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Graph	Eccentricities

• Let	𝐺(𝑉, 𝐸) by	a	graph

• Shortest-path	metric:		Δ: 𝑉×𝑉 → ℝ

• Eccentricities:	
𝒆 𝑣 = max

2∈4
Δ(𝑣, 𝑢)

• Max	𝒆 𝑣 =	diameter;	Min	𝒆 𝑣 =	radius

𝒆 𝑣 = 3

Max	𝒆 𝑣 =	diameter;	Min	𝒆 𝑣 =	radius
90th	percentile	𝒆 𝑣 =	“effective	diameter”	(excludes	outliers)

Applications:	Network	topology	
analysis	(computers,	social,	
biological),	hardware	verification,	
sparse	linear	system	solving,	…
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Eccentricity	Distribution	of	Large	Graphs

Eccentricity Eccentricity

Eccentricity

Kang	et	al.	TKDD	2011 Iwabuchi et	al.	CLUSTER	2018

U.S.	Patent	(1985) Linkedin (Aug	2006)

YahooWeb (GCC	only)

Wikipedia Twitter

com-Friendster Webgraph

(GCCs	only)



Computing	All	Eccentricities

• Exact	computation:	𝑂 𝑚𝑛 (e.g.	BFS	from	each	node)
• Approximate	algorithms
• Theoretical:

• Empirical: [Kang	et	al.	’11],	[Boldi et	al.	’11],	[Takes	&	Kosters ‘13],	[…], [Shun’15]

4-approx. 𝑂(𝑚) time [One	BFS]

(2 + 𝛿)-approx. 𝑂>(𝑚 𝛿⁄ ) time [Backurs-Roditty-Segal-V.Williams-Wein’18]

5 3⁄ -approx. 𝑂>(𝑚A.C) time [Chechik-Larkin-Roditty-Schoenebeck-Tarjan-V.Williams’14]

Tight	under	SETH



Parallel	𝑘-BFS	Heuristics	[Shun’15]

• 𝑆A ← 𝑘 random	nodes

• Compute	BFS	from	each	𝑢 ∈ 𝑆A

• 𝒆G𝟏 𝑣 ←max	distance	from	𝑆A

• 𝑆I ← 𝑘 furthest	nodes	from	𝑆A

• Compute	BFS	from	each	𝑢 ∈ 𝑆I

• 𝒆G𝟐 𝑣 ←max	distance	from	𝑆A ∪ 𝑆I

𝑘-BFS1:	

𝑘-BFS2:	
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Empirical	Results	in	[Shun’15]

• 𝑘-BFS1 performs	reasonable	well
• E.g.,	median	average	relative	error	7.55%

• 𝑘-BFS2 beats	all	other	methods	by	

orders	of	magnitude

• Often	computes	all	eccentricities	exactly

Why?



Reagan’s	Principle

“They're	the	sort	of	people	who	
see	something	works	in	practice	
and	wonder	if	it	would	work	in	
theory.”



This	Work

• Analyze heuristics	in	order	to	explain and	improve
• Will	get	provable variants	with	better	empirical	performance
• Need	to	go	beyond	worst-case	(due	to	SETH-hardness)

• 𝑘-BFS2: Connection	to	Streaming	Set	Cover
• [Demaine,	Indyk,	Mahabadi,	Vakilian ’14]

• 𝑘-BFS1: Connection	to	Diameter	Property	Testing
• [Parnas &	Ron	’02]

Empirical	
validation	of	
theory-based	
algorithms



𝑘-BFS2 by	Streaming	Set	Cover



Set	Cover	Formulation

• Set	Cover:	Given	elements	𝑉 and	subsets	𝒮 ⊂ 24 ,	
find	smallest	cover	𝐶 ⊂ 𝒮 of	𝑉.

• Eccentricities	as	Set	Cover:
• Nodes	are	elements
• Nodes	are	sets:		𝒮 = 𝐴P: 𝑣 ∈ 𝑉

𝑣 𝐴P

𝐴P = 𝑢 ∈ 𝑉: 𝒆 𝑢 = Δ 𝑣, 𝑢
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Set	Cover	Formulation

• Set	Cover:	Given	elements	𝑉 and	subsets	𝒮 ⊂ 24 ,	
find	smallest	cover	𝐶 ⊂ 𝒮 of	𝑉.

