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Abstract

The eccentricity of a node in a graph is its maximal shortest-
path distance to any other node. Computing all eccentrici-
ties is a basic task in large-scale graph mining. Shun (KDD
2015) empirically studied two simple heuristics for this task:
k-BFS1, based on parallel BFS from a small sample of
nodes, was shown to work well on a variety of graphs; k-
BFS2, a two-phase version, was shown to outperform state-
of-the-art algorithms by up to orders of magnitude. This
empirical success stands in apparent contrast to recent the-
oretical hardness results on approximating all eccentricities
(Backurs et al., STOC 2018).

This paper aims to formally explain the performance of
these heuristics, by studying them through computational
models designed for sublinear time or sublinear space algo-
rithms. We use the proposed framework to derive improved
variants, which retain their practicality while having better
performance and formal guarantees.

1. For k-BFS1, we draw a connection to diameter property
testing (Parnas and Ron, Random Struct Alg. 2002). It
is not hard to observe that k-BFS1 essentially tests the
values of all eccentricities simultaneously, in the classical
property testing sense. We show that the same guarantee
is achieved by a more efficient algorithm, whose work is
nearly linear in the number of nodes and independent of
the number of edges. By utilizing the connection in the
opposite direction, we also obtain some results on classical
testing of the graph radius and diameter.

2. For k-BFS2, we draw a connection to the streaming Set
Cover algorithm of Demaine et al. (DISC 2014). We use
it to suggest a variant of k-BFS2 with similar work and
depth bounds, which is guaranteed to compute almost
all eccentricities exactly, if the graph satisfies a condition
we call small eccentric cover. The condition can be
ascertained for all real-world graph used in Shun (KDD
2015) and in our experiments.

Our experimental results on real-world graphs demon-

strate the validity of our analysis and the empirical advan-

tage of the proposed algorithms.

1 Introduction

The eccentricity of a node in a graph is the longest
shortest-path distance to any other node reachable from
it. This notion encompasses much useful information on
the graph structure. The graph diameter is the maximal
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eccentricity, and the radius is the minimal one. A node
is considered as central if its eccentricity is small, or as
peripheral if it is large. Eccentricities play a key role
in topology analysis of computer, social and biological
networks [24, 20, 31, 27], and also arise in hardware
verification [25] and sparse linear system solving [16].

A simple approach to computing all eccentricities
in a graph is to perform a breadth-first search (BFS)
from each node in a graph. This requires O(nm)
work on a graph with n node and m edges, which is
prohibitively costly for real-world large-scale graphs. As
a result, a large body of research has been dedicated to
developing approximate or heuristic algorithms, both in
theory [28, 9, 7, 2] and in practice [20, 30, 19].

In a recent work, Shun [30] conducted an empiri-
cal study of state-of-the-art algorithms for computing
all eccentricities in undirected graphs. The study also
included two simple heuristics, referred to henceforth
as k-BFS1 and k-BFS2.1 They are based on comput-
ing a full BFS from a small sample of nodes, chosen
at random in k-BFS1 and somewhat more strategically
in k-BFS2. We describe these methods in more de-
tail later. The experimental results showed that both
algorithms perform surprisingly well, with k-BFS1 out-
performing some of the algorithms in the literature,
and k-BFS2 outperforming all of them by large mar-
gins. These findings naturally raise questions about a
possible formal analysis of these methods. This is the
motivation for the present work.

Devising such an analysis is faced with certain no-
table limitations. Arguably the most standard approach
to analyzing approximation algorithms is by proving
worst-cast multiplicative approximation bounds on the
estimates they produce. However, for graph eccentric-
ities, a recent line of work known as fine-grained com-
plexity [35] was able to establish that any substantial
improvement over the currently known bounds would
require an extreme breakthrough in complexity the-
ory. Specifically, any such improvement would refute
the Strong Exponential Time Hypothesis (SETH) [18],2

whose resolution is widely thought to be well out

1In [30] they are called k-BFS-1Phase and k-BFS respectively.
2SETH postulates that for any δ ∈ (0, 1), there is a suffciently

large k such that deciding if an input n-variable k-CNF formula is
satisfiable (the k-SAT problem) cannot be solved in time 2(1−δ)n.
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of present theoretical reach (see eg. [34]). Most re-
cently, this limitation was shown to apply directly to
the state-of-the-art multiplicative approximation algo-
rithms tested in [30], and it is now known that any bet-
ter approximation factor would require asymptotically
more work, unless SETH is false [1, 2].

There are a number of analytic ways to circumvent
this barrier. One is to use a relaxed notion of approx-
imation guarantee instead of multiplicative approxima-
tion. One such popular notion is ε-closeness. Loosely
speaking, instead of requiring the estimate to be close
to the true value, it requires the graph to be close to a
graph where the estimate is correct. Graphs are consid-
ered close if only a small fraction of their edges need to
be changed (added or removed) in order to obtain one
from the other. This notion forms much of the basis of
Property Testing, a research field largely motivated by
computational settings that require extreme efficiency,
where the input is too large to even read in full. It is by
now an established field, with a large body of literature
and recognized theoretical depth (see the textbook [17]).
This makes it an appealing framework of study. This is
the approach we will take for k-BFS1.

Another way around the aforementioned limitations
on worst-case analysis is to introduce structural as-
sumptions on the input graph. Real-world graphs are
well-known to exhibit distinct structural properties, and
many empirically successful heuristic algorithms capi-
talize exactly on those properties, which means their
behavior cannot be fully captured by analyses that ap-
ply to arbitrary graphs. Nonetheless, a formal definition
of these properties tends to be elusive, and one has to
be careful to rely on assumptions which are actually
plausible for real-world graphs, or better yet, can be as-
certained for graphs “in the wild”. This is the approach
we will take for k-BFS2.

It should be noted that when fitting an analytic
framework to algorithms that have been devised with
a practical mindset, it is often necessary to introduce
some modifications to the algorithm. This is on one
hand an advantage, as it points to improvements to the
algorithms that may otherwise not be apparent. On
the other hand, it is important to not lose sight of
the practical aspects. In our context, k-BFS1 and k-
BFS2 are appealing in practice not only due to their
asymptotic complexity and perceived simplicity, but
also due to certain implementational aspects which are
typically abstracted-away in theoretical studies. These
include bit-level optimizations [33, 30, 22], GPU-based
implementations [29, 23], and distributed implementa-
tions [8, 15]. Therefore, an additional goal is to analyze
variants which are as close as possible to the empirically
tested methods, and retain their practical plausibility.

1.1 Overview of [30]

To better motivate our results, we first describe the
results of [30] in more detail.

Algorithms. The tested methods in [30] included three
simple heuristics:

• k-BFS1 samples k uniformly random nodes
as sources, and runs a full BFS from each source,
thereby computing the distance from every source to
every node in the graph. The eccentricity of every
node is estimated as its largest distance to a source.

• k-BFS2 uses the estimates of k-BFS1 to select the
k nodes with the largest estimates, and performs a
second phase of BFS with those k nodes as sources.
The eccentricity of every node is estimated as its
largest distance to any source from either the first or
the second phase.

• SimpleApx is another notably simple heuristic. It
runs a BFS from a single arbitrary node v∗, thereby
computing its true eccentricity e(v∗), and uses that
value as the estimate for all other eccentricities. The
triangle inequality on the graph shortest-path metric
implies that 1

2e(v) ≤ e(v∗) ≤ 2e(v) for every node v,
yielding a constant-factor approximation. Note that
the estimated eccentricities of all nodes are the same.

If the input graph has n nodes and m edges,
then k-BFS1 and k-BFS2 require O(km) work each,
while SimpleApx is faster and requires only O(m) work.
In addition to these, the literature-based methods tested
in [30] can be divided into three categories:

• Exact algorithms: The näıve algorithm that runs a
BFS from each node, and a different one due to [32].

• Constant-factor approximations: These algorithms
have a guarantee of the form α · e(v) ≤ ê(v) ≤ β · e(v)
for every node v, where ê(v) is their output eccen-
tricity estimate and β > α > 0 are constants. They
include SimpleApx and two additional methods [28, 9]
with better approximation factors. Both are substan-
tially more involved and require Õ(m

√
n) work.

• Counter-based algorithms: These are two methods
arising from the empirical literature [20], without
formal guarantees on their estimates. They are based
on the probabilistic counters of [14, 13].

The depth of all of the above algorithms is roughly
proportional to the graph diameter.

