
1778 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 12, DECEMBER 2012

High Throughput CABAC Entropy
Coding in HEVC

Vivienne Sze, Member, IEEE, and Madhukar Budagavi, Senior Member, IEEE

Abstract—Context-adaptive binary arithmetic coding (CAB-
AC) is a method of entropy coding first introduced in H.264/AVC
and now used in the newest standard High Efficiency Video
Coding (HEVC). While it provides high coding efficiency, the
data dependencies in H.264/AVC CABAC make it challenging to
parallelize and thus, limit its throughput. Accordingly, during
the standardization of entropy coding for HEVC, both coding
efficiency and throughput were considered. This paper highlights
the key techniques that were used to enable HEVC to potentially
achieve higher throughput while delivering coding gains relative
to H.264/AVC. These techniques include reducing context coded
bins, grouping bypass bins, grouping bins with the same context,
reducing context selection dependencies, reducing total bins,
and reducing parsing dependencies. It also describes reductions
to memory requirements that benefit both throughput and
implementation costs. Proposed and adopted techniques up to
draft international standard (test model HM-8.0) are discussed.
In addition, analysis and simulation results are provided to
quantify the throughput improvements and memory reduction
compared with H.264/AVC. In HEVC, the maximum number of
context-coded bins is reduced by 8×, and the context memory
and line buffer are reduced by 3× and 20×, respectively. This
paper illustrates that accounting for implementation cost when
designing video coding algorithms can result in a design that
enables higher processing speed and lowers hardware costs, while
still delivering high coding efficiency.

Index Terms—Context-adaptive binary arithmetic coding
(CABAC), entropy coding, high-efficiency video coding (HEVC),
video coding.

I. Introduction

H IGH EFFICIENCY Video Coding (HEVC) is currently
being developed by the Joint Collaborative Team for

Video Coding (JCT-VC). It is expected to deliver up to a
50% higher coding efficiency compared to its predecessor
H.264/AVC. HEVC uses several new tools for improving
coding efficiency, including larger block and transform sizes,
additional loop filters, and highly adaptive entropy coding.
While high coding efficiency is important for reducing the
transmission and storage cost of video, processing speed and
area cost also need to be considered in the development of
next-generation video coding to handle the demand for higher
resolution and frame rates.

Manuscript received April 16, 2012; revised July 7, 2012; accepted August
21, 2012. Date of publication October 2, 2012; date of current version January
8, 2013. This paper was recommended by Associate Editor F. Wu.

The authors are with Texas Instruments, Dallas, TX 75243 USA (e-mail:
sze@alum.mit.edu; madhukar@ti.com).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCSVT.2012.2221526

Context-adaptive binary arithmetic coding (CABAC) [1] is
a form of entropy coding used in H.264/AVC [2] and also in
HEVC [3]. While CABAC provides high coding efficiency,
its data dependencies cause it to be a throughput bottleneck
for H.264/AVC video codecs [4]. This makes it difficult
to support the growing throughput requirements for next-
generation video codecs. Furthermore, since high throughput
can be traded off for power savings using voltage scaling
[5], the serial nature of CABAC limits the battery life for
video codecs that reside on mobile devices. This limitation
is a critical concern, as a significant portion of the video
codecs today are battery operated. Accordingly, both coding
efficiency and throughput improvement tools, and the tradeoff
between these requirements, were investigated in the standard-
ization of entropy coding for HEVC. The tradeoff between
coding efficiency and throughput exists, since dependencies
are a result of removing redundancy, which improves coding
efficiency; however, dependencies make parallel processing
difficult, which degrades throughput.

This paper describes how CABAC entropy coding has
evolved from H.264/AVC to HEVC (Draft International Stan-
dard, HM-8.0) [3], [6]. While both coding efficiency and
throughput improvement tools are discussed, the focus of
this paper will be on tools that increase throughput while
maintaining coding efficiency. Section II provides an overview
of CABAC entropy coding. Section III explains the cause of
the throughput bottleneck. Section IV describes several key
techniques used to improve the throughput of the CABAC
engine. Sections V and VI describe how these techniques are
applied to prediction unit (PU) coding and transform unit (TU)
coding, respectively. Section VII compares the overall CABAC
throughput and memory requirements of H.264/AVC and
HEVC for both common conditions and worst-case conditions.

II. CABAC Entropy Coding

Entropy coding is a form of lossless compression used
at the last stage of video encoding (and the first stage of
video decoding), after the video has been reduced to a
series of syntax elements. Syntax elements describe how the
video sequence can be reconstructed at the decoder. This
includes the method of prediction (e.g., spatial or temporal
prediction, intra prediction mode, and motion vectors) and
prediction error, also referred to as residual. Table I shows
the syntax elements used in HEVC and H.264/AVC. These
syntax elements describe properties of the coding unit (CU),

1051-8215/$31.00 c© 2012 IEEE

SZE AND BUDAGAVI: HIGH THROUGHPUT CABAC ENTROPY CODING IN HEVC 1779

TABLE I

CABAC Coded Syntex Elements in HEVC and H.264/AVC

HEVC H.264/AVC
split−cu−flag, pred−mode−flag, part−mode, pcm−flag, mb−type, sub−mb−type,

Coding unit Block structure and cu−transquant−bypass−flag, skip−flag, cu−qp−delta−abs, mb−skip−flag, mb−qp−delta,
(CU) quantization cu−qp−delta−sign, end−of−slice−flag end−of−slice−flag, mb−field−decoding−flag

prev−intra4x4−pred−mode−flag,
prev−intra−luma−pred−flag, mpm−idx, prev−intra8 × 8−pred−mode−flag,

Intra mode coding rem−intra−luma−pred−mode, rem−intra4x4−pred−mode,
intra−chroma−pred−mode rem−intra8x8−pred−mode,

intra−chroma−pred−mode
Prediction unit merge−flag, merge−idx, inter−pred−idc,
(PU) ref−idx−l0, ref−idx−l1,

