
Eccentricity	Heuristics	through	
Sublinear	Analysis	Lenses

Tal	Wagner
MIT



Graph	Eccentricities

• Let	𝐺(𝑉, 𝐸) by	a	graph

• Shortest-path	metric:		Δ: 𝑉×𝑉 → ℝ

• Eccentricities:	
𝒆 𝑣 = max

2∈4
Δ(𝑣, 𝑢)

• Max	𝒆 𝑣 =	diameter;	Min	𝒆 𝑣 =	radius

𝒆 𝑣 = 3

Max	𝒆 𝑣 =	diameter;	Min	𝒆 𝑣 =	radius
90th	percentile	𝒆 𝑣 =	“effective	diameter”	(excludes	outliers)

Applications:	Network	topology	
analysis	(computers,	social,	
biological),	hardware	verification,	
sparse	linear	system	solving,	…



Eccentricity	Distribution	of	Large	Graphs

Eccentricity

Kang	et	al.	TKDD	2011

Linkedin (Aug	2006)

Outsiders

Leskovec et	al.	WWW	2008



Eccentricity	Distribution	of	Large	Graphs

Eccentricity Eccentricity

Eccentricity

Kang	et	al.	TKDD	2011 Iwabuchi et	al.	CLUSTER	2018

U.S.	Patent	(1985) Linkedin (Aug	2006)

YahooWeb (GCC	only)

Wikipedia Twitter

com-Friendster Webgraph

(GCCs	only)



Computing	All	Eccentricities

• Exact	computation:	𝑂 𝑚𝑛 (e.g.	BFS	from	each	node)
• Approximate	algorithms
• Theoretical:

• Empirical: [Kang	et	al.	’11],	[Boldi et	al.	’11],	[Takes	&	Kosters ‘13],	[…], [Shun’15]

4-approx. 𝑂(𝑚) time [One	BFS]

(2 + 𝛿)-approx. 𝑂>(𝑚 𝛿⁄ ) time [Backurs-Roditty-Segal-V.Williams-Wein’18]

5 3⁄ -approx. 𝑂>(𝑚A.C) time [Chechik-Larkin-Roditty-Schoenebeck-Tarjan-V.Williams’14]

Tight	under	SETH



Parallel	𝑘-BFS	Heuristics	[Shun’15]

• 𝑆A ← 𝑘 random	nodes

• Compute	BFS	from	each	𝑢 ∈ 𝑆A

• 𝒆G𝟏 𝑣 ←max	distance	from	𝑆A

• 𝑆I ← 𝑘 furthest	nodes	from	𝑆A

• Compute	BFS	from	each	𝑢 ∈ 𝑆I

• 𝒆G𝟐 𝑣 ←max	distance	from	𝑆A ∪ 𝑆I

𝑘-BFS1:	

𝑘-BFS2:	



Parallel	𝑘-BFS	Heuristics	[Shun’15]

• 𝑆A ← 𝑘 random	nodes

• Compute	BFS	from	each	𝑢 ∈ 𝑆A

• 𝒆G𝟏 𝑣 ←max	distance	from	𝑆A

• 𝑆I ← 𝑘 furthest	nodes	from	𝑆A

• Compute	BFS	from	each	𝑢 ∈ 𝑆I

• 𝒆G𝟐 𝑣 ←max	distance	from	𝑆A ∪ 𝑆I

𝑘-BFS1:	

𝑘-BFS2:	



Empirical	Results	in	[Shun’15]

• 𝑘-BFS1 performs	reasonable	well
• E.g.,	median	average	relative	error	7.55%

• 𝑘-BFS2 beats	all	other	methods	by	

orders	of	magnitude

• Often	computes	all	eccentricities	exactly

Why?



Reagan’s	Principle

“They're	the	sort	of	people	who	
see	something	works	in	practice	
and	wonder	if	it	would	work	in	
theory.”



This	Work

• Analyze heuristics	in	order	to	explain and	improve
• Will	get	provable variants	with	better	empirical	performance
• Need	to	go	beyond	worst-case	(due	to	SETH-hardness)

• 𝑘-BFS2: Connection	to	Streaming	Set	Cover
• [Demaine,	Indyk,	Mahabadi,	Vakilian ’14]

• 𝑘-BFS1: Connection	to	Diameter	Property	Testing
• [Parnas &	Ron	’02]

Empirical	
validation	of	
theory-based	
algorithms



𝑘-BFS2 by	Streaming	Set	Cover



Set	Cover	Formulation

• Set	Cover:	Given	elements	𝑉 and	subsets	𝒮 ⊂ 24 ,	
find	smallest	cover	𝐶 ⊂ 𝒮 of	𝑉.