Experimental results. Generally speaking, the results
in [30] showed that in terms of average relative error

( 1
n

∑
v
|e(v)−ê(v)|

e(v) ), k-BFS1 is superior to the counter-

based algorithms,3 but inferior to SimpleApx. The

3It should be noted that the algorithm of [20] was designed to
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costlier constant-factor approximation algorithms and
the exact algorithms were found to be accurate on
the smaller graphs but infeasible on the larger ones,
effectively affirming their theoretical merit but also
their unsuitability for large-scale graph mining. k-
BFS2 outperformed all other methods by up to orders
of magnitude in running time and/or accuracy.

These results naturally raise several questions.
Most immediately, what is the reason for the strik-
ing performance of k-BFS2? Shun offers the intuition
that the first BFS phase identifies “periphery” nodes in
the graph, meaning ones that are far from many other
nodes, and the second phase capitalizes on them to pro-
duce accurate eccentricity estimates. We will aim to
formalize this intuition.

The situation regarding k-BFS1 is perhaps more
subtle. It is empirically and analytically inferior to Sim-
pleApx, in terms of both quality and running time, which
may give the impression that it is not interesting on its
own right. Indeed, it is included in [30] primarily to
substantiate the importance of the second phase in k-
BFS2. Nonetheless, it does produce meaningful results:
for example, its median average relative error is 7.55%
over the 10 tested graphs, outperforming some more so-
phisticated algorithms. It also somewhat outperforms
k-BFS2 on two synthetic graphs, attaining similar ac-
curacy in less time due to the absence of the second
phase. The reason is apparently that these graphs are
highly symmetric and have no distinct periphery nodes
for k-BFS2 to exploit. Lastly, it routinely shows up in
empirical studies, which tend to heavily prioritize simple
algorithms due to various implementational constraints
(e.g. [8, 15]; see also Section 6). Combined with its fun-
damental nature, it calls for some deliberation.

1.2 Our Results

k-BFS1. For this algorithm we take a property test-
ing view, motivated by [26] who analyzed a related al-
gorithm for testing the graph diameter (which is the
maximal eccentricity). It is not hard to see that the es-
timates ê(v) of k-BFS1 satisfy ê(v) ≤ e(v) �ε ê(v) for
every node v, where “�ε” denotes that the input graph
is ε-close to satisfying the inequality. Our focus is in at-
taining the same guarantee with better work and depth
bounds, and in particular better than SimpleApx which
has an arguably stronger guarantee. We show a vari-
ant, called k-BFSTST, that attains it with Õ(n/ε2)
work and Õ(ε−1 log n) depth. The work is sublinear
in the graph size, and asymptotically better than k-
BFS1 and SimpleApx, for non-trivially dense graphs.

estimate a somewhat different notion of eccentricity than the one
it is used to compute in [30].

k-BFS2. Here we cast the problem as a Set Cover
instance with limited access to the input. With this
view, we draw a close connection between k-BFS2 and
the streaming Set Cover algorithm of [10]. As a result,
we suggest a variant called k-BFSSC, with similar
work and depth bound, which is guaranteed to compute
the exact eccentricities of almost all nodes, as long
as the input graph satisfies a property we call small
eccentric cover. This property can be ascertained with
good parameters for all real-world graphs used in the
experiments of [30] as well as in ours. We also give a
robust variant that computes approximate eccentricities
for almost all nodes under a relaxed condition.

Experiments. We test our methods on publicly available
real-world graphs. Our experimental results show that
they can improve the performance of k-BFS1 and k-
BFS2 by up to an order of magnitude.

Perspective. Much of the point in these results
is that the proposed algorithms k-BFSTST and k-
BFSSC are close variants of their respective counter-
parts k-BFS1 and k-BFS2. Namely, k-BFSTST is de-
rived from k-BFS1 by truncating each BFS by a certain
rule, and k-BFSSC is derived from k-BFS2 by a drop-
in replacement of its top-k selection step with an off-
the-shelf parallel greedy Set Cover algorithm (eg. [5, 6]),
leaving the two BFS phases unchanged.

The implication is twofold: First, the fact that our
modifications lead to variants that retain and improve
the performance of the original heuristics may serve as
evidence that our analytic framework indeed captures
what makes them work in practice. Second, it implies
that our analyzable variants are plausible for implemen-
tation and practical use. Both k-BFS1 and k-BFS2 in-
teract with the input graph only via BFS – an operation
which has been minutely optimized in various system
settings as mentioned earlier [33, 30, 22, 29, 23] – and
our modifications require no change to it. This is partic-
ularly relevant for k-BFS2, since it is highly successful
in practice, and our experiments show that our variant
can significantly improve its performance.

On a more general level, the aim of this paper is to
highlight connections between these parallel heuristics
and other models of resource-constrained computation –
particularly streaming, sketching and property testing.
Similar algorithms to k-BFS1 and k-BFS2 have been
studied in [26] and [10] (respectively), albeit in quite
different contexts, and this may justify attention.

Paper organization. Section 2 sets up preliminaries and
notation. Section 3 deals with k-BFS2. Section 4 deals
with k-BFS1. Section 5 presents experimental results.
Section 6 reviews additional related work. Appendix A
elaborates on additional aspects of testing eccentricities.
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Algorithm 1 : k-BFSSC

Input: Graph G(V,E), integer k > 0
Output: Eccentricity estimate ê(v) for every v ∈ V

// Phase 1:
U1 ← k nodes chosen i.i.d. uniformly at random
foreach u ∈ U1:

Compute a BFS started at u
foreach v ∈ V :
Ãv ← {u ∈ U1 : e(u) = ∆(u, v)}

I ← Set Cover instance with elements U1 and sets
{Ãv}v∈V
C ← cover for I // using parallel greedy Set Cover

// Phase 2:
U2 ← the set of nodes such that C = {Ãu : u ∈ U2}
foreach u ∈ U2:

Compute a BFS started at u
foreach v ∈ V :
return ê(v) = maxu∈U1∪U2

∆(v, u)

2 Preliminaries and Notation

Throughout we assume that the input graph G(V,E)
has n labeled nodes and m edges, and is undirected,
unweighted and connected. The connectivity assump-
tion can be removed by applying any of the algorithms
under discussion to each connected component sepa-
rately. The shortest-path distance between two nodes
v, u ∈ V is denoted by ∆(v, u). For v ∈ V and r > 0,
the r-neighborhood of v is defined as Nr(v) = {u ∈
V : ∆(v, u) ≤ r}. The eccentricity of v is defined as
e(v) = maxu∈V ∆(v, u). We use ê(v) to denote an ec-
centricity estimate by an algorithm which would be un-
derstood by context. The diameter of the graph is the
maximal eccentricity and will be denoted D = D(G).

Complexity bounds on all algorithms are stated in
the work/depth model. The graph representation is
assumed to be such that given a node we can enumerate
over its neighbors. More specifically, we will only require
the ability to start a BFS at a node given its label. We
assume that a standard parallel BFS takes O(n + t)
work and O(d log n) depth if it traverses up to t edges
and d levels. We use Õ(f) for O(f · polylogf), and [`]
for {1, . . . , `} for an integer ` > 0. We say “with high
probability” when the probability is at least 1− 1/n.

3 k-BFS2 by Set Covering

In this section we analyze a variant of k-BFS2,
called k-BFSSC, given in Algorithm 1. It will be shown
to return accurate eccentricity estimates for graph that
satisfy a property we call small eccentric cover, defined
next.

Definition 3.1. We say that a graph G(V,E) has ec-
centric cover of size κ if κ is the smallest integer that
satisfies the following: there exists U ⊂ V of size κ such
that for every v ∈ V , e(v) = ∆(v, u) for some u ∈ U .

Put simply, this property states that all node eccentric-
ities can be realized as distances to a subset of κ nodes.
As a warm-up, one may observe that a path, star, clique
and perfect binary tree all have eccentric covers of size
2, regardless of their size; an n-node hypercube has ec-
centric cover of size n; and an n-node cycle has eccentric
cover of size n if n is even, or 1

2 (n+ 1) if n is odd.
Obviously if the input graph has eccentric cover of

size κ, then there is a realization of k-BFS1 and k-
BFS2 with k ≥ κ that computes all eccentricies exactly,
given the right choice of BFS sources. The question is
how to identify those sources, and more specifically, how
does k-BFS2 apparently succeed in finding them.