Motion data abs−mvd−greater0−flag, abs−mvd−greater1−flag, ref−idx−l0, ref−idx−l1, mvd−l0, mvd−l1
abs−mvd−minus2, mvd−sign−flag,

mvp−l0−flag, mvp−l1−flag
no−residual−syntax−flag, split−transform−flag, cbf−luma, coded−block−flag,

cbf−cb, cbf−cr, transform−skip−flag, last−significant− coded−block−pattern,
coeff−x−prefix, last−significant−coeff−y−prefix, last−significant− transform−size−8x8−flag,

Transform Unit
(TU)

Transform coefficient coeff−x−suffix, last−significant−coeff−y−suffix, coded−sub− significant−coeff−flag,
coding block−flag, significant−coeff−flag, coeff−abs−level− last−significant−coeff−flag,

greater1−flag, coeff−abs−level−greater2−flag, coeff−abs−level− coeff−abs−level−minus1,
remaining, coeff−sign−flag coeff−sign−flag

Sample adaptive sao−merge−left−flag, sao−merge−up−flag, sao−type−idx−luma,
Loop filter (LF) offset (SAO) sao−type−idx−chroma, sao−offset−abs, sao−offset−sign, n/a

parameters sao−band−position, sao−eo−class−luma, sao−eo−class−chroma

prediction unit (PU), transform unit (TU), and loop filter (LF)
of a coded block of pixels. For a CU, the syntax elements
describe the block structure and whether the CU is inter or
intra predicted. For a PU, the syntax elements describe the
intra prediction mode or a set of motion data. For a TU, the
syntax elements describe the residual in terms of frequency
position, sign, and magnitude of the quantized transform
coefficients. The LF syntax elements are sent once per largest
coding unit (LCU), and describe the type (edge or band) and
offset for sample adaptive offset in-loop filtering.

Arithmetic coding is a type of entropy coding that can
achieve compression close to the entropy of a sequence by
effectively mapping the symbols (i.e., syntax elements) to
codewords with a noninteger number of bits. In H.264/AVC,
CABAC provides a 9% to 14% improvement over the
Huffman-based CAVLC [1]. In an early test model for HEVC
(HM-3.0), CABAC provides a 5%–9% improvement over
CAVLC [7].

CABAC involves three main functions: binarization, con-
text modeling, and arithmetic coding. Binarization maps the
syntax elements to binary symbols (bins). Context modeling
estimates the probability of the bins. Finally, arithmetic coding
compresses the bins to bits based on the estimated probability.

A. Binarization

Several different binarization processes are used in HEVC,
including unary (U), truncated unary (TU), kth-order Exp-
Golomb (EGk), and fixed length (FL). These forms of
binarization were also used in H.264/AVC. These various
methods of binarization can be explained in terms of how
they would signal an unsigned value N. An example is also
provided in Table II.

1) Unary coding involves signaling a bin string of length
N+1, where the first N bins are 1 and the last bin is

TABLE II

Example of Different Binarizations Used in HEVC

Unary (U) Truncated Exp-Golomb Fixed
N unary (TU) (EGk) length (FL)

cMax=7 k=0 cMax=7
0 0 0 1 000
1 10 10 010 001
2 110 110 011 010
3 1110 1110 00100 011
4 11110 11110 00101 100
5 111110 111110 00110 101
6 1111110 1111110 00111 110
7 11111110 1111111 0001000 111

0. The decoder searches for a 0 to determine when the
syntax element is complete.

2) Truncated unary coding has one less bin than unary
coding by setting a maximum on the largest possible
value of the syntax element (cMax). When N+1<cMax,
the signaling is the same as unary coding. However,
when N+1=cMax, all bins are 1. The decoder searches
for a 0 up to cMax bins to determine when the syntax
element is complete.

3) kth order Exp-Golomb is a type of universal code. The
distribution can be changed based on the k parameter.
More details can be found in [1].

4) Fixed length uses a fixed number of bins,
ceil(log2(cMax+1)), with most significant bits signaled
before least significant bits.

The binarization process is selected based on the type
of syntax element. In some cases, binarization also de-
pends on the value of a previously processed syntax ele-
ments (e.g., the binarization of coeff−abs−level−remaining
depends on the previous coefficient levels) or slice pa-

1780 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 12, DECEMBER 2012

rameters that indicate if certain modes are enabled (e.g.,
the binarization of partition mode, part−mode, depends on
whether asymmetric motion partition is enabled). The ma-
jority of the syntax elements use the binarization pro-
cesses listed in Table II, or some combination of them
(e.g., coeff−abs−level−remaining uses U(prefix)+FL(suffix)
[8]; cu−qp−delta−abs uses TU(prefix)+EG0(suffix) [9]).
However, certain syntax elements (e.g., part−mode and
intra−chroma−pred−mode) use custom binarization processes.

B. Context Modeling

Context modeling provides an accurate probability estimate
required to achieve high coding efficiency. Accordingly, it is
highly adaptive and different context models can be used for
different bins and the probability of that context model is
updated based on the values of the previously coded bins.
Bins with similar distributions often share the same context
model. The context model for each bin can be selected
based on the type of syntax element, bin position in syntax
element (binIdx), luma/chroma, neighboring information, etc.
A context switch can occur after each bin. The probability
models are stored as 7-b entries [6-b for the probability state
and 1-b for the most probable symbol (MPS)] in a context
memory and addressed using the context index computed by
the context selection logic. HEVC uses the same probability
update method as H.264/AVC; however, the context selection
logic has been modified to improve throughput.

C. Arithmetic Coding

Arithmetic coding is based on recursive interval division.
A range, with an initial value of 0 to 1, is divided into two
subintervals based on the probability of the bin. The encoded
bits provide an offset that, when converted to a binary fraction,
selects one of the two subintervals, which indicates the value
of the decoded bin. After every decoded bin, the range is
updated to equal the selected subinterval, and the interval
division process repeats itself. The range and offset have
limited bit precision, so renormalization is required whenever
the range falls below a certain value to prevent underflow.
Renormalization can occur after each bin is decoded.

