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Graph Eccentricities

* Let G(V,E) by a graph e(v) =3 o

e Shortest-path metric: A: VXV - R LN :

e Eccentricities:

Applications: Network topology
e(v) = mea‘zi A(v,u) analysis (computers, social,

“ biological), hardware verification,
sparse linear system solving, ...

 Max e(v) = diameter; Min e(v) = radius
90th percentile e(v) = “effective diameter” (excludes outliers)



Eccentricity Distribution of Large Graphs

Core

Whiskers Linkedin (aug 2006)

OE 1

% 1 05 4
yrd 1 O 3

!E ) \ £ o Ol
| o 3 3
a 2 102
_ ) ELOFLE
>

100 ¢ i
Outsiders

OIS ZARHAC: b4 5 Yourint s ] |0 Js i B7dibdsd | it (6]
Eccentricity

Leskovec et al. WWW 2008 Kang et al. TKDD 2011



Y—

210"}

Eccentricity Distribution of Large Graphs
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Computing All Eccentricities

* Exact computation: O(mn) (e.g. BFS from each node)
* Approximate algorithms

* Theoretical:
4-approx. O(m) time [One BFS]

(2 + 8)-approx. 0(m/8) time [Backurs-Roditty-Segal-V.Williams-Wein’18]
(5/3)-approx. O(m*>) time [Chechik-Larkin-Roditty-Schoenebeck-Tarjan-V.Williams’14]

Tight under SETH

¢ Empirical: [Kang et al. "11], [Boldi et al. "11], [Takes & Kosters ‘13], [...], [Shun’15]



Parallel k-BFS Heuristics [Shun’15]

k-BFS;: ¢ S, « k random nodes
* Compute BFS from each u € 5,

* 21(v) « max distance from S,




Parallel k-BFS Heuristics [Shun’15]

k-BFS;: ¢ S, « k random nodes
* Compute BFS from each u € 5,

* 21(v) « max distance from S,

k-BFS,: * S, « k furthest nodes from S,

* Compute BFS from each u € 5,

* &,(v) « maxdistance from S; U 5,



Empirical Results in [Shun’15]

* k-BFS, performs reasonable well

— —
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e E.g., median average relative error 7.55% . ~

* k-BFS, beats all other methods by

orders of magnitude

e Often computes all eccentricities exactly ~ .

Why?




Reagan’s Principle

“They're the sort of people who
see something works in practice
and wonder if it would work in

theory.”




This Work $ ; é

* Analyze heuristics in order to explain and improve
* Will get provable variants with better empirical performance
* Need to go beyond worst-case (due to SETH-hardness) ®

* k-BFS,: Connection to Streaming Set Cover
 [Demaine, Indyk, Mahabadi, Vakilian ’'14]

Empirical

validation of

theory-based

» k-BFS,: Connection to Diameter Property Testing algorithms
e [Parnas & Ron ’02]




k-BFS, by Streaming Set Cover
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Set Cover Formulation

* Set Cover: Given elements VV and subsets § < 2V,
find smallest cover C c § of V.

e Eccentricities as Set Cover: %

* Nodes are elements ®
* Nodes are sets: § = {A4,:v € V}

A, ={ueV:e(u) =Aw,u)}
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Set Cover Formulation

* Set Cover: Given elements VV and subsets § < 2V,
find smallest cover C c § of V.

.. O O
* Eccentricities as Set Cover:
* Nodes are elements @ ® @ ®
* Nodes are sets: § = {A4,:v € V} O O
* Cover computes all eccentricities A, ={u€eV:e(w) = A, u)}

e Optimal cover = “eccentric cover”, K



Computational Constraints

* Computing a set A, is prohibitive

* O(mn) work

* Computing which sets cover v is expensive
* Single BFS, O(m) work

* Known Set Cover algorithms? Yes

.

<P



Streaming Set Cover [pemaine-Indyk-Mahabadi-Vakilian’14]

* S, « k random elements

— —
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* ( « Cover for sample (e.g. greedy) / ¥
Element Sampling Lemma: \ @
/
\ /
If global optimum is small, C covers hN R

almost all elements.



k-BFS, vs. DIMV

Streaming Set Cover [DIMV’14]

S « Random sample = S « Random sample

Compute BFS fromeach v € § = Compute covering sets foreach v € §

( « k nodes with max A(v, S) * ( « Greedy cover for S




Streaming Set Cover [DIMV’14]

S « Random sample = S « Random sample

Compute BFS fromeach v € § = Compute covering sets foreach v € §

CM % (' « Greedy cover for S
/—\ N

(. « Parallel greedy cover for S

[Blelloch-Peng-Tangwongsan’11]

[Blelloch-Simhadri-Tangwongsan’12]
- /




Theorem: N

Suppose G (V, E) has eccentric cover size k.

k-BFS¢c with k = O(k - e 1 logn) satisfies:

» Expected work: O (km), expected depth: O(diam(G))

* Computes exact eccentricities of all but an e-fraction of nodes w.h.p.



Eccentric Cover: Warm-Up

 Path, star, clique: Kk = 2 o0 @O ‘k @
* Even cycle, hypercube: Kk = n Q @
* Odd cycle: Kk = %(n + 1) Q




Eccentric Cover in the Wild

e 8 real-world graphs in [Shun’15]

e 1IM-4M nodes each

* Upper bounds on eccentric cover size:

e 2 graphs: k < 128
e 5graphs: k < 1,000
* 1 graph: k < 10,000

Real-world graphs have
small eccentric covers




Experiments

k-BFS, vs. k-BFSg.
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k-BFS, by Property Testing

e




Property Testing Approximation

e(v) =1
* Usual approximation: 2(v) is close to e(v) elv) =2
* Property testing approximation: é(v) is
exact on some G close to G
* Graphs are e-close if up to € - m edges can be Gis *close to G

added/removed to get G from G

* No sparsity/density assumption (“General
Graph Model”)

* Notation: 2(v) < e(v) <, e(v)



k-BFS, vs. Diameter Testing

k-BFS, with k = 0(e~!logn) satisfies €(v) < e(v) <. &(v) for all v.
» Work: O(e~'m), depth: O(diam(G)) =« o ° But this e

e Algorithm: Start BFS at k random nodes linear time

Theorem [Parnas & Ron]: Given a graph (G, compute a diameter
estimate D such that D < diam(G) <, 2D + 2.

* Time: poly(e™1)

e Algorithm: Start truncated BFS at kK random nodes



Eccentricity Testing

Aux. Theorem: Given G and v, compute é(v) s.t. é(v) < e(v) <, é(v)
in time poly(e™1).

e Corollary — Diameter testing: D < diam(G) <. 2D (shaved off +2)

e Corollary — Radius testing: R < radius(G) <e R+1

Implies variant of k-BFS;: k-BFSs;



Theorem: k-BFS;; satisfies é(v) < e(v) <. eé(v) for all v.

* Work: O(e~?n), depth: O(e~*logn) 500

: _ Same guarantee as k-BFS,
Algorithm: truncated BFS but in sublinear work and

* §1 < k random nodes depth, independent of graph.

* From each u € Sy, start a BFS up to first level £,
where 0(e™1) nodes are seen. All unseen nodes

are considered at “distance” ¥, + 1 from .

* erst(V) < max “distance” from S,



Experiments

k-BFS, vs. k-BFS;¢r (with different BFS cutoffs)
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Conclusion

* Explain and improve high-performing heuristics

 Practical algorithm -> “fit” analysis -> practical improvement with guarantees

* Inter-connections of parallel, streaming, sketching, and property
testing algorithms

* All “point to same direction”

Thank you




