
Space	and	Time	Efficient
Kernel	Density	Estimation

in	High	Dimensions

Arturs Backurs Piotr	Indyk Tal	Wagner
TTIC MIT MIT

Background:
Density	Estimation

Problem:	Given	a	dataset	𝑥", … , 𝑥% ∈ ℝ(,	

estimate	density	at	a	query	point	𝑦 ∈ ℝ(.

How	to	formalize	this?

Background:	
Kernel	Similarity	Measures
Method:	Define	a	similarity	measure	(“kernel”):

𝑘:ℝ(×ℝ(→ [0,1]
such	that	the	more	similar	𝑥, 𝑦 are,	the	closer	𝑘(𝑥, 𝑦) to	1.

Examples	of	popular	kernels:
• “Exponential”:	𝑘 𝑥, 𝑦 = exp − 9:; <

=

• “Laplacian”:	𝑘 𝑥, 𝑦 = exp − 9:; >
=

• “Gaussian”:	𝑘 𝑥, 𝑦 = exp − 9:; <
<

=

𝜎 is	a	parameter	
called	bandwidth

Background:
Kernel	Density	Estimation

• Definition:	The	Kernel	Density	Estimation	of	a	

query	𝑦 in	a	dataset	𝑋 = {𝑥", … , 𝑥_𝑛} is	defined	as

𝐾𝐷𝐸H 𝑦 =
1
𝑛I𝑘(𝑥J, 𝑦)

%

JK"

Fast	KDE

• Exact	naïve	computation:	Ω 𝑛 time,	too	slow

• Typically	there	are	multiple	query	points

• Can	we	estimate	𝐾𝐷𝐸H(𝑦) efficiently?

Fast	KDE:	Uniform	Sampling

• Suppose	we	have	the	promise:	𝐾𝐷𝐸H 𝑦 ≥ 𝜏 for	some	small	𝜏 > 0
• i.e.:	the	query	𝑦 is	not	too	unrelated	to	the	dataset	𝑋

• We	want	a	 1 ± 𝜀 relative	approximation	of	𝐾𝐷𝐸H 𝑦

• Uniform	sampling:	If	we	choose	𝑂 "
S⋅U<

random	points	𝑋V ⊂ 𝑋,	then

𝐾𝐷𝐸HV 𝑦 = 1 ± 𝜀 𝐾𝐷𝐸H 𝑦

• Running	time:	𝑂 "
S⋅U<

.	Can	we	do	better?

Fast	KDE:	Hashing-Based	Estimators	(HBE)
[Charikar &	Siminelakis 2017]

• Method	based	on	Locality-Sensitive	Hashing	(LSH) [Indyk &	Motwani 98]

• Definition:	The	kernel	𝑘 is	LSHable if	there	exists	a	distribution	ℋ
over	hash	functions	ℎ:ℝ(→ {0,1}∗,	such	that	for	every	𝑥, 𝑦 ∈ ℝ(,

Pr
]~ℋ

[ℎ 𝑥 = ℎ(𝑦)] ≈ 𝑘 𝑥, 𝑦�

• Theorem [Charikar &	Siminelakis 2017]:	If	𝑘 is	LSHable,	we	can	
estimate	KDE	in	time	𝑂 "

S� ⋅U<
.

Improvement	of	1/ 𝜏� over	
random	sampling;	matters	in	

practice	[Siminelakis et	al.	2019]

(hash	collision	probability)

Exponential	and	
Laplacian	kernels	are	

LSHable

Fast	KDE:	Our	Results

• Drawback	of	HBE: Requires	super-linear	preprocessing	time	and	
storage	space:	𝑂 𝑛 ⋅ "

S� ⋅U<
= 𝑂 "

S S� ⋅Ub

• Burdens	practical	implementation	[Siminelakis et	al.	2019]

• This	work:We	modify	HBE	to	get	the	best	of	both	worlds:
• Preprocessing	time	and	storage	space:	𝑂 "

S⋅U< (same	as	uniform	sampling)

• Query	KDE	estimation	time:	𝑂 "
S� ⋅U< (same	as	HBE)

By	composing	with	
uniform	sampling	
we	can	assume	
𝑛 = 1/(𝜏 ⋅ 𝜀c)

HBE	Scheme

Hash	table

Hash	table

Hash	table
Estimator

Query	point

Dataset

Preprocessing	step Query	step

KDE	estimate

Space-Efficient	HBE	Scheme

Hash	table

Hash	table

Hash	table
Estimator

Query	point

Dataset

Preprocessing	step Query	step

KDE	estimate

Random	
dropout

Representative	Experiments	(more	in	paper)

• Forest	cover	type	dataset*,	Laplacian	kernel

*	Jock	A	Blackard and	Denis	J	Dean,	Comparative	accuracies	of	artificial	neural	networks	and	discriminant	analysis	in	predicting	forest	cover	types	from	cartographic	variables,	
Computers	and	electronics	in	agriculture	24	(1999),	no.	3,	131–151

Our query	time	is	similar	to	HBE	and	
better	than	uniform	sampling	(RS)

Our storage	space	and	preprocessing	
time	improve	over	HBE

References

• Moses	Charikar,	Paris	Siminelakis. Hashing-based-estimators	for	
kernel	density	in	high	dimensions.	FOCS	2017

• Piotr	Indyk,	Rajeev	Motwani.	Approximate	nearest	neighbors:	
towards	removing	the	curse	of	dimensionality. STOC	1998

• Paris	Siminelakis,	Kexin Rong,	Peter	Bailis,	Moses	Charikar,	Philip	
Levis.	Rehashing	kernel	evaluation	in	high	dimensions.	ICML	2019