To answer this, we point out that if the all-
eccentricities problem is viewed as a Set Cover instance,
then k-BFS2 is seen to be closely related to the stream-
ing Set Cover algorithm of [10]. By making this con-
nection exact, we obtain k-BFSSC with the following
guarantee.

Theorem 3.1. Suppose G(V,E) has eccentric cover
of size at most κ. Let ε > 0. Then for k =
Õ(ε−1κ log n), k-BFSSC runs in O(km) expected work
and O(D log n+log3(kn)) expected depth, and with high
probability computes the exact eccentricities of all but an
ε-fraction of the nodes in V .

In Section 3.4 we also give a variant of the theorem for
approximate computation of the eccentricities, under a
weaker notion of eccentric cover.

The applicability of the above result hinges on
whether the small eccentric cover property occurs in
real-world graph. Here it is worth noting that the
property can be ascertained for all 8 real-world graphs
considered in [30],4 as a byproduct of the experiments
therein. In particular, whenever k-BFS2 computes a
(1 − ε)-fraction of the eccentricities exactly, it certifies
that the eccentric cover has size at most εn+ 2k. Thus,
7 of the graphs in [30], containing between 1M to
4M nodes, were shown to have eccentric cover size of
only few thousands (between 0.1% to 0.6% of their
nodes). For two of them the size is as small as 128
nodes. The 8th graph has eccentric cover containing
4.4% of its nodes. These are upper bounds obtained
as a byproduct, and it remains possible that the true
parameters are even smaller.

4This count does not include 4 additional graphs whose true
eccentricities were not computed in [30] due to their large size.
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We also remark one does not need to estimate κ in
order to invoke the algorithm; it suffices to set k directly,
as it acts as a smooth handle on the time to accuracy
trade-off (similarly to how k-BFS2 is used in [30]).

3.1 Set Cover Formulation

Recall that in the Set Cover problem, we are given a set
of elements E and a collection of subsets S ⊂ 2E . We
call C ⊂ S a cover if E ⊂ ∪A∈CA. The goal is to find a
cover of minimum size. For ρ ≥ 1, we say that a cover
C is ρ-approximate if |C| is at most ρ times the size of
an optimal cover.

Computing all eccentricites can be cast as a Set
Cover instance as follows. For every u ∈ V define

Au = {v ∈ V : e(v) = ∆ (v, u)},

i.e., Au contains the nodes whose eccentricity is attained
by their distance to u. The Set Cover instance is formed
by the elements E = V and sets S = {Au : u ∈ V }.

The connection to the BFS-based heuristics is seen
if given U ⊂ V , we define for every v ∈ V ,

eU (v) = max
u∈U

∆ (u, v) .

Then, k-BFS1 estimates e(v) as ê(v) = eU1(v) where
U1 is a random sample of k nodes, and k-BFS2 uses
ê(v) = eU1∪U2

(v) where U2 consists of the k nodes v ∈ V
that maximize eU1

(v). Denoting

CU = {Au : u ∈ U},

we see that if CU covers v then e(v) = eU (v). Therefore,
computing all eccentricities (exactly) as eU (v) reduces
to solving the above Set Cover instance with a cover
CU . Furthermore, observe that the optimal cover size is
precisely the eccentric cover size, as per Definition 3.1.

Let us highlight the non-standard computational
constraints of this Set Cover setting, that arise if we
consider it for computing all eccentricities. Given the
index u ∈ V of a set Au, it is prohibitive to compute
which elements are contained in Au, as that already
entails knowing all eccentrities. Given an element v ∈
V , it is expensive but non-prohibitive to compute which
subsets contain it, as that requires a single full BFS
started at v. Hence we can afford it for only a small
number of elements.

3.2 Relation to DIMV

While we are not aware of any Set Cover algorithms
that were explicitly designed for these constraints, there
is in fact one that meets them: the streaming Set Cover
algorithm of [10], referred to henceforth as DIMV. This
is somewhat incidental, and indeed other streaming

Set Cover algorithms do not meet these constraints.
Another interesting fact is that k-BFS2 turns out to
be closely related to DIMV, as we explain next.

DIMV is a combination of two modules: The set
sampling module simply includes random sets in the
output cover. The element sampling module chooses a
small random sample of elements, and computes a cover
only for the sample using an offline black-box algorithm
(eg. greedy). Note that set sampling is a vanilla
module that need not know anything about which
sets cover which elements, while the more informed
element sampling module only needs to know which sets
cover the elements in the sample. Thus both of them
meet the model constraints specified above. The key
observation is that k-BFS1 is just set sampling, while k-
BFS2 corresponds to a combination of set and element
sampling, as follows:

• Phase 1 runs a BFS from each node u in a random
sample U1. This implicitly computes which subsets
{Av}v∈V cover u.

• Phase 2 computes U2 as the k nodes that maximize
eU1

(v). This is akin to computing a cover CU2
of U1.5

Thus we interpret the top-k selection step in k-
BFS2 as a heuristic Set Cover step. Indeed, the node
v∗ with the largest estimate eU1

(v∗) satisfies e(u∗) =
∆(u∗, v∗) for some u∗ ∈ U , and thus Av∗ covers u∗.
However, the node in V with the second-largest eU1

(v)
estimate might redundantly cover u∗ again, and so on,
ultimately leaving some elements uncovered.

To avoid such degeneracy, and make the connection
to DIMV exact (which would allow us to leverage its
formal analysis), all we need is to replace the covering
heuristic by an actual Set Cover algorithm. Fortunately,
this is a well-studied problem in parallel computing. In
particular, we can use the parallel greedy algorithm
of [5], which guarantees an approximation factor of
O(log |E|) (essentially optimal unless P = NP [12, 11])
and has been tested for implementation [5, 6]. This
leads to k-BFSSC.

It is worth asking whether such degeneracy in the
covering step of k-BFS2 in fact shows up in practice, or
in other words, whether we expect k-BFSSC to improve
over k-BFS2 empirically. Here we note that this exact
phenomenon has been recently discussed in [19], who
report observing it in many large real-world graphs, and
take heuristic measures to mitigate its adverse effect on

5Note that the final estimates of k-BFS2 are eU1∪U2 (v), which
correspond to the cover CU1

∪ CU2
rather than just CU2

. Hence

each u ∈ U1 plays a dual role, of a sample element to cover in

the second phase as well as a set Au in the final cover. The
first phase is thus seen to function as both element sampling and

set sampling, though our analysis will only rely on the element

sampling role.
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the accuracy of k-BFS2. Equipped with the Set Cover
formulation, our approach avoids the issue altogether.

3.3 Proof of Theorem 3.1

k-BFSSC uses the BFS results of the first phase to
compute the sets Ãv = Av ∩ U1 for every v ∈ V .
This is possible since those sets are fully determined
by the distances ∆(u, v) for all u ∈ U1 and v ∈ V . It
then approximately solves the Set Cover instance with
elements U1 and sets {Ãv}v∈V , say using [5], obtaining
a cover C. The BFS sources for the second phase are
chosen as U2 = {v ∈ V : Ãv ∈ C}. The final estimates
returned by the algorithm are ê(v) = eU1∪U2(v). Noting
that for every U ⊂ U ′ ⊂ V and every v ∈ V it holds
that eU (v) ≤ eU ′(v), we have in particular,

(3.1) eU2
(v) ≤ ê(v) ≤ e(v).

DIMV uses the element sampling for Set Cover in-
stances whose optimal cover is small. In the context
of eccentricities, this translates to having small eccen-
tric cover. Specifically, the Element Sampling Lemma
of [10], when phrased for eccentricities as per Section
3.1, states the following.

Lemma 3.1. Suppose G(V,E) has eccentric cover of
size κ. Let ε > 0 and ρ ≥ 1. Let k ≥ 3ε−1ρκ log n.
Let U1 be a sample of k uniformly random nodes, and
let U2 ⊂ V be such that CU2 is a ρ-approximate cover of
U1. Then, with probability at least 1− 1

n , CU2 covers all
but εn of the nodes in V .

We include the short proof from [10] for completeness:

Proof. For U ⊂ V , call CU “bad” if it covers less than
(1 − ε)n nodes in V . The probability that a bad CU
covers U1 is at most (1 − ε)|U1| ≤ ( 1

n )3ρκ. The number
of subsets U ⊂ V of size |U | ≤ ρκ is upper-bounded
by nρκ+1. Hence, by a union bound, the probability
that any bad CU with |U | ≤ ρκ covers U1 is at most
( 1
n )3ρκ · nρκ+1 ≤ 1

n .
The eccentric cover size is the optimal cover size of

V , and an optimal cover of U1 is no larger. Since CU2 is
a ρ-approximate cover of U1, we have |U2| ≤ ρκ. Thus
CU2

is bad with probabiliy at most 1/n.