• Eccentricities	as	Set	Cover:
• Nodes	are	elements
• Nodes	are	sets:		𝒮 = 𝐴P: 𝑣 ∈ 𝑉

• Cover	computes	all	eccentricities

• Optimal	cover	=	“eccentric	cover”,	𝜿
𝐴P = 𝑢 ∈ 𝑉: 𝒆 𝑢 = Δ 𝑣, 𝑢



Computational	Constraints

• Computing	a	set	𝐴P is	prohibitive	
• 𝑂(𝑚𝑛) work

• Computing	which	sets	cover	𝑣 is	expensive
• Single	BFS,	𝑂(𝑚) work

• Known	Set	Cover	algorithms?	Yes

𝑣
𝐴P

𝑣 𝐴PS
𝐴PT
𝐴PU



Streaming	Set	Cover	[Demaine-Indyk-Mahabadi-Vakilian’14]

• 𝑆A ← 𝑘 random	elements

• 𝐶 ← Cover for	sample	(e.g.	greedy)

Element	Sampling	Lemma:

If	global	optimum	is	small,	𝐶 covers	

almost	all	elements.



𝑘-BFS2 vs.	DIMV

𝑘-BFS2 Streaming Set	Cover	[DIMV’14]

𝑆 ← Random sample ⟺ 𝑆 ← Random sample

Compute BFS	from	each	𝑣 ∈ 𝑆 ⟺ Compute covering	sets	for	each	𝑣 ∈ 𝑆

𝐶 ← 𝑘 nodes	with max	Δ(𝑣, 𝑆) ≉ 𝐶 ← Greedy	cover	for 𝑆



𝑘-BFSSC
𝑘-BFS2 Streaming Set	Cover	[DIMV’14]

𝑆 ← Random sample ⟺ 𝑆 ← Random sample

Compute BFS	from	each	𝑣 ∈ 𝑆 ⟺ Compute covering	sets	for	each	𝑣 ∈ 𝑆

𝐶 ← 𝑘 nodes	with max	Δ(𝑣, 𝑆) ≉ 𝐶 ← Greedy	cover	for 𝑆

𝐶 ← Parallel	greedy	cover	for	𝑆
[Blelloch-Peng-Tangwongsan’11]	

[Blelloch-Simhadri-Tangwongsan’12]



𝑘-BFSSC
Theorem:
Suppose	𝐺(𝑉, 𝐸) has	eccentric	cover	size	𝜿.

𝑘-BFSSC with	𝑘 = 𝑂> 𝜿 ⋅ 𝜖ZA log 𝑛 satisfies:

• Expected	work:	𝑂(𝑘𝑚),	expected	depth:	𝑂>(diam 𝐺 )

• Computes	exact	eccentricities	of	all	but	an	𝜖-fraction	of	nodes	w.h.p.

???



Eccentric	Cover:	Warm-Up

• Path,	star,	clique:	𝜿 = 2

• Even	cycle,	hypercube:	𝜿 = 𝑛

• Odd	cycle:	𝜿 = A
I
𝑛 + 1



Eccentric	Cover	in	the	Wild

• 8	real-world	graphs	in	[Shun’15]

• 1M-4M nodes	each

• Upper	bounds	on	eccentric	cover	size:

• 2	graphs:	𝜿 ≤ 𝟏𝟐𝟖

• 5	graphs:	𝜿 ≲ 𝟏, 𝟎𝟎𝟎

• 1	graph:	𝜿 ≲ 𝟏𝟎, 𝟎𝟎𝟎

Real-world	graphs	have	
small	eccentric	covers



Experiments

𝑘-BFS2 vs.	𝑘-BFSSC
(Real-world	graphs	from	Stanford	

Network	Analysis	Project)