• Eccentricities	as	Set	Cover:
• Nodes	are	elements
• Nodes	are	sets:		𝒮 = 𝐴P: 𝑣 ∈ 𝑉

𝑣 𝐴P

𝐴P = 𝑢 ∈ 𝑉: 𝒆 𝑢 = Δ 𝑣, 𝑢



Set	Cover	Formulation

• Set	Cover:	Given	elements	𝑉 and	subsets	𝒮 ⊂ 24 ,	
find	smallest	cover	𝐶 ⊂ 𝒮 of	𝑉.

• Eccentricities	as	Set	Cover:
• Nodes	are	elements
• Nodes	are	sets:		𝒮 = 𝐴P: 𝑣 ∈ 𝑉

𝑣
𝐴P

𝐴P = 𝑢 ∈ 𝑉: 𝒆 𝑢 = Δ 𝑣, 𝑢



Set	Cover	Formulation

• Set	Cover:	Given	elements	𝑉 and	subsets	𝒮 ⊂ 24 ,	
find	smallest	cover	𝐶 ⊂ 𝒮 of	𝑉.

• Eccentricities	as	Set	Cover:
• Nodes	are	elements
• Nodes	are	sets:		𝒮 = 𝐴P: 𝑣 ∈ 𝑉

𝐴P = 𝑢 ∈ 𝑉: 𝒆 𝑢 = Δ 𝑣, 𝑢

𝑣

𝐴P = ∅



Set	Cover	Formulation

• Set	Cover:	Given	elements	𝑉 and	subsets	𝒮 ⊂ 24 ,	
find	smallest	cover	𝐶 ⊂ 𝒮 of	𝑉.

• Eccentricities	as	Set	Cover:
• Nodes	are	elements
• Nodes	are	sets:		𝒮 = 𝐴P: 𝑣 ∈ 𝑉

• Cover	computes	all	eccentricities

• Optimal	cover	=	“eccentric	cover”,	𝜿
𝐴P = 𝑢 ∈ 𝑉: 𝒆 𝑢 = Δ 𝑣, 𝑢



Computational	Constraints

• Computing	a	set	𝐴P is	prohibitive	
• 𝑂(𝑚𝑛) work

• Computing	which	sets	cover	𝑣 is	expensive
• Single	BFS,	𝑂(𝑚) work

• Known	Set	Cover	algorithms?	Yes

𝑣
𝐴P

𝑣 𝐴PS
𝐴PT
𝐴PU



Streaming	Set	Cover	[Demaine-Indyk-Mahabadi-Vakilian’14]

• 𝑆A ← 𝑘 random	elements

• 𝐶 ← Cover for	sample	(e.g.	greedy)

Element	Sampling	Lemma:

If	global	optimum	is	small,	𝐶 covers	

almost	all	elements.



𝑘-BFS2 vs.	DIMV

𝑘-BFS2 Streaming Set	Cover	[DIMV’14]

𝑆 ← Random sample ⟺ 𝑆 ← Random sample

Compute BFS	from	each	𝑣 ∈ 𝑆 ⟺ Compute covering	sets	for	each	𝑣 ∈ 𝑆

𝐶 ← 𝑘 nodes	with max	Δ(𝑣, 𝑆) ≉ 𝐶 ← Greedy	cover	for 𝑆



𝑘-BFSSC
𝑘-BFS2 Streaming Set	Cover	[DIMV’14]

𝑆 ← Random sample ⟺ 𝑆 ← Random sample

Compute BFS	from	each	𝑣 ∈ 𝑆 ⟺ Compute covering	sets	for	each	𝑣 ∈ 𝑆

𝐶 ← 𝑘 nodes	with max	Δ(𝑣, 𝑆) ≉ 𝐶 ← Greedy	cover	for 𝑆

𝐶 ← Parallel	greedy	cover	for	𝑆
[Blelloch-Peng-Tangwongsan’11]	

[Blelloch-Simhadri-Tangwongsan’12]



𝑘-BFSSC
Theorem:
Suppose	𝐺(𝑉, 𝐸) has	eccentric	cover	size	𝜿.

𝑘-BFSSC with	𝑘 = 𝑂> 𝜿 ⋅ 𝜖ZA log 𝑛 satisfies:

• Expected	work:	𝑂(𝑘𝑚),	expected	depth:	𝑂>(diam 𝐺 )

• Computes	exact	eccentricities	of	all	but	an	𝜖-fraction	of	nodes	w.h.p.

???