Since the Set Cover algorithm of [5] has an approxi-
mation factor of ρ = O(log k) for an instance with k ele-
ments, we can invoke the lemma if we choose k such that
k = Ω(ε−1κ log k · log n), for which k = Õ(ε−1κ log n)
suffices. The lemma implies that e(v) = eU2

(v) for
at least (1 − ε)n of the nodes in V . Combining this
with Equation (3.1), we get e(v) = ê(v) for each such
node, proving the correctness guarantee of Theorem 3.1.

As for the work and depth, since the Set Cover
instance in k-BFSSC has k elements and n sets, the

algorithm of [5] runs in O(kn) expected work and
O(log3(kn)) expected depth.6 This is added to the
O(km) work and O(D log n) depth of the BFS phases.

3.4 Approximate Computation

So far the discussion has been restricted to exact
computation of almost all eccentricities. Nonetheless, it
extends to approximate computation in a natural way,
by introducing a relaxed notion of eccentric cover.

Definition 3.2. Let δ > 0. We say that a graph
G(V,E) has δ-approximate eccentric cover of size κ if κ
is the smallest integer that satisfies the following: there
exists U ⊂ V of size κ such that for every v ∈ V ,
e(v) ≤ (1 + δ)∆(v, u) for some u ∈ U .

The definition of the Set Cover instance from Sec-
tion 3.1 is modified accordingly. For every v ∈ V we
define the set Aδv = {u ∈ V : e(u) ≤ (1 + δ)∆ (u, v)}.
Note that Av is contained in Aδv, and thus this Set Cover
instance is “easier” than the one in Section 3.1. Further-
more, given U ⊂ V , if v is covered by CδU = {Aδu : u ∈
U}, then 1

1+δ e(v) ≤ eU (v) ≤ e(v).

Let k-BFSδSC be the modified variant of k-
BFSSC that uses the results of the first phase to com-
pute the sets Ãδv = Aδv ∩ U1 for all v ∈ V , instead of
Ãv = Av∩U1, and uses them for the Set Cover instance.

Theorem 3.2. Let ε, δ > 0. Suppose G(V,E) has δ-
approximate eccentric cover of size at most κ. Then for
k = Õ(ε−1κ log n), k-BFSδSC runs in O(km) expected
work and O(D log n+log3(kn)) expected depth, and with
high probability returns estimates {ê(v)}v∈V such that
1

1+δ e(v) ≤ ê(v) ≤ e(v) for all but an ε-fraction of V .

The proof is the same as for k-BFSSC; the only
difference is in relaxing the eccentric cover condition
into a weaker one, which is met by more graphs.

4 k-BFS1 by Property Testing

In this section we focus on k-BFS1. At first glance, the
algorithm might seem too näıve for non-trivial analysis.
However, in [26], a similar algorithm has been analyzed
for the related purpose of property testing of the graph
diameter. This motivates us to consider k-BFS1 from a
property testing point of view, extending the approach
of [26] from the diameter to all eccentricities.

We use e(v) �ε r to denote that at most εn
edges need to be added to the graph to decrease
the eccentricity of v to at most r. The eccentricity

6In comparison, the top-k selection step of k-BFS2 is imple-

mented in [30] with O(n) work and O(logn) depth with high
probability.
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estimates of k-BFS1 are formally given by ê(v) =
min

{
r : v ∈

⋂
u∈U Nr(u)

}
, where U is a uniformly ran-

dom subset of k nodes. The following claim is not hard
to establish.

Claim 4.1. For k = O(ε−1 log n), with high probability,
the estimates ê(v) of k-BFS1 satisfy ê(v) ≤ e(v) �ε
ê(v) for every v ∈ V .

Proof. Let Rv =
{
r ∈ [n] : v ∈

⋂
u∈U Nr(u)

}
, so ê(v) =

minRv. Note that e(v) ∈ Rv, hence ê(v) ≤ e(v). If
r ∈ [n] does not satisfy e(v) �ε r, then more than εn
nodes u ∈ V satisfy ∆(v, u) > r, and such u will appear
in U with probability at least 1−(1−ε)k ≥ 1−exp(−εk),
rendering r /∈ Rv. Setting k = d3ε−1 log ne allows for a
union bound over all v ∈ V and all r ∈ [n].

While this guarantee holds for arbitrary graphs, it seems
rather weak for the computational cost of k-BFS1,
particularly in light of the better performance of k-
BFS2 and SimpleApx. Thus our focus is obtaining
the same guarantee by a significantly more efficient
algorithm. This is achieved by k-BFSTST, given
in Algorithm 2. It is similar to k-BFS1 except that
it truncates each BFS at the first level that contains at
least τ = O(ε−1 log(1/ε)) nodes. (This level may still
contain Ω(n) nodes, and we scan it fully, so each BFS
takes up to linear work in n.7) Formally, it uses the

estimates ê(v) = min
{
r : v ∈

⋂
u∈U :|Nr−1(u)|<τ Nr(u)

}
.

Its guarantees are summarized in the next theorem.

Theorem 4.1. Let G(V,E) be a graph, and ε > 0. For
k = O(ε−1 log n), k-BFSTST runs in O(ε−2 log(1/ε) ·
n log n) work and O(ε−1 log(1/ε) log n) depth, and with
high probability, returns estimates {ê(v)}v∈V such that
ê(v) ≤ e(v) �ε ê(v) for every v ∈ V .

As an intermediate step, we start by presenting an
algorithm for testing the eccentricity of a given node in
the classical property testing setting.

4.1 Property Testing Model

We now define the property testing model that we will
use for the eccentricity tester. It is known as the general
graph model [17], and was introduced in [26, 21]. Its
name reflects the fact that it was designed to handle
graphs with arbitrary degree sequences, by interpolating
between two historically preceding models, one for
sparse bounded-degree graphs and one for dense graph
with Ω(n2) edges.

7If we were to halt the BFS once τ = O(ε−1 log(1/ε)) nodes
had been seen, without finishing scanning the current level, then

we would get the weaker guarantee ê(v) ≤ e(v) �ε ê(v) + 1, with
Õ(ε−1n+ ε−3) instead of Õ(ε−2n) work. See Appendix A.1.

Algorithm 2 : k-BFSTST

Input: Graph G(V,E), integer k > 0 and ε ∈ (0, 1)
Output: Eccentricity estimate ê(v) for every v ∈ V

t← d16/εe
foreach v ∈ V :
ê(v)← 0

U ← k nodes chosen i.i.d. uniformly at random
foreach u ∈ U :

Start a BFS at u, until t ln t nodes have been
reached. Let `(u) be the BFS level in which this
happened. Continue the BFS until N`(u)(u) has been
fully scanned, then halt it.

foreach v ∈ V :
if v ∈ N`(u)(u):
ê(v)← max{ê(v),∆(u, v)}

else:
ê(v)← max{ê(v), `(u) + 1}

foreach v ∈ V :
return ê(v)

In this model, the input is a graph G(V,E) on a
fixed set of n labeled nodes. A property P is a subset
of all graphs on V . The graph satisfies the property if
G ∈ P. Given ε > 0 and an upper bound m̄ = O(|E|) on
the number of edges, G is said to be ε-close to satisfying
P if there is a sequence of at most εm̄ edge insertions
and edge deletions that results in a graph G′ ∈ P.
Otherwise, G is ε-far from P. For our needs, it will
suffice to only consider edge insertions, and to simply
set m̄ to be n, which is indeed O(|E|) as we assume that
the graph is connected.

The goal of a testing algorithm for P is to return
“accept” if G satisfies P, and “reject” if G is ε-far from
P. It is allowed to err with probability at most 1/3
(over its internal randomness) in each case, and there is
no requirement on its output for graphs which do not
satisfy the property but are ε-close to it. The algorithm
can access the graph by two types of queries:

• Neighbor queries: Given u ∈ V and i ∈ [n], the query
returns the ith neighbor of u if its degree is at least
i, or a null symbol “⊥” if its degree is smaller than i.
Here we assume that the neighbors of each node are
numbered arbitrarily from 1 to its degree.