Arithmetic coding can be done using an estimated proba-
bility (context coded), or assuming equal probability of 0.5
(bypass coded). For bypass coded bins, the division of the
range into subintervals can be done by a shift, whereas a look
up table is required for the context coded bins. HEVC uses
the same arithmetic coding as H.264/AVC.

III. Throughput Bottleneck

CABAC is a well-known throughput bottleneck in the
video codec implementations (particularly, at the decoder).
The throughput of CABAC is determined based on the number
of binary symbols (bins) that it can process per second. The
throughput can be improved by increasing the number of
bins that can be processed in a cycle. However, the data
dependencies in CABAC make processing multiple bins in
parallel difficult and costly to achieve.

Fig. 1. Three key operations in CABAC: binarization, context selection, and
arithmetic coding. Feedback loops in the decoder are highlighted with dashed
lines.

Fig. 1 highlights the feedback loops in the CABAC decoder.
Below is a list and description of these feedback loops.

1) The updated range is fed back for recursive interval
division.

2) The updated context is fed back for an accurate proba-
bility estimate.

3) The context selection depends on the type of syntax
element. At the decoder, the decoded bin is fed back
to determine whether to continue processing the same
syntax element, or to switch to another syntax element.
If a switch occurs, the bin may be used to determine
which syntax element to decode next.

4) The context selection also depends on the bin position in
the syntax element (binIdx). At the decoder, the decoded
bin is fed back to determine whether to increment binIdx
and continue to decode the current syntax element, or set
binIdx equal to 0 and switch to another syntax element.

Note that the context update and range update feedback
loops are simpler than the context selection loops and thus
do not affect throughput as severely. If the context of a bin
depends on the value of another bin being decoded in parallel,
then speculative computations are required, which increases
area cost and critical path delay [10]. The amount of specula-
tion can grow exponentially with the number of parallel bins
which limits the throughput that can be achieved [11]. Fig. 2
shows an example of the speculation tree for significance map
in H.264/AVC. Thus, the throughput bottleneck is primarily
due to the context selection dependencies.

IV. Techniques to Improve Throughput

Several techniques were used to improve the throughput
of CABAC in HEVC. There was a lot of effort spent in
determining how to use these techniques with minimal coding
loss. They were applied to various parts of entropy coding in
HEVC and will be referred to throughout the rest of this paper.

1) Reduce Context Coded Bins: Throughput is limited for
context coded bins due to the data dependencies described in
Section III. However, it is easier to process bypass coded bins
in parallel since they do not have the data dependencies related
to context selection (i.e., feedback loops 2, 3, and 4 in Fig. 1).
In addition, arithmetic coding for bypass bins is simpler as it
only requires a right shift versus a table look up for context
coded bins. Thus, the throughput can be improved by reducing
the number of context coded bins and using bypass coded bins
instead [12]–[14].

SZE AND BUDAGAVI: HIGH THROUGHPUT CABAC ENTROPY CODING IN HEVC 1781

Fig. 2. Context speculation required to achieve 5× parallelism when processing the significance map in H.264/AVC. i = coefficient position, i1 =
MaxNumCoeff(BlockType)−1, EOB = end of block, SIG = significant−coeff−flag, LAST = last−significant−coeff−flag.

2) Group Bypass Coded Bins: Multiple bypass bins can
be processed in the same cycle if they occur consecutively
within the bitstream. Thus, bins should be reordered such that
bypass coded bins are grouped together in order to increase
the likelihood that multiple bins are processed per cycle [15]–
[17].

3) Group Bins With the Same Context: Processing multiple
context coded bins in the same cycle often requires speculative
calculations for context selection. The amount of speculative
computations increases if bins using different contexts and
context selection logic are interleaved, since various combina-
tions and permutations must be accounted for. Thus, to reduce
speculative computations, bins should be reordered such that
bins with the same contexts and context selection logic are
grouped together so that they are likely to be processed in
the same cycle [18]–[20]. This also reduces context switching
resulting in fewer memory accesses, which also increases
throughput and reduces power consumption. This technique
was first introduced in [18] and referred to as parallel context
processing (PCP) throughout the standardization process.

4) Reduce Context Selection Dependencies: Speculative
computations are required for multiple bins per cycle decoding
due to the dependencies in the context selection. Reducing
these dependencies simplifies the context selection logic and
reduces the amount of speculative calculations required to
process multiple bins in parallel [11], [21], [22].

5) Reduce Total Number of Bins: In addition to increasing
the throughput, it is desirable to reduce the workload itself by
reducing the total number of bins that need to be processed.
This can be achieved by changing binarization, inferring the
value of some bins, and sending higher level flags to avoid
signaling redundant bins [23], [24].

6) Reduce Parsing Dependencies: As parsing with
CABAC is already a tight bottleneck, it is important to
minimize any dependency on other video coding modules,
which could cause the CABAC to stall [25]. Ideally, the
parsing process should be decoupled from all other processing.

7) Reduce Memory Requirements: Memory accesses often
contribute to the critical path delay. Thus, reducing memory
storage requirements is desirable as fewer memory accesses
increases throughput as well as reduces implementation cost
and power consumption [26], [27].

V. Prediction Unit Coding

The PU syntax elements describe how the prediction
is performed in order to reconstruct the pixels. For inter
prediction, the motion data are described by merge flag

(merge−flag), merge index (merge−idx), prediction direction
(inter−pred−idc), reference index (ref−idx−l0, ref−idx−l1),
motion vector predictor flag (mvp−l0−flag, mvp−l1−flag)
and motion vector difference (abs−mvd−greater0−flag,
abs−mvd−greater1−flag, abs−mvd−minus2, mvd−sign−flag).
For intra prediction, the intra prediction mode is described
by prediction flag (prev−intra−luma−pred−flag), most
probable mode index (mpm−idx), remainder mode
(rem−intra−luma−pred−mode) and intra prediction mode
for chroma (intra−chroma−pred−mode).

