{O(d)}/n \), runtime exp. in \(d \) \(\rightarrow \) near-linear error decay if \(d = O(1) \)

The Technical Stuff:

Fast Private Kernel Density Estimation via Locality Sensitive Quantization

What is LSQ?
- Expressing a kernel on \(\mathbb{R}^d \) with features that are few, bounded, and sparse.

Formally:
- \(\tilde{k}(x,y) = (Q,R,S)\text{-LSQ} \)able if there is a distribution \(D \) over pairs of functions \(f,g: \mathbb{R}^d \to [{-R,R}]^S \), such that for all \(x,y \in \mathbb{R}^d \):
 - \(f(x) \) and \(g(y) \) have \(\leq S \) non-zeros,
 - \(k(x,y) \approx E_{(f,g) \sim D}[f(x)^Tg(y)] \)

Theorem: LSQ \(\Rightarrow \epsilon \)-DP KDE.

And, if \(Q,R,S \) are small, the mechanism has good utility and computational efficiency.

LSQ Constructions:
- Random Fourier Features (RFF) [Rahimi-REcht ’07]
- Leads to our high-dimensional result
- Fast Gauss Transform (FGT) [Greengard-Strain ’91]
- Leads to our low-dimensional result
- Locality Sensitive Hashing (LSH) [Indyk-Andoni ’09]
- Recovers prior results of [Coleman-Shrivastava 21]
- LSQ extends LSH to more kernels (e.g., Gaussian)

Prior work:

<table>
<thead>
<tr>
<th>Method</th>
<th>Privacy</th>
<th>Error decay</th>
<th>Runtime in (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Several]</td>
<td>(\epsilon)-DP</td>
<td>(1/\sqrt{n})</td>
<td>(\exp(d))</td>
</tr>
<tr>
<td>Prior [HRW13]</td>
<td>((\epsilon, \delta))-DP</td>
<td>(1/n)</td>
<td>(\exp(d))</td>
</tr>
<tr>
<td>[CS’21]</td>
<td>(\epsilon)-DP</td>
<td>(1/\sqrt{n})</td>
<td>(O(d))</td>
</tr>
<tr>
<td>Ours</td>
<td>LSQ-RFF</td>
<td>(\epsilon)-DP</td>
<td>(\exp(d))</td>
</tr>
<tr>
<td>Ours</td>
<td>LSQ-FGT</td>
<td>(\epsilon)-DP</td>
<td>(\exp(d))</td>
</tr>
</tbody>
</table>

Does it work for other kernels?
Yes, but \(\epsilon \), \(\delta \), \(S \), see paper.

Paper, code, etc.:

Tal Wagner, Yonatan Naamad, Nina Mishra

Yes, this is a “betterposter”, for #better or worse