• Adjacency queries: Given u, u′ ∈ V , the query returns
whether they are adjacent in G.

In practice, the ability to perform these queries ef-
ficiently depends on the representation of the input
graph. We remark that while we use adjacency queries
in EccTester, they will not be required for implement-
ing k-BFSTST, which relies only on the ability to start
a BFS at a uniformly random node.
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Algorithm 3 : EccTester

Input: G(V,E); v∗ ∈ V ; integer r > 0; ε, η ∈ (0, 1)
Output: Accept or Reject

t← d16/εe
k ← d2 ln(1/η)/εe
U ← k nodes chosen i.i.d. uniformly at random

foreach u ∈ U :
Use neighbor queries to start a BFS from u, halted
either when Nr−1(u) has been fully scanned, or
when t ln t nodes have been reached, whichever
happens first.

/* By now we have determined if |Nr−1(u)| < t ln t.
Furthermore, if this is the case, then we have fully
scanned Nr−1(u), thus determining whether v∗ ∈
Nr−1(u), and also computing the subset of all nodes
which are at distance exactly r − 1 from u. The
remainder of the iterarion uses these intermediate
computations to reject if both |Nr−1(u)| < t ln t and
v∗ /∈ Nr(u) hold, and proceeds to the next iteration
otherwise. See Claim 4.2. */

if |Nr−1(u)| < t ln t and v∗ /∈ Nr−1(u):
foreach v′ ∈ V such that ∆(u, v′) = r − 1:

Perform an adjancecy query for v∗, v′

if (v∗, v′) /∈ E for all such v′:
return Reject

return Accept

4.2 Eccentricity Tester

For a fixed node v∗ ∈ V , and r ∈ [n], the property
we are interested in is that the eccentricity of v∗ is at
most r. In this section we develop a testing algorithm
for this property, given as EccTester in Algorithm 3.
Its guarantees are summarized in the following theorem.

Theorem 4.2. Let G(V,E) be an input graph on n
nodes, v∗ ∈ V , r > 0 an integer, and ε, η ∈ (0, 1).
EccTester makes O(ε−3 log2(1/ε) log(1/η)) queries to
the graph, and guarantees: If e(v∗) ≤ r it accepts with
probability 1, and if G is ε-far from satisfying e(v∗) ≤ r
it rejects with probability at least 1− η.

The algorithm builds on the graph diameter tester
of [26]. Let us briefly describe it. They sample Õ(1/ε)
random BFS sources, and then accept if all source
neighborhoods are large – namely, if each contains at
least Ω̃(1/ε) nodes – or reject if any source neighborhood
is smaller. The rationale is that large neighborhoods
are easy to “hit” simultaneously with a small subset of
nodes, which can be used to enhance the connectivity
of the graph and reduce the diameter by adding only

a small number of edges. Small neighborhoods, on the
other hand, are difficult to hit, and if there are too many
of these then we expect one to show up in a random
sample, cueing us to reject the graph.

To adapt this approach for testing the eccentricity
of a specific node v∗, we will also look into the content
of the small neighborhoods. We accept a neighborhood
either if it is large or if it contains v∗, since in the former
case it can be easily “hit” (as above) and made closer
to v∗, and in the latter case there is no need to “hit” it
at all. We also make use of adjacency queries to remove
an additive loss incurred in [26]. This is the technical
readon why EccTester performs BFS only up to level
r − 1 and then partially queries level r, and this is the
source of the BFS truncation rule of k-BFSTST.

Apart from yielding an eccentricity tester, these
refinements allow us to slightly improve the bounds
of [26] for testing the graph diameter, and to design
a tester for the graph radius. They also lead to a
natural model for sketching large graphs in sublinear
time to support property testing queries. We discuss
these ramifications in Appendix A.

4.3 Proof of Theorem 4.2

As in Algorithm 3, we let t = d16/εe and k =
d2 ln(1/η)/εe, and let U be a subset of k nodes chosen
independently and uniformly at random from V . We
start with the query complexity.

Lemma 4.1. EccTester makes a total of at most
O(ε−3 log2(1/ε) log(1/η)) queries to the graph.

Proof. For each u ∈ U , the BFS started at u is halted af-
ter at most t ln t nodes have been reached, and thus tra-
verses at most O((t ln t)2) edges with neighbor queries.
If |Nr−1(u)| < t ln t then the tester also performs an
adjacency query for every v′ such that ∆(u, v′) = r −
1. Since every such v′ is contained in Nr−1(u), this
amounts to at most t ln t additional queries. In total,
O(k(t ln t)2) = O(ε−3 log2(1/ε) log(1/η)) queries.

We turn to proving correctness. For brevity, we will
simply say that a node u ∈ U “rejects” if EccTester re-
jects during the iteration that starts a BFS at u. Other-
wise we say that u “accepts”. Note that EccTester re-
turns Accept if and only if every u ∈ U accepts.

Claim 4.2. Each u ∈ U rejects if and only if both
|Nr−1(u)| < t ln t and v∗ /∈ Nr(u) hold.

Proof. In EccTester, u rejects if and only if all of the
following conditions hold: (i) |Nr−1(u)| < t ln t, (ii)
v∗ /∈ Nr−1(u), (iii) (v∗, v′) /∈ E for every v′ such that
∆(u, v′) = r − 1. Conditions (ii) and (iii) together are
equivalent to v∗ /∈ Nr(u).
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Lemma 4.2. If e(v∗) ≤ r, EccTester accepts with
probability 1.

Proof. e(v∗) ≤ r implies that v∗ ∈ Nr(u) for every
u ∈ U , thus by Claim 4.2, every u ∈ U accepts.

Lemma 4.3. If G is ε-far from satisfying e(v) ≤ r, then
EccTester rejects with probability at least 1− η.

We prove this using the following technical claim.

Claim 4.3. If every u ∈ V satisfies either |Nr−1(u)| ≥
t ln t or v∗ ∈ Nr(u), then the graph is 1

2ε-close to
satisfying e(v∗) ≤ r.

Proof. We need to show the existence of a subset Z ⊂ V
of size at most 1

2εn, such that if we add an edge between
v∗ and every node in Z, the resulting graph satisfies
e(v∗) ≤ r. We will use a probabilistic argument.

Let X ⊂ V be a random subset of nodes, in which
every node is included with independent probability
1/t. Then E|X| = n/t, and by Markov’s inequality,
Pr[|X| ≥ 4n/t] ≤ 1/4. Let Y be the subset of all nodes
v ∈ V that satisfy both:

• |Nr−1(v)| > t ln t, and

• ∆(v, v′) > r − 1 for every v′ ∈ X.

The latter event for v ∈ V can be written as

{u′ /∈ X for every u′ ∈ Nr−1(v)},

and if |Nr−1(v)| > t ln t, then it occurs with probability

(1− 1/t)|Nr−1(v)| ≤ (1− 1/t)t ln t ≤ exp(− ln t) = 1/t.

Therefore E|Y | ≤ n/t, and again by Markov’s inequal-
ity, Pr[|Y | ≥ 4n/t] ≤ 1/4. By a union bound, with prob-
ability 1/2 we have both |X| ≤ 4n/t and |Y | ≤ 4n/t.
We fix such X,Y and let Z = X ∪ Y .

We add an edge from v to each node in Z. Recalling
that t = d16/εe, we have |Z| ≤ |X|+ |Y | ≤ 8n/t ≤ 1

2εn,
and thus we add at most 1

2εn edges. It remains to argue
that after adding them, the graph satisfies e(v∗) ≤ r.

Let u ∈ V be any node. If |Nr−1(u)| ≤ t ln t then
by the claim’s hypothesis, v∗ ∈ Nr(u). Otherwise, we
consider two cases:

• If Nr−1(u) intersects X, let u′ be a node in the
intersection. Since u′ ∈ X, we have added an edge
between v∗ and u′. Since u′ ∈ Nr−1(u), we have
∆(u, u′) ≤ r − 1, thus ∆(v∗, u) ≤ r.
• If Nr−1(u) does not intersect X, then u ∈ Y by
construction of Y , hence we have added an edge
between v∗ and u.

In all cases we have ∆(v∗, u) ≤ r after adding the edges.
As this holds for every u ∈ V , we have e(v∗) ≤ r.

Claim 4.4. If at most 8n/t nodes u ∈ V satisfy both
|Nr−1(u)| < t ln t and v∗ /∈ Nr(u), then the graph is
ε-close to satisfying e(v∗) ≤ r.