Coding efficiency improvements have been made in HEVC
for both motion data coding and intra mode coding. While
H.264/AVC uses a single motion vector predictor (unless direct
mode is used) or most probable mode, HEVC uses multiple
candidate predictors and an index or flag is signaled to select
the predictor. This section will discuss how to avoid parsing
dependencies for the various methods of prediction and other
throughput improvements.

A. Motion Data Coding

In HEVC, merge mode enables motion data (e.g., predic-
tion direction, reference index, and motion vectors) to be
inherited from a spatial or temporal (co-located) neighbor. A
list of merge candidates are generated from these neighbors.
merge−flag is signaled to indicate whether merge is used in a
given PU. If merge is used, then merge−idx is signaled to indi-
cate from which candidate the motion data should be inherited.
merge−idx is coded with truncated unary, which means that the
bins are parsed until a nonzero is reached or when the number
of bins is equal to the cMax, the max allowed number of bins.

1) Removing Parsing Dependencies for Merge: Determin-
ing how to set cMax involved evaluating the throughput and
coding efficiency tradeoffs in a core experiment [28]. For
optimal coding efficiency, cMax should be set to equal the
merge candidate list size of the PU. Furthermore, merge−flag
should not be signaled if the list is empty. However, this
makes parsing depend on list construction, which is needed
to determine the list size. Constructing the list requires a large
amount of computation since it involves reading from multiple
locations (i.e., fetching the co-located neighbor and spatial
neighbors) and performing several comparisons to prune the
list; thus, dependency on list construction would significantly
degrade parsing throughput [25], [29].

To decouple the list generation process from the parsing
process such that they can operate in parallel in HEVC, cMax
is signaled in the slice header and does not depend on list
size. To compensate for the coding loss due to the fixed cMax,

1782 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 12, DECEMBER 2012

combined and zero merging candidates are added when the list
size is less than cMax as described in [30]. This ensures that
the list is never empty and that merge−flag is always signaled
[31].

2) Removing Parsing Dependencies for Motion Vector
Prediction: If merge mode is not used, then the motion vector
is predicted from its neighboring blocks and the difference
between motion vector prediction (mvp) and motion vector
(mv), referred to as motion vector difference (mvd), is signaled
as

mvd = mv - mvp.

In H.264/AVC, a single predictor is calculated for mvp from
the median of the left, top, and top-right spatial 4×4 neighbors.

In HEVC, advanced motion vector prediction (AMVP) is
used, where several candidates for mvp are determined from
spatial and temporal neighbors [32]. A list of mvp candidates
is generated from these neighbors, and the list is pruned to
remove redundant candidates such that there is a maximum
of 2 candidates. A syntax element called mvp−l0−flag (or
mvp−l1−flag depending on the reference list) is used to
indicate which candidate is used from the list as the mvp.
To ensure that parsing is independent of list construction,
mvp−l0−flag is signaled even if there is only one candidate in
the list. The list is never empty as the zero vector is used as
the default candidate.

3) Reducing Context Coded Bins: In HEVC, improve-
ments were also made on the coding process of mvd it-
self. In H.264/AVC, the first 9 bins of mvd are context
coded truncated unary bins, followed by bypass coded third-
order Exp-Golomb bins. In HEVC, the number of context
coded bins for mvd is significantly reduced [13]. Only the
first two bins are context coded (abs−mvd−greater0−flag,
abs−mvd−greater1−flag), followed by bypass coded first-order
Exp-Golomb bins (abs−mvd−minus2).

4) Reducing Memory Requirements: In H.264/AVC, con-
text selection for the first bin in mvd depends on whether
the sum of the motion vectors of the top and left 4 × 4
neighbors are greater than 32 (or less than 3). This requires
5-b storage per neighboring motion vector, which accounts
24 576 of the 30 720-b CABAC line buffer needed to support
a 4k × 2k sequence. [27] highlighted the need to reduce the
line buffer size in HEVC by modifying the context selection
logic. It proposed that the motion vector for each neighbor
be first compared to a threshold of 16, and then use the sum
of the comparison for context selection, which would reduce
the storage to 1-b per neighboring motion vector. This was
further extended in [33] and [34], where all dependencies on
the neighbors were removed and the context is selected based
on the binIdx (i.e., whether it is the first or second bin).

5) Grouping Bypass Bins: To maximize the impact of fast
bypass coding, the bypass coded bins for both the x and y
components of mvd are grouped together in HEVC [16].

B. Intra Mode Coding

Similar to motion coding, a predictor mode (most probable
mode) is calculated for intra mode coding. In H.264/AVC, the
minimum mode of the top and left neighbors is used as the

TABLE III

Differences Between PU Coding in HEVC and H.264/AVC

Properties HEVC H.264/AVC
Intra mode AMVP Merge Intra mode MVP

Max number of 3 2 5 1 1
candidates in list
Spatial neighbor Used Used Used Used Used

Temporal co-located Not Used Used Not Not
neighbor used used used

Number of contexts 2 10 2 6 20
Max context coded 2 12 2 7 98

bins per PU

most probable mode. prev−intra4x4−pred−mode−flag
(or prev−intra8x8−pred−mode−flag) is signaled to
indicate whether the most probable mode is used. If
the most probable mode is not used, the remainder mode
rem−intra4x4−pred−mode−flag (or rem−intra8x8−pred−
mode−flag) is signaled.

In HEVC, additional most probable modes are used to
improve coding efficiency. A candidate list of most probable
modes with a fixed length of three is constructed based on
the left and top neighbors. The additional candidate modes
(DC, planar, vertical, +1 or −1 angular mode) can be added
if the left and top neighbors are the same or unavailable.
prev−intra−pred−mode−flag is signaled to indicate whether
one of the most probable modes is used. If a most probable
mode is used, a most probable mode index (mpm−idx) is
signaled to indicate which candidate to use. It should be
noted that in HEVC, the order in which the coefficients of
the residual are parsed (e.g., diagonal, vertical, or horizontal)
depends on the reconstructed intra mode (i.e., the parsing of
the TU data that follows depends on list construction and intra
mode reconstruction). Thus, the candidate list size was limited
to three for reduced computation to ensure that it would not
affect entropy decoding throughput [35], [36].

