Approximate Nearest Neighbors in Limited Space

Piotr Indyk
MIT

Tal Wagner
MIT

Introduction

What is the space complexity of the (Euclidean) Approximate Nearest Neighbor problem?

Problem: Compress a dataset \(X = \{x_1, \ldots, x_n\} \subset \mathbb{R}^d \) into a small size data structure (sketch) that can answer \((1 + \epsilon)\)-approximate nearest neighbor queries:

\[
\text{Given } y \in \mathbb{R}^d, \text{ return } i^* \in \{1, \ldots, n\} \text{ s.t. } \|y - x_{i^*}\| \leq (1 + \epsilon) \cdot \min_{i \in \{1, \ldots, n\}} \|y - x_i\|.
\]

Benefits of compression:

- **Time**: Speed-up linear scan of data.
- **Space**: Fit on memory-limited devices like GPUs (Johnson, Douze, Jégou (2017)).
- **Communication**: Facilitate distributed architectures.

Context:

- Nearest neighbor classifiers are popular in Machine Learning (e.g. Efros (2017)).
- Large body of empirical work on the above problem (see survey at Wong et al. (2016)).
- Yet, no better theoretical bounds than the dimension reduction theorem due to Johnson & Lindenstrauss (1984) were previously known.

Our Results

Problem 1 – Approximate Nearest Neighbor:

Answer query with success probability \(1 - 1/n^\Omega(1) \).

<table>
<thead>
<tr>
<th>Method</th>
<th>Size in bits per point(^\ast)</th>
<th>What can it approximate?</th>
</tr>
</thead>
<tbody>
<tr>
<td>No compression</td>
<td>(O(d \log n))</td>
<td>Distances between any (y) and all (x \in X)</td>
</tr>
<tr>
<td>Johnson & Lindenstrauss (1984)</td>
<td>(O\left(\frac{\log^2 n}{\epsilon^2}\right))</td>
<td>Distances between any (y) and all (x \in X)</td>
</tr>
<tr>
<td>Kushilevitz, Ostrovski, Rabani (2000)</td>
<td>(O\left(\frac{\log n}{\epsilon^2 \cdot \log R}\right))</td>
<td>Distances between any (y) and all (x \in X), assuming (|x - y| \in [r, R^r])</td>
</tr>
<tr>
<td>Indyk & Wagner (2017; 2018)</td>
<td>(O\left(\frac{\log n}{\epsilon^2}\right))</td>
<td>Distances between all (x, y \in X), no out-of-sample query support</td>
</tr>
<tr>
<td>This work</td>
<td>(O\left(\frac{\log n}{\epsilon^2} \cdot \log(1/\epsilon)\right))</td>
<td>Nearest neighbor of any (y) in (X)</td>
</tr>
</tbody>
</table>

Problem 2 – Approximate Distance Queries:

Compress \(X \) such that for any query set \(Y \subset \mathbb{R}^d \) with \(q \) query points, the sketch can estimate all distances \(||x - y|| \) for \(x \in X \) and \(y \in Y \), up to distortion \((1 \pm \epsilon)\).

<table>
<thead>
<tr>
<th>Reference</th>
<th># queries</th>
<th>Size in bits per point(^\ast)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molinaro, Woodruff, Yaroslavtsev (2013)</td>
<td>(q \geq n)</td>
<td>(\Omega\left(\frac{\log^2 n}{\epsilon^2}\right)) matches the Johnson-Lindenstrauss (1984) upper bound for (q = n^{\Omega(1)}).</td>
</tr>
<tr>
<td>This work</td>
<td>(1 \leq q \leq n)</td>
<td>(O\left(\frac{\log n}{\epsilon^2} (\log q + \log(1/\epsilon))\right))</td>
</tr>
</tbody>
</table>

\(\ast\) For simplicity, the bounds stated in this poster assume that all points coordinates in \(X \) are represented by \(O(\log n) \) bits. See the paper for the full dependence on all parameters.

Overview of Techniques

For this poster, we use a simplified sketch due to Indyk, Razenshteyn, Wagner (2017).

- Lossier than Indyk & Wagner (2017) by \(O(\log \log n) \), but simpler and captures main ideas.

The dataset \(X \) is represented by a hierarchical clustering tree.

Tree edges are annotated with binary precision bits of point coordinates in \(X \).

How to compress the tree?

Prior work: “Bottom-out Compression”

Remove every non-branching path from the tree, except its top edges.

- Stores most significant bits of each cluster.
- Preserves global cluster structure.

This preserves distances within \(X \):

- but not the nearest neighbor of a new query point \(y \):

This work: “Middle-Out Compression”

Remove every non-branching path from the tree, except its top and bottom edges.

- Also stores least significant bits of each cluster.
- Also preserves local cluster structure.

Overview of Analysis

Approximate nearest neighbor algorithm for a query point \(y \in \mathbb{R}^d \):

- Search for \(y \) down the tree, by the bits on the tree edges, until reaching a leaf.
- Return the point in \(X \) represented by that leaf.
- How to handle missing bits in the tree? **Guess they are the same as \(y \).**
- **Guessed right? Yay!** The algorithm learned the right absolute location of \(X \) from \(y \).

Ground truth \(X \) and \(y \)

Decompressed \(X \) and \(y \)

Guessed wrong? It’s okay. The algorithm doesn’t know it learned \(X \) wrong, but any point from now on is a good approximate nearest neighbor.

Ground truth \(X \) and \(y \)

Decompressed \(X \) and \(y \)

same up to small distortion

Decompressed \(X \) and \(y \)

algorithm will return an arbitrary point from this cluster as the nearest neighbor—this is okay

References