Proof. For every u ∈ V that satisfies the condition in
the claim, we add an edge between u and v∗, thus adding
at most 8n/t ≤ 1

2εn edges. Now we are in the setting
of Claim 4.3, by which we can add 1

2εn additional edges
in order to make the graph satisfy e(v∗) ≤ r.

Proof of Lemma 4.3. Suppose G is ε-far from satisfying
e(v) ≤ r. By the contrapositive of Claim 4.4, there
are more than 8n/t nodes u ∈ V that satisfy both
|Nr−1(u)| ≤ t ln t and v∗ /∈ Nr(u). By Claim 4.2,
EccTester accepts if and only if no such node is
sampled in U . Since U is a random subset of size k,
this happens with probability at most(

1− 8

t

)k
=

(
1− 1

2
ε

)d 12 ε log( 1
η )e

≤ exp(− ln(1/η)) = η.

Theorem 4.2 follows from Lemmas 4.1 to 4.3.

4.4 Proof of Theorem 4.1

Recall we are given an input graph G(V,E) with |V | =
n and ε ∈ (0, 1). We set k = d6ε−1 ln(n)e. As
in Algorithm 2, we let t = d16/εe, and let U be a
subset of k nodes chosen independently and uniformly
at random from V .

Correctness. We prove the guarantee of k-BFSTST by
arguing that it in fact performs EccTester for every
v∗ ∈ V and r ∈ [n] simultaneously, and for every
v∗, the estimate ê(v∗) equals the maximal r such
that EccTester accepts v∗, r. The above setting of k
corresponds to setting η = 1/n3 in Thorem 4.2, which
allows for a union bound over all pairs v∗, r with a total
success probability of 1− 1/n.

Formally, fix v∗ ∈ V . Note that in Algorithm 2, for
every u ∈ U , `(u) is defined as the minimal ` ∈ [n] such
that |N`(u)| ≥ t ln t. Let

ê(v∗, u) =

{
∆(v∗, u) if v ∈ N`(u)(u)

`(u) + 1 if v /∈ N`(u)(u)
,

and note that the estimate ê(v∗) returned by k-
BFSTST for v∗ satisfies

(4.2) ê(v∗) = max
u∈U

ê(v∗, u).

Let r ∈ [n]. In the same terminology as the previous
section, we say that a node u ∈ U rejects r if Ec-
cTester rejects during the iteration that starts a BFS
at u while testing the property e(v∗) ≤ r. By Claim 4.2,
this happens if and only if both |Nr−1(u)| < t ln t and
v∗ /∈ Nr(u) hold. Otherwise we say that u accepts r.
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Claim 4.5. u accepts r if and only if ê(v∗, u) ≤ r.

Proof. We prove the claim by case analysis.
Case 1: r − 1 ≥ `(u). By definition of `(u) this implies
|Nr−1(u)| ≥ t ln t. Hence by Claim 4.2, u accepts r, and
we need to show that ê(v∗, u) ≤ r. Indeed,

• If v∗ ∈ N`(u)(u) then ê(v∗, u) = ∆(v∗, u) ≤ `(u) < r.

• If v∗ /∈ N`(u)(u) then ê(v∗, u) = `(u) + 1 ≤ r.
Case 2: r − 1 < `(u), hence |Nr−1(u)| < t ln t.

• If v∗ ∈ Nr(u) then by Claim 4.2 u accepts r, so we
need to show ê(v∗, u) ≤ r. Indeed, since r − 1 < `(u)
we have v∗ ∈ Nr(u) ⊂ N`(u)(u), hence ê(v∗, u) =
∆(v∗, u), which is at most r since v∗ ∈ Nr(u).

• If v∗ /∈ Nr(u) then by Claim 4.2 u rejects r, so we
need to show ê(v∗, u) > r. Indeed, if v∗ ∈ N`(u)(u)
then ê(v∗, u) = ∆(v∗, u) > r, and if v∗ /∈ N`(u)(u)
then ê(v∗, u) = `(u) + 1 > r.

Since EccTester accepts upon testing e(v∗) ≤ r if
and only if every u ∈ U accepts r, we have the following
corollary by Equation (4.2):

Corollary 4.1. For a fixed subset U ⊂ V of BFS
sources, EccTester accepts upon testing e(v∗) ≤ r if
and only if ê(v∗) ≤ r.

The corollary implies that for a fixed subset U ⊂ V ,
ê(v∗) is the minimal r ∈ [n] for which EccTester ac-
cepts. Theorem 4.2 guarantees that EccTester accepts
with probability 1 all r such that e(v∗) ≤ r. Further-
more, by a union bound over all values r ∈ [n], with
probability at least 1 − nη it rejects all r for which
the input graph does not satisfy e(v∗) �ε r. Conse-
quently, with probability at least 1− nη, ê(v∗) satisfies
ê(v∗) ≤ e(v∗) �ε ê(v∗). Taking another union bound
over all v∗ ∈ V guarantees this for all nodes simultane-
ously with probability 1 − n2η. By setting η = 1/n3,
which corresponds to the setting k = d6ε−1 ln(n)e in
Theorem 4.1, the guarantee holds for all nodes with
probability at least 1− 1/n, as was to be shown.

Work and depth. To bound the total work, consider
u ∈ U . The algorithm starts a BFS at u and halts
it when t ln t nodes have been reached, which takes at
most O((t ln t)2) work. Then it proceeds to complete
the level `(u) in which the BFS was halted. This final
level can have as many as Ω(n) nodes, but the total
additional work required to complete it is governed by
the number of edges between the nodes in it and the
nodes in all previous levels. There are at most t ln t
nodes in the previous levels, and hence at most nt ln t
such edges. Therefore the total work of the BFS started
at u is O(nt ln t+ (t ln t)2). Summing over all u ∈ U , we

Graph name Nodes Edges Diam. Rad. Avg. e(v)

Oregon-1010526 11,174 23,409 10 5 7.15

p2p-Gnutella30 36,646 88,303 11 7 8.69
loc-Brightkite 56,739 212,945 18 9 11.75

Table 1: Graphs used in experiments

have O(k(nt ln t + (t ln t)2)) = O(ε−2 log(1/ε) · n log n)
work for the main loop.

The depth of k-BFSTST is governed by the depth
of any BFS it performs. For every u ∈ U the BFS
is capped at depth `(u). Since we assume the graph
is connected, every BFS level reaches at least one
previously unreached node, and therefore we reach t ln t
nodes after at most t ln t levels. Hence `(u) ≤ t ln t, and
the depth of any BFS is at most t ln t = O(ε−1 log(1/ε)).

5 Experiments

In this section we present experimental results in order
to test our proposed algorithms and validate their anal-
ysis. As input graphs, we use three real-world graphs
from the Stanford Network Analysis Project (available
at http://snap.stanford.edu/data/). Their proper-
ties are summarized in Table 1. In each graph we use
only the largest connected component (which contains
almost all nodes), and treat all edges as undirected.

k-BFS1 and k-BFSTST. For practical convenience,
our implementation of k-BFSTST is parameterized by
the BFS cutoff (which is τ = t ln t = Θ(ε−1 log(1/ε))
in Algorithm 2) instead of ε. We run k-BFS1 and k-
BFSTST with k = 2i for i = 0, 1, ..., 10 and with dif-
ferent cutoffs for k-BFSTST. The results are depicted
in Figure 1. The x-axis counts the total number of edge
traversals performed by each algorithm, as a proxy for
their total work. The y-axis measures their average rel-

ative error, defined as 1
n

∑
v∈V

|e(v)−ê(v)|
e(v) . The results

show that introducing an aggressive BFS cutoff to k-
BFS1 makes it significantly more efficient at the cost
of only a small decrease in accuracy, yielding an overall
better performance tradeoff, as per Section 4. In par-
ticular, it seems preferable to spend a fixed budget of
edge traversals on a larger number of truncated BFS
invocations than on a smaller number of complete ones.

k-BFS2 and k-BFSSC. Here, for a more informed
comparison, we introduce two more algorithmic vari-
ants. Note that while k-BFS2 uses k sources in the
second phase, k-BFSSC uses only φ sources, where φ is
the cover size computed by the greedy Set Cover algo-
rithm for the sample from the first phase. It is often the
case that φ is much smaller than k. To equate the total
work, we introduce the variant k-BFSSC−full, which is
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(a) Oregon-1010526 (b) p2p-Gnutella30 (c) loc-Brightkite