1) Reducing Context Coded Bins: The number of context
coded bins was reduced for intra mode coding in HEVC. In
H.264/AVC, the remainder mode is a 7-bin value where the
first bin is context coded, while in HEVC, the remainder mode
is a 5-bin value that is entirely bypass coded. The most proba-
ble mode index (mpm−idx) is also entirely bypass coded. The
number of contexts used to code intra−chroma−pred−mode is
reduced from 4 to 1.

2) Grouping Bypass Bins: To maximize the impact of fast
bypass coding, the bypass coded bins for intra mode within a
CU are grouped together in HEVC [17].

C. Summary of Differences Between HEVC and H.264/AVC

The differences between H.264/AVC and HEVC are sum-
marized in Table III. HEVC uses both spatial and temporal
neighbors as predictors, while H.264/AVC only uses spatial
neighbors (unless direct mode is enabled). In terms of the
impact of the throughput improvement techniques, HEVC
has 8× fewer maximum context coded bins per PU than
H.264/AVC. HEVC also requires 1.8× fewer contexts for PU
syntax elements than H.264/AVC.

SZE AND BUDAGAVI: HIGH THROUGHPUT CABAC ENTROPY CODING IN HEVC 1783

VI. Transform Unit Coding

In video coding, both intra and inter prediction are used
to reduce the amount of data that needs to be transmitted.
Rather than sending the pixels, the prediction error is trans-
mitted. This prediction error is transformed from spatial to
frequency domain to leverage energy compaction properties,
and after quantization, it can be represented in terms of
a few coefficients. The method of signaling the value and
the frequency position of these coefficients is referred to as
transform coefficient coding. For regions with many edges
(e.g., screen content coding), coding gains can be achieved
by skipping the transform from spatial to frequency domain
[37], [38]; when transform is skipped, the prediction error is
coded in the same manner as transform coefficient coding (i.e.,
the spatial error is coded as transform coefficients).

Syntax elements of the transform unit account for a signif-
icant portion of the bin workload as shown in Table IV. At
the same time, the transform coefficients also account for a
significant portion of the total bits of a compressed video, and
as a result the compression of transform coefficients signifi-
cantly impacts the overall coding efficiency. Thus, transform
coefficient coding with CABAC must be carefully designed in
order to balance coding efficiency and throughput demands.
Accordingly, as part of the HEVC standardization process,
a core experiment on coefficient scanning and coding was
established to investigate tools related to transform coefficient
coding [39].

It is also important to note that HEVC supports more
transform sizes than H.264/AVC; H.264/AVC uses 4 × 4 and
8 × 8 transforms, where as HEVC uses 4 × 4, 8 × 8, 16 × 16,
and 32×32 transforms. While these larger transforms provide
significant coding gains, they also have implications in terms
of memory storage as this represents an increase of 4× to
16× in the number of coefficients that need to be stored per
transform unit (TU).

In CABAC, the position of the coefficients is transmitted in
the form of a significance map. Specifically, the significance
map indicates the location of the nonzero coefficients. The
coefficient level information is then only transmitted for the
coefficients with values greater than one, while the coefficient
sign is transmitted for all nonzero coefficients.

This section describes how transform coefficient coding
evolved from H.264/AVC to the first test model of HEVC
(HM-1.0) to the Draft International Standard of HEVC (HM-
8.0), and discusses the reasons behind design choices that
were made. Many of the throughput improvement techniques
were applied, and new tools for improved coding efficiency
were simplified. As a reference for the beginning and end
points of the development, Figs. 3 and 4 show examples of
transform coefficient coding in H.264/AVC and HEVC (HM-
8.0), respectively.

A. Significance Map

In H.264/AVC, the significance map is signaled by transmit-
ting a significant−coeff−flag (SCF) for each position to indi-
cate whether the coefficient is nonzero. The positions are pro-
cessed in an order based on a zig–zag scan. After each nonzero

Fig. 3. Example of transform coefficient coding for a 4 × 4 TU in
H.264/AVC.

Fig. 4. Example of transform coefficient coding for a 4×4 TU in HEVC
(HM-8.0).

SCF, an additional flag called last−significant−coeff−flag
(LSCF) is immediately sent to indicate whether it is the
last nonzero SCF; this prevents unnecessary SCF from being
signaled. Different contexts are used depending on the position
within the 4 × 4 and 8 × 8 transform unit (TU), and whether
the bin represents an SCF or LSCF. Since SCF and LSCF are
interleaved, the context selection of the current bin depends
on the immediate preceding bin. The dependency of LSCF
on SCF results in a strong bin to bin dependency for context
selection for significance map in the H.264/AVC as illustrated
in Fig. 2.

1) significant−coeff−flag (SCF): In HM-1.0, additional
dependencies were introduced in the context selection of SCF
for 16×16 and 32×32 TU to improve coding efficiency. The
context selection for SCF in these larger TU depended on the
number of nonzero neighbors to give coding gains between
1.4% to 2.8% [42]. Specifically, the context of SCF depended
on up to ten neighbors as shown in Fig. 5(a) [42], [43].