Eccentric	Cover:	Warm-Up

• Path,	star,	clique:	𝜿 = 2

• Even	cycle,	hypercube:	𝜿 = 𝑛

• Odd	cycle:	𝜿 = A
I
𝑛 + 1



Eccentric	Cover	in	the	Wild

• 8	real-world	graphs	in	[Shun’15]

• 1M-4M nodes	each

• Upper	bounds	on	eccentric	cover	size:

• 2	graphs:	𝜿 ≤ 𝟏𝟐𝟖

• 5	graphs:	𝜿 ≲ 𝟏, 𝟎𝟎𝟎

• 1	graph:	𝜿 ≲ 𝟏𝟎, 𝟎𝟎𝟎

Real-world	graphs	have	
small	eccentric	covers



Experiments

𝑘-BFS2 vs.	𝑘-BFSSC
(Real-world	graphs	from	Stanford	

Network	Analysis	Project)

BFS	count BFS	count

average	
relative	
error

Graph	1:
𝑛 = 36,646
𝑚 = 88,303
𝜿 ≤ 1,024

Exact	ratio at	𝑘 = 16:
𝑘-BFS2:	80%
𝑘-BFSSC:	99%

Graph	2:
𝑛 = 11,174
𝑚 = 23,409
𝜿 ≤ 32

Exact	ratio at	𝑘 = 16:
𝑘-BFS2:	97%
𝑘-BFSSC:	100%



𝑘-BFS1 by	Property	Testing



Property	Testing	Approximation

• Usual	approximation:	𝒆G 𝑣 is	close	to	𝒆(𝑣)

• Property	testing	approximation:	𝒆G 𝑣 is	
exact	on	some	𝑮k close	to	𝑮
• Graphs	are	𝝐-close	if	up	to	𝝐 ⋅ 𝒎 edges	can	be	
added/removed	to	get	𝑮k from	𝑮

• No	sparsity/density	assumption	(“General	
Graph	Model”)

• Notation:	𝒆G 𝑣 ≤ 𝒆 𝑣 ≼𝝐 𝒆G 𝑣

𝒆G 𝑣 = 1
𝒆 𝑣 = 2

𝑮k is	𝟒𝟗-close	to	𝑮



𝑘-BFS1 vs.	Diameter	Testing

𝑘-BFS1 with	𝑘 = 𝑂 𝜖ZA log 𝑛 satisfies	𝒆G 𝑣 ≤ 𝒆 𝑣 ≼𝝐 𝒆G 𝑣 for	all	𝑣.
• Work:	𝑂>(𝜖ZA𝑚),	depth:	𝑂>(diam 𝐺 )
• Algorithm:	Start	BFS	at	𝑘 random	nodes

Theorem [Parnas &	Ron]:	Given	a	graph	𝐺,	compute	a	diameter	
estimate	𝑫k such	that	𝑫k ≤ diam 𝐺 ≼𝝐 2𝑫k + 2.
• Time:	𝑝𝑜𝑙𝑦 𝜖ZA

• Algorithm:	Start	truncated BFS	at	𝑘 random	nodes

But	this	is	
linear	time



Eccentricity	Testing

Aux.	Theorem:	Given	𝐺 and	𝑣,	compute	𝒆G 𝑣 s.t. 𝒆G 𝑣 ≤ 𝒆 𝑣 ≼𝝐 𝒆G 𝑣
in	time	𝑝𝑜𝑙𝑦 𝜖ZA .
• Corollary	– Diameter	testing:	𝑫k ≤ diam 𝐺 ≼𝝐 2𝑫k (shaved	off	+2)

• Corollary	– Radius	testing:	𝑹k ≤ radius 𝐺 ≼𝝐 𝑹k + 𝟏

Implies	variant	of	𝑘-BFS1:	𝑘-BFSTST



𝑘-BFSTST
Theorem:	𝑘-BFSTST satisfies	𝒆G 𝑣 ≤ 𝒆 𝑣 ≼𝝐 𝒆G 𝑣 for	all	𝑣.
• Work:	𝑂(𝜖ZI𝑛),	depth:	𝑂>(𝜖ZA log 𝑛)

Same	guarantee	as	𝑘-BFS1
but	in	sublinear work	and	

depth,	independent	of	graph.

• Algorithm:	truncated	BFS
• 𝑆A ← 𝑘 random	nodes

• From	each	𝑢 ∈ 𝑆A,	start	a	BFS	up	to	first	level	ℓ2
where	𝑂>(𝜖ZA) nodes	are	seen.	All	unseen	nodes	

are	considered	at	“distance”	ℓ2 + 1 from	𝑢.

• 𝒆G𝐓𝐒𝐓 𝑣 ←max	“distance”	from	𝑆A



Experiments

𝑘-BFS1 vs.	𝑘-BFSTST (with	different	BFS	cutoffs)

Edge	traversals Edge	traversals

average	
relative	
error

Graph	1:
𝑛 = 36,646
𝑚 = 88,303

Graph	2:
𝑛 = 11,174
𝑚 = 23,409



Conclusion

• Explain	and	improve	high-performing	heuristics

• Practical	algorithm	->	“fit”	analysis	->	practical	improvement	with	guarantees

• Inter-connections	of	parallel,	streaming,	sketching,	and	property	

testing	algorithms

• All	“point	to	same	direction”
Thank	you