Figure 1: Evaluation of k-BFS1 and k-BFSTST

(a) Oregon-1010526 (b) p2p-Gnutella30 (c) loc-Brightkite

Figure 2: Evaluation of k-BFS2, k-BFSSC−full, (k, φ)-BFS2, k-BFSSC

Graph Eccentric k k-BFS2 k-BFSSC−full 1st phase (k, φ)-BFS2 k-BFSSC

cover size CR ARE CR ARE cover size (φ) CR ARE CR ARE

Oregon-1010526 ≤ 64
16 0.969 0.004 1 0 2 0.945 0.007 0.999 9 · 10−5

64 1 0 1 0 2 0.945 0.007 0.999 9 · 10−5

p2p-Gnutella30 ≤ 1024
16 0.802 0.022 0.988 0.001 3 0.731 0.032 0.961 0.004
64 0.960 0.004 0.998 2 · 10−4 5 0.869 0.015 0.964 0.004

loc-Brightkite ≤ 16
16 1 0 1 0 2 0.958 0.004 0.958 0.004

64 1 0 1 0 4 0.968 0.003 0.999 4 · 10−4

Table 2: Evaluation of k-BFS2, k-BFSSC−full, (k, φ)-BFS2, k-BFSSC
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similar to k-BFSSC except that in the second phase it
uses the greedy strategy to choose a possibly redundant
set cover of size exactly k. Thus, both k-BFS2 and k-
BFSSC−full use a total of 2k BFS sources, k in each
phase, differing in how the second phase sources are
chosen. k-BFSSC uses a total of k + φ sources, k in
the first phase and φ in the second. To complete the
picture, we also include the variant (k, φ)-BFS2, which
uses k sources in the first phase and φ sources in the
second, chosen by the same rule as k-BFS2, i.e., by a
top-φ selection step. For this variant, φ is an external
parameter which we set according to the results of k-
BFSSC, for the sake of comparison between them.

The results are shown in Figure 2. The x-axis
counts the number of BFS invocations as a proxy for
the total work. The y-axis measures their average
relative error. All algorithms were run with k = 2i

for i = 0, 1, ..., 10, though for better visual clarity, the
x-axes are truncated when all plots have stabilized.
Some additional numbers are given in Table 2, which
in addition to the average relative error (ARE) contains
the correctness ratio (CR), which is the fraction of nodes
whose eccentricity was computed exactly, and an upper
bound on the eccentric cover size of each graph.

The results show that k-BFSSC−full dominates the
other algorithms and converges faster to near-zero error.
The greedy Set Cover selection rule for the BFS sources
in the second phase is significantly preferrable to top-k
selection, improving the accuracy by up to an order of
magnitude.

6 Additional Related Work

Since the publication of [30], there has been some
theoretical progress on constant-factor approximation
algorithms for all-eccentricities. In terms of upper
bounds, [2] gave a (2+δ)-approximation algorithm that
runs in nearly linear time Õ(m/δ). The approximation
factor is almost twice better than SimpleApx. In terms
of lower bounds, it was shown that a 2-approximation is
optimal for nearly-linear time algorithms, and that the
(5/3)-approximation algorithm of [9] (which is included
in [30]) cannot be improved in neither running time nor
approximation factor, unless SETH is false [1, 2].

With regard to empirical literature, it is worth
pointing out that the application of the distributed ex-
trema propagation technique [3, 4] to estimating all-
eccentricities [8, 15] is equivalent to k-BFS1 with
truncated BFS (albeit with a different truncation rule
than k-BFSTST). Let us briefly describe this, starting
with the k = 1 case. Each node v initially samples a ran-
dom value ζv, say uniformly in [0, 1]. In every timestep,
v transmits ζv to all its neighbors, and then updates its
own ζv to the minimum among its current value and the

values received from its neighbors. It also keeps track of
the timestep τv in which the last update to ζv was made.
This serves as the eccentricity estimate, i.e., ê(v) = τv.

Let v∗ be the node whose initial ζv∗ is minimal. By
symmetry v∗ is uniformly random. After e(v∗) steps the
value ζv∗ propagates to all nodes, and their τv equals
their distance to v∗. Hence this is equivalent to k-
BFS1 with k = 1 and v∗ as the random source.

Actual extrema propagation does not use a single

ζv, but an array zv = (ζ
(1)
v , . . . , ζ

(k)
v ) which it is

updated in every timestep by entry-wise minimum.
This yields k-BFS1 with the k random sources v∗i =

argminvζ
(i)
v for i = 1, . . . , k, where the argmin is over

the initial random values {ζ(i)v }v∈V . Finally, in practice
every node decides to halt its updates and output its
current eccentricity estimate once its vector zv has not
been updated with new values for several consecutive
steps, which yields k-BFS1 with truncated BFS.

Acknowledgements. The author thanks Ronitt Ru-
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A Property Testing of Eccentricities

In this section we elaborate on aspects of testing node
eccentricities in the classical property testing setting.

A.1 Node-Oblivious Eccentricity Tester

We start with a simplified version of EccTester,
called NodeObliviousEccTester, given in Algo-
rithm 4. It provides a somewhat weaker guarantee
than EccTester, with the same query complexity. On
the other hand, it uses only neighbor queries, and more
importantly, its queries are independent of the node v∗

whose eccentricity is being tested. This will facilitate
some of the result later in this section.

Theorem A.1. Let G(V,E) be an input graph on n
nodes, let v∗ ∈ V , let r > 0 be an integer, and
let ε, η ∈ (0, 1). NodeObliviousEccTester makes
O(ε−3 log2(1/ε) log(1/η)) queries to the graph, and sat-
isfies the following: If e(v∗) ≤ r then it accepts with
probability 1, and if G is ε-far from satisfying e(v∗) ≤
r + 1 then it rejects with probability at least 1− η.

The proof is very similar to that of Theorem 4.2, and
we refrain from repeating the details.

We remark that if we use Theorem A.1 instead of
Theorem 4.2 for k-BFSTST, we obtain a variant with
the weaker guarantee ê(v) ≤ e(v) �ε ê(v) + 1 for every
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v ∈ V , but better dependence on ε in the work bound,
which is O(ε−1n log n+ ε−3 log2(1/ε) log n). This holds
since each of the k BFS invocations traverses O((t ln t)2)
edges and thus takes O(n+(t ln t)2) work, and updating
the eccentricity estimate takes O(kn) work. The total
work is O(kn+k(t ln t)2), and as in k-BFSTST we have
t = O(ε−1 log(1/ε)) and k = O(ε−1 log n).

A.2 Diameter Testing

In [26], Parnas and Ron provide a graph diameter tester
that for a given d > 0, accepts with probability 1 if
D(G) ≤ d, and rejects with probability 2/3 if G is ε-
far from satisfying D(G) ≤ 2d + 2. This result also
follows from Theorem A.1 (with a similar but somewhat
different testing algorithm) since the triangle inequality
implies that e(v∗) ≤ D(G) ≤ 2e(v∗) for every v∗, so we
can invoke NodeObliviousEccTester with r = d and
an arbitrary node v∗, and return its output. Applying
the same reasoning to EccTester and Theorem 4.2,
we can remove the +2-term from the reject condition,
obtaining the following somewhat improved result.

Theorem A.2. Let G(V,E) be an input graph on n
nodes, let d > 0 be an integer, and let ε ∈ (0, 1). There
is a testing algorithm that makes O(ε−3 log2(1/ε))
queries to the graph, and satisfies the following: If
D(G) ≤ d then it accepts with probability 1, and if G
is ε-far from satisfying D(G) ≤ 2d then it rejects with
probability at least 2/3.

All the above results pertain to testing with one-
sided error, meaning that the tester accepts with prob-
ability 1 if the graph satisfies D(G) ≤ d. In [26] it
is also shown how to trade two-sided error for better
bounds, and obtain a tester that accepts with probabil-
ity 2/3 if D(G) ≤ d and rejects with probability 2/3 if
G is ε-far from satisfying D(G) ≤ d + 4, under certain
limitations on the parameter regime. The same trans-
formation applied to Theorem A.2 improves the latter
bound to D(G) ≤ d+ 2. We omit further details.

A.3 Radius Testing

The radius of the graph is the minimal eccentricity,
and will be denoted by R(G). In this section we give
a testing algorithm for the graph radius. It is stated
as RadiusTester in Algorithm 5.