To reduce context selection dependencies, and storage
costs, [21] proposed using fewer neighbors and showed that
it could be done with minimal cost to coding efficiency. For

1784 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 12, DECEMBER 2012

TABLE IV

Distribution of Bins in CABAC for H.264/AVC and HEVC Under Common Conditions [40], [41] and Worst Case

H.264/AVC HEVC
Common condition HierB HierP Worst AI LP LB RA AI LP LB RA Worst

configurations case MAIN MAIN MAIN MAIN HE10 HE10 HE10 HE10 case
CU bins 27.0% 34.0% 0.5% 4.8% 14.3% 15.1% 10.7% 4.8% 14.2% 15.0% 10.7% 0.6%
PU bins 23.4% 26.3% 15.8% 9.2% 20.6% 19.5% 18.8% 9.1% 20.3% 19.3% 18.7% 5.0%
TU bins 49.7% 39.7% 83.7% 85.4% 63.7% 63.8% 69.4% 85.8% 64.5% 64.6% 69.9% 94.0%
LF bins n/a n/a n/a 0.6% 1.5% 1.6% 1.0% 0.4% 1.1% 1.1% 0.7% 0.8%

Fig. 5. Neighbor dependencies for SCF context selection. X in blue box rep-
resents the current position of the bin being processed. (a) Ten neighbors (HM-
1.0). (b) Eight neighbors. (c) Six neighbors. (d) Five neighbors (HM-3.0).
(e) Inverted for reverse scan (HM-4.0).

instance, using only a maximum of eight neighbors [removing
neighbors A and D as shown in Fig. 5(b)] had negligible
impact on coding efficiency, while using only six neighbors
[removing neighbors A, B, D, E, and H as shown in Fig. 5(c)]
results in a coding loss of only 0.2%. This was further
extended in [22] for HM-2.0, where only a maximum of five
neighbors is used by removing dependencies on positions G
and K, as shown in Fig. 5(d). In HM-2.0, the significance
map was scanned in zig–zag order, so removing the diagonal
neighbors G and K is important since those neighbors pertain
to the most recently decoded SCF.

Despite reducing the neighbors in HM-2.0, dependency on
the most recently processed SCF still existed for the positions
at the edge of the transform as shown in Fig. 6(a). The horizon-
tal or vertical shift that is required to go from one diagonal to
the next in the zig–zag scan causes the previously decoded bin
to be one of the neighbors (F or I) that is needed for context
selection. In order to address this, in HM-4.0, a diagonal scan
was introduced to replace the zig–zag scan [44] as shown in

Fig. 6. Scans used to process SCF. Diagonal scan avoids dependency on
most recently processed bin. Context selection for blue positions are affected
by values of the neighboring gray positions. (a) Zig–zag scan. (b) Diagonal
scan.

Fig. 7. Regions in 8 × 8, 16 × 16, and 32 × 32 TU map to different context
sets for SCF.

Fig. 6(b). Changing from zig–zag to diagonal scan had neg-
ligible impact on coding efficiency, but removed dependency
on recently processed SCF for all positions in the TU. In HM-
4.0, the scan was also reversed (from high frequency to low
frequency) [45]. Accordingly, the neighbor dependencies were
inverted from top-left to bottom-right, as shown in Fig. 5(e).

Dependencies in the context selection of SCF for 16×16 and
32×32 TU were further reduced in HM-7.0, where 16×16 and
32×32 TU are divided into 4 × 4 sub-blocks. This will be de-
scribed in more detail in the section on coded−sub−block−flag
(CSBF). In HM-8.0, 8×8 TU was also divided into 4×4 sub-
block such that all TU sizes are 4 × 4 sub-block based for a
harmonized design [46].

The 8 × 8, 16 × 16, and 32 × 32 TU are divided into three
regions based on frequency, as shown in Fig. 7. The DC, low-
frequency, and mid/high-frequency regions all use different
sets of contexts. To reduce memory size, the contexts for the
SCF of 16×16 and 32×32 are shared [26], [47].

For improved coding efficiency for intra predicted CU,
mode-dependent coefficient scanning (MDCS) was introduced
which selects between vertical, horizontal, and diagonal scans
based on the intra prediction mode [48]. As mentioned in
Section V-B, this requires intra mode to be reconstructed

SZE AND BUDAGAVI: HIGH THROUGHPUT CABAC ENTROPY CODING IN HEVC 1785

Fig. 8. Example of multilevel signaling of an 8 × 8 significance map.

before decoding coefficients. MDCS is used for 4 × 4 and
8 × 8 TU and provides coding gains of up to 1.2% in intra
coded pictures. Note that interpredicted CU only use diagonal
scan.

2) Last Position Coding: As mentioned earlier, there
are strong data dependencies between SCF and LSCF
in H.264/AVC due to the fact that they are interleaved.
[18] proposed grouping several SCF together by trans-
mitting an LSCF only once per N number of SCF.
If all of the N SCF are zero, LSCF is not transmit-
ted. [20] avoids all interleaving of SCF and LSCF alto-
gether. Specifically, the X, Y position of the last nonzero
SCF (last−significant−coeff−x and last−significant−coeff−y)
is sent rather than LSCF. For instance, in the example
shown in Fig. 4, last−significant−coeff−x equal to 3 and
last−significant−coeff−y equal to 0 are sent rather than
last−significant−coeff−flag. Signaling the X, Y position of the
last nonzero SCF was adopted into HM-3.0.

The last position is composed of a prefix and
suffix. The prefix (last−significant−coeff−x−prefix,
last−significant−coeff−y−prefix) is context coded truncated
unary bins with cMax based on width and height of
TU for the x and y components, respectively. The
suffix (last−significant−coeff−x−suffix, last−significant−
coeff−y−suffix) is bypass coded fixed length bins. Some of
the contexts are shared across the TU sizes to reduce context
memory. To maximize the impact of fast bypass coding,
the bypass coded bins (i.e., the suffix) for both the x and y
components of the last position are grouped together in HEVC.

3) coded−sub−block−flag (CSBF): To reduce the number
of bins transmitted for significance map, multilevel signal-
ing is used for the significance map [24], [49]. The TU
is divided into 4 × 4 sub-blocks. coded−sub−block−flag is
first signaled to indicate whether there are nonzero coeffi-
cients in the sub-block; if coded−sub−block−flag is 1, the
significant−coeff−flags within the sub-block are signaled. No
significant−coeff−flags are signaled for 4 × 4 sub-blocks that
contain all zeros. For large TU sizes, up to a 30% reduction
in SCF bins is achieved for an overall bin reduction of 3%
to 4% under common conditions. To reduce the number of
coded−sub−block−flag bins, it is inferred to be one for sub-
blocks containing DC and the last position. Fig. 8 shows an
example of the multilevel signaling of an 8 × 8 significance
map.