BFS	count BFS	count

average	
relative	
error

Graph	1:
𝑛 = 36,646
𝑚 = 88,303
𝜿 ≤ 1,024

Exact	ratio at	𝑘 = 16:
𝑘-BFS2:	80%
𝑘-BFSSC:	99%

Graph	2:
𝑛 = 11,174
𝑚 = 23,409
𝜿 ≤ 32

Exact	ratio at	𝑘 = 16:
𝑘-BFS2:	97%
𝑘-BFSSC:	100%



𝑘-BFS1 by	Property	Testing



Property	Testing	Approximation

• Usual	approximation:	𝒆G 𝑣 is	close	to	𝒆(𝑣)

• Property	testing	approximation:	𝒆G 𝑣 is	
exact	on	some	𝑮k close	to	𝑮
• Graphs	are	𝝐-close	if	up	to	𝝐 ⋅ 𝒎 edges	can	be	
added/removed	to	get	𝑮k from	𝑮

• No	sparsity/density	assumption	(“General	
Graph	Model”)

• Notation:	𝒆G 𝑣 ≤ 𝒆 𝑣 ≼𝝐 𝒆G 𝑣

𝒆G 𝑣 = 1
𝒆 𝑣 = 2

𝑮k is	𝟒𝟗-close	to	𝑮



𝑘-BFS1 vs.	Diameter	Testing

𝑘-BFS1 with	𝑘 = 𝑂 𝜖ZA log 𝑛 satisfies	𝒆G 𝑣 ≤ 𝒆 𝑣 ≼𝝐 𝒆G 𝑣 for	all	𝑣.
• Work:	𝑂>(𝜖ZA𝑚),	depth:	𝑂>(diam 𝐺 )
• Algorithm:	Start	BFS	at	𝑘 random	nodes

Theorem [Parnas &	Ron]:	Given	a	graph	𝐺,	compute	a	diameter	
estimate	𝑫k such	that	𝑫k ≤ diam 𝐺 ≼𝝐 2𝑫k + 2.
• Time:	𝑝𝑜𝑙𝑦 𝜖ZA

• Algorithm:	Start	truncated BFS	at	𝑘 random	nodes

But	this	is	
linear	time



Eccentricity	Testing

Aux.	Theorem:	Given	𝐺 and	𝑣,	compute	𝒆G 𝑣 s.t. 𝒆G 𝑣 ≤ 𝒆 𝑣 ≼𝝐 𝒆G 𝑣
in	time	𝑝𝑜𝑙𝑦 𝜖ZA .
• Corollary	– Diameter	testing:	𝑫k ≤ diam 𝐺 ≼𝝐 2𝑫k (shaved	off	+2)

• Corollary	– Radius	testing:	𝑹k ≤ radius 𝐺 ≼𝝐 𝑹k + 𝟏

Implies	variant	of	𝑘-BFS1:	𝑘-BFSTST



𝑘-BFSTST
Theorem:	𝑘-BFSTST satisfies	𝒆G 𝑣 ≤ 𝒆 𝑣 ≼𝝐 𝒆G 𝑣 for	all	𝑣.
• Work:	𝑂(𝜖ZI𝑛),	depth:	𝑂>(𝜖ZA log 𝑛)

Same	guarantee	as	𝑘-BFS1
but	in	sublinear work	and	

depth,	independent	of	graph.

• Algorithm:	truncated	BFS
• 𝑆A ← 𝑘 random	nodes

• From	each	𝑢 ∈ 𝑆A,	start	a	BFS	up	to	first	level	ℓ2
where	𝑂>(𝜖ZA) nodes	are	seen.	All	unseen	nodes	

are	considered	at	“distance”	ℓ2 + 1 from	𝑢.

• 𝒆G𝐓𝐒𝐓 𝑣 ←max	“distance”	from	𝑆A



Experiments

𝑘-BFS1 vs.	𝑘-BFSTST (with	different	BFS	cutoffs)

Edge	traversals Edge	traversals

average	
relative	
error

Graph	1:
𝑛 = 36,646
𝑚 = 88,303

Graph	2:
𝑛 = 11,174
𝑚 = 23,409



Conclusion

• Explain	and	improve	high-performing	heuristics

• Practical	algorithm	->	“fit”	analysis	->	practical	improvement	with	guarantees

• Inter-connections	of	parallel,	streaming,	sketching,	and	property	

testing	algorithms

• All	“point	to	same	direction”
Thank	you