Theorem A.3. Let G(V,E) be an input graph on
n nodes, let r > 0 be an integer, and let ε ∈
(0, 1). There is a testing algorithm that makes
O(ε−3 log3(1/ε) log log(1/ε)) queries to the graph, and
satisfies the following: If R(G) ≤ r it accepts with prob-
ability 1, and if G is ε-far from satisfying R(G) ≤ r+ 1
it rejects with probability at least 2/3.

Algorithm 5 : RadiusTester

Input: Graph G(V,E), integer r > 0, ε ∈ (0, 1)
Output: Accept or Reject

t← d16/εe
k ← d2 ln(6t ln t)/εe
U ← k nodes chosen i.i.d. uniformly at random

foreach u ∈ U :
Use neighbor queries to start a BFS from u, halted
either when Nr(u) has been fully scanned, or when
t ln t nodes are reached, whichever happens first.

if the intersection

(A.1)
⋂

u∈U :|Nr(u)|≤t ln t

Nr(u)

is non-empty, return Accept. Else, return Reject.
Note that if |Nr(u)| > t ln t for all u ∈ U , we consider
the intersection as non-empty and return Accept.

It is instructive to first observe that Theorem A.3
follows almost immediately from Theorem A.1, if one
is willing to blow up the number of random BFS
sources (and thus the query complexity) by a factor of
O(log n). To this end, note that the property R(G) ≤ r
is the union of properties e(v∗) ≤ r for all v∗ ∈
V . RadiusTester is identical to NodeObliviousEc-
cTester except that the former checks whether the
intersection in Equation (A.1) is non-empty, whereas
the latter checks whether it contains v∗. Hence Ra-
diusTester can be seen as invoking NodeOblivi-
ousEccTester simultaneously for every v∗ ∈ V , with
the same random sources, with the former accepting if
and only if at least one invocation of the latter accepts.
Here we have crucially used the fact that the queries
of NodeObliviousEccTester are oblivious to v∗. The
guarantee of Theorem A.3 follows from Theorem A.1
by setting η = 1/(2n) in the latter, allowing for a union
bound over all v∗ ∈ V .

With little additional work, we can reduce the
number of nodes in the union bound to O(ε−1 log(1/ε)),
obtaining Theorem A.3. As in Algorithm 5, let t =
d16/εe and k = d2 ln(6t ln t)/εe, and let U be a subset
of 2k nodes chosen independently and uniformly at
random from V .

Claim A.1. If at most 8n/t nodes v ∈ V have Nr(v) ≤
t ln t, then G is ε-close to satisfying R(G) ≤ r + 1.

Proof. [sketch] By a probabilistic argument similar to
the one in Claims 4.3 and 4.4, there exists a subset
Z ⊂ V of size |Z| ≤ εn such that Z ∩ Nr(v) is non-
empty for all v ∈ V . By picking an arbitrary v∗ ∈ V
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and adding edges between v∗ and every node in Z, we
obtain a graph in which v∗ has eccentricity at most r+1,
and hence this graph has radius at most r + 1.

Proof of Theorem A.3. Suppose R(G) ≤ r. Then there
is a node v∗ with e(v∗) ≤ r, hence v∗ ∈ Nr(v) for every
v ∈ V , and hence RadiusTester returns Accept wth
probability 1.

Suppose G is ε-far from satisfyingR(G) ≤ r+1. Let
us mentally partition U arbitrarily into two sets U1, U2

of size k each. Say, let U1 be the first k sampled sources,
and U2 be the remaining k. By the contrapositive of
Claim A.1, there are more than 8n/t nodes v ∈ V that
satisfy Nr(v) ≤ t ln t. The probability that U1 misses
all of them is at most

(A.2)
(
1− 8

t

)k
=
(
1− 1

2ε
)k ≤ exp(− ln(6t ln t)) <

1

6
.

Suppose this does not occur. Let u∗ ∈ U1 be an
arbitrary node for which |Nr(u∗)| ≤ t ln t. We now aim
to upper-bound the probability that RadiusTester ac-
cepts, which only increases if we restrict the inter-
section in Equation (A.1) to u ∈ {u∗} ∪ U2, disre-
garding the rest of U1. This is equivalent to invok-
ing NodeObliviousEccTester simultaneously for ev-
ery v ∈ Nr(u

∗), with the random sources in U2. (We
remark this is not true for nodes v /∈ Nr(u∗), since Ra-
diusTester necessarily rejects them while NodeObliv-
iousEccTester accepts them if v ∈

⋂
u∈U2

Nr(u).)
Our current assumption that G is ε-far from sat-

isfying R(G) ≤ r + 1 implies that G is ε-far from
satisfying e(v) ≤ r + 1 for every v ∈ Nr(u

∗). The
choice of k in RadiusTester corresponds to setting
η = 1/(6t ln t) in Theorem A.1, and hence NodeObliv-
iousEccTester accepts each invocation with proba-
bility at most 1/(6t ln t). By a union bound over all
v ∈ Nr(u∗), the probability that any of the invocations
accepts is at most 1/6. By a final union bound over the
latter event and Equation (A.2), RadiusTester accepts
with probability at most 1/3, as needed.

A.4 A Model for Sketching Graphs for Testing

Let us highlight one more consequence of Theorem A.1,
pertaining to sketching large graphs for testing. Sketch-
ing is an algorithmic paradigm whose goal is to summa-
rize a large object (say, a graph) into a memory-efficient
representation, called a sketch, such that certain param-
eters of the object (say, node distances or cut values)
can be approximately recovered from the sketch. In
this section, our goal is to combine sketching with prop-
erty testing, and define a model for sketching graphs in
sublinear time, so that property testing queries can be
answered from the sketch.

Formally, sketching is defined in terms of a one-
way communication problem. In our setting, Alice has
query access to a graph G(V,E) (in the model defined
in Section 4.1), which she uses to produce a small-size
sketch, and sends it to Bob. Bob needs to use the sketch
to test a property P ∈ Π of G from a set of properties
Π, where Π is known to both parties but P is known
only to Bob. Π can be thought of as a set of properties
parameterized by nodes, edges, cuts, and so on.

Instantiating the model for eccentricities, we let
Π = {Pr,v : v ∈ V, r ∈ [n]}, where Pv,r is the
property that e(v) ≤ r. The fact that the queries
of NodeObliviousEccTester are oblivious to v∗, and
in a sense also to r, allows us to separate the querying
part from the testing part, and obtain the following
result in this model.

Theorem A.4. Let G(V,E) be an input graph on n
nodes, and let ε ∈ (0, 1). There is a randomized sketch-
ing algorithm (Alice) and a deterministic estimation al-
gorithm (Bob), with the following guarantees:

• Alice makes O(ε−3 log2(1/ε) · log n) queries to G.

• Alice computes a sketch of size O(ε−2 log(1/ε) ·
log2 n) bits.

• With high probability over Alice’s random coins, Bob
can compute from the sketch eccentricity estimates
{ê(v)}v∈V that satisfy ê(v) ≤ e(v) �ε ê(v) + 1 for
every v ∈ V .

Proof. Let η = 1/n3. As in Algorithm 4, let t =
d16/εe and k = d2 ln(1/η)/εe. Alice samples a subset
U ⊂ V of k uniformly random nodes, starts a BFS at
each, and halts each BFS after t ln t nodes have been
reached. (Unlike NodeObliviousEccTester, she does
not halt when Nr(u) has been fully scanned for some
r.) The query complexity is O(ε−3 log2(1/ε) log(1/η))
as in Theorem A.1. The sketch consists of the list of
t ln t nodes reached from each u ∈ U along with their
distances from u. Since every node label and every
distance are represented by log n bits, the sketch size
is k · t ln t · 2 log n = O(ε−2 log(1/ε) · log2 n) bits.

The sketch consists of all the information required
for Bob to emulate NodeObliviousEccTester on ev-
ery v∗ ∈ V and r ∈ [n] with the random sources U , i.e.,
to check whether v∗ ∈ Nr(u) for every u ∈ U for which
|Nr(u)| < t ln t. By Theorem A.1, with a union bound
over all v∗ ∈ V and r ∈ [n], all n2 invocations succeed
simultaneously with probability at least 1 − 1/n. This
means that each pair v∗, r is accepted if e(v∗) ≤ r and
rejected if G is ε-far from satisfying e(v∗) ≤ r + 1. By
setting ê(v∗) to be the minimal r ∈ [n] for which the
pair v∗, r is accepted, the theorem follows.
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