In HM-7.0, the CSBF was additionally used to further
reduce dependencies in the context selection of SCF for 16×16

Fig. 9. Neighbor sub-block dependencies for SCF context selection.

Fig. 10. 4 × 4 position-based mapping for SCF context selection based on
SCGF of neighboring sub-blocks. (a) Pattern 1. (b) Pattern 2. (c) Pattern 3.
(d) Pattern 4.

Fig. 11. Sub-block scan.

and 32×32 TU. Specifically, the neighboring sub-blocks (see
Fig. 9) are used for context selection rather than the individual
coefficient neighbors of Fig. 5(e) [50]. This was extended to
the 8 × 8 TU in HM-8.0 [46]. The CSBF of the neighboring
right and bottom sub-blocks (CSBFright, CSBFbottom) are used
to select one of four patterns shown in Fig. 10: (0,0) maps
to pattern 1, (1, 0) to pattern 2, (0, 1) to pattern 3 and
(1, 1) to pattern 4. The pattern maps each position within the
4 × 4 sub-block to one of three contexts. Thus, there are no
context selection dependencies for the SCF within each 4 × 4
sub-block.

Diagonal scan is used within the sub-blocks and the sub-
blocks themselves are scanned in a diagonal order as shown
in Fig. 11 [51]. Both significance map and coefficient level
are processed in this order.

To support MDCS in 8×8 TU, vertical, and horizontal scans
can also be used within the sub-blocks and the sub-blocks
themselves can be scanned in either vertical or horizontal
order. Furthermore, different sets of contexts are used for
diagonal and non-diagonal (vertical and horizontal) scans
[46].

B. Coefficient Level and Sign

In H.264/AVC, the coefficient level is composed of two
parts. The first 14 bins, generated with truncated unary bi-
narization, are context coded. The remaining bins, generated
by 0th-order Exp-Golomb binarization, are bypass coded bins.
After each coefficient level is signaled, the sign is signaled
with one bypass bin.

1786 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 12, DECEMBER 2012

Fig. 12. Grouping same context coded bins and bypass bins to in-
crease throughput. b1=coeff−abs−level−greater1−flag, b2=coeff−abs−level−
greater2−flag, s=coeff−sign−flag, TR=coeff−abs−level−remaining.

1) Level Coding: In HEVC, only the first two bins
of the coefficient level (coeff−abs−level−greater1−flag and
coeff−abs−level−greater2−flag) are context coded [12]. The
remaining portion of the levels (coeff−abs−level−remaining)
is bypass coded. Thus, the maximum number of context
coded bins in coefficient level is reduced by 7×. This change
provides the most substantial reduction to the number of
context coded bins in the entire CABAC.

coeff−abs−level−remaining is binarized using unary coding
for the prefix, and fixed length coding for the suffix; the
number of fixed length bins depends on the prefix value [8]. To
improve coding efficiency, the number of fixed length bins also
depends on parameter cRiceParam, which adaptively changes
based on the value of previous nonzero coefficient level. This
introduces a dependency between coefficient levels, but does
not impact throughput unless more than one level is coded
at the same time. The binarization is designed such that the
maximum bin length of coeff−abs−level−remaining is 32 [23].

In HEVC, bins in the coefficient level that use the same
context selection logic are grouped together to reduce the
amount of speculative context selection computations as shown
in Fig. 12. Specifically, coeff−abs−level−greater1−flag are
grouped together followed by coeff−abs−level−greater2−flag
[15], [19]. The bypass coded bins are grouped together, which
maximizes the throughput advantages of bypass bins [15]. This
reordering of bins to enable PCP has no impact on coding
efficiency.

To further reduce the number of context coded bins,
only a maximum of eight coeff−abs−level−greater1−flag
and one coeff−abs−level−greater2−flag are sent per 4 × 4
sub-block [14]. Accordingly, in the example shown in
Fig. 4, coeff−abs−level−greater2−flag is not signaled for
coefficients −5 and 9 since it is already signaled once for
coefficient 3; the coefficient level for coefficient −5 and 9
are reconstructed by adding coeff−abs−level−greater1−flag
and coeff−abs−level−remaining. Limiting the number
of coeff−abs−level−greater1−flag and coeff−abs−level−
greater2−flag per 4 × 4 sub-block also helps to reduce the
number of contexts.

Reducing the total number of contexts not only lowers
storage cost, but can also reduce context read time which
can help increase throughput (assuming that the complexity
of context selection logic does not increase). Thus, several
steps were taken to reduce the number of contexts used for
level coding.

Context selection for coefficient level involves the following
steps.

1) Sixteen successive coefficients in scanning order form a
sub-block.

2) A context set is assigned to the sub-block based on the
number of coefficients greater than one in previous sub-
blocks.

3) A context is selected from within that set based the
number of trailing ones in the sub-block.

In HM-3.0, each context set contained five contexts. There
were a total of six context sets: three for low frequency,
and three for the rest. coeff−abs−level−greater1−flag and
coeff−abs−level−greater2−flag have different contexts. Luma
and chroma also have different contexts. Thus, level coding
required 120 context calculated as follows:

5 (number of contexts per set) × 6 (number of sets) × 2
(number of syntax elements) × 2 (luma/chroma) = 120. (1)

For HM-4.0, it was shown in [52] that 36 contexts can
be removed by reducing the number of contexts per set
from 5 to 4 for coeff−abs−level−greater1−flag, and 5 to
3 for coeff−abs−level−greater2−flag, with negligible impact
on coding efficiency. In HM-5.0, the number of context
sets for chroma was reduced from 6 to 2 [53]. Finally,
in HM-6.0, the number of contexts sets for luma was re-
duced from 6 to 4, and the number of contexts per context
set for coeff−abs−level−greater2−flag was further reduced,
since only a single flag is coded per 16 coefficients. Thus,
coeff−abs−level−greater1−flag has 24 contexts as shown in

4 (number of contexts per set) × (2 (chroma sets) + 4
(luma sets)) = 24 contexts (2)

and coeff−abs−level−greater2−flag has 6 contexts, as shown
in

1 (number of contexts per set) × (2 (chroma sets) + 4
(luma sets))= 6 contexts. (3)

From HM-3.0 to HM-6.0, there was a 4× reduction (from
120 to 30) in the total number of contexts used for coefficient
levels.

2) Sign: To reduce storage cost of the coefficients, the
data is grouped for every 4×4 sub-block (16 coefficients) and
the sign bins are signaled before coeff−abs−level−remaining
bins. Before coeff−abs−level−remaining is added, the partial
value of the coefficient level can be represented with 4-b.
Thus, the CABAC only requires storage of 4 × 4×4-b
(as compared to 8×8×9-b in H.264/AVC), and the recon-
structed coefficient level can be immediately written out once
coeff−abs−level−remaining is parsed.

To improve coding efficiency, data hiding is used such that
the sign flag for the first nonzero coefficient is not always
sent [54]. If the number of nonzero coefficients in a sub-block
exceeds a certain threshold, then the sign flag can be inferred
from whether the sum of the coefficients in the sub-block is
even or odd. The condition for sign data hiding can be checked
while parsing the significance map and thus does not have a
significant impact on the entropy decoding throughput. Coding
efficiency improvement between 0.6 to 1.4% is achieved [55].

C. Comparison of H.264/AVC and HEVC

Table V summarizes the differences in TU coding between
H.264/AVC and HEVC and differences across TU sizes. In

SZE AND BUDAGAVI: HIGH THROUGHPUT CABAC ENTROPY CODING IN HEVC 1787

TABLE V

Differences Between Transform Coefficient Coding for Different TU Sizes in HEVC and H.264/AVC

[Contexts for H.264/AVC Includes Interlaced (×2)]

Properties HEVC H.264/AVC
TU size 4×4 8×8 16×16 32×32 4×4 8×8
Context selection for Position Neighbor, scan and Neighbor and Position
significant−coeff−flag based position based position based based
Coefficient scanning Intra: Diagonal, Diagonal Zig–zag

Vertical, Horizontal
Inter: Diagonal

coded−sub−block−flag 2 (Y), 2 (CbCr) n/a n/a
8 (Y), 12 (Y), 6 (Y), 3 (CbCr) 44×2 (Y), 17×2 (CbCr) 15×2 (Y)

significant−coeff−flag 8 (CbCr) 3 (CbCr)
1 (Y), 1 (CbCr), DC context shared across TU sizes

Number last−significant−coeff−x, y (HEVC) or 15×2 (Y), 3×2 (CbCr) 44×2 (Y) 9×2 (Y)
of last−significant−coeff−flag (H.264/AVC) 17×2 (CbCr)

contexts coeff−abs−greater1−flag, 4×4 + 4×1 = 20 (Y), 2×4 + 2×1 = 10 (CbCr) 30 (Y), 19 (CbCr)
coeff−abs−greater2−flag (HEVC) or 10 (Y)

coeff−abs−level−minus1 (H.264/AVC)
coded−sub−block−flag 0 2 14 62 n/a n/a

Maximum significant−coeff−flag 15 63 255 1023 15 63
context last−significant−coeff−x, y (HEVC) or 3+3 5+5 7+7 9+9 15 63
coded last−significant−coeff−flag (H.264/AVC) =6 =10 =14 =18
bins coeff−abs−greater1−flag, (8+1) (8+1) (8+1) (8+1) 4×4 8×8

per TU coeff−abs−greater2−flag (HEVC) or ×1 ×4 ×16 ×64 ×14 ×14
coeff−abs−level−minus1 (H.264/AVC) =9 =36 =144 =576 =224 =896

Maximum context coded bins per coefficient 1.9 1.7 1.7 1.6 17.1 16.0

terms of the impact of the throughput improvement techniques,
HEVC requires 3× fewer contexts (124 versus 398) than
H.264/AVC for TU coding. Furthermore, HEVC has 9× fewer
context coded bins per coefficient (1.9 versus 17.1) than
H.264/AVC.

Table VI summarizes the coding efficiency impact of the
various adopted tools. The majority of the tools adopted
focused on throughput improvements with minimal coding
loss.

VII. Overall Performance

This section describes the overall improvements to the
CABAC in HEVC test model at Draft International Standard
(HM-8.0 [6]) compared with the CABAC in H.264/AVC [57].
Simulations were performed under common conditions set
by the JCT-VC [40], [41]. Common conditions are intended
to reflect the typical bitstream and is the configuration used
under which coding efficiency of proposals are evaluated.
Analysis was also done for the worst case throughput which
is defined as the case with the most number of bins per LCU
or macroblock (i.e., 16 × 16 block of pixels). The results for
both common conditions and worst case are summarized in
Tables VII and VIII, respectively.

A. Throughput Analysis

This section describes throughput of HEVC relative to
H.264/AVC. The impact of the techniques, outlined in
Section IV, are discussed.

1) Reduce Context Coded Bins: As mentioned earlier,
bypass coded bins can be processed faster than context coded
bins, since they do not have data dependencies due to context
selection, and their range division can be performed by a

TABLE VI

Coding Efficiency Impact of Adopted TU Coding Tools (Coding

Efficiencies are Listed in BD-Rate [56], Where Positive Values

Indicate Coding Loss and Negative Values

Indicate Coding Gain)

Tool HM Benefit BD-rate
Neighbor-based context
selection for SCF [43]

1.0 Coding gain −2.8% to −1.4%

Group bypass sign [19] 1.0 Throughput 0.0%
Mode-dependent
coefficient scanning
[48]

2.0 Coding gain −1.2% to −0.1%

Reduce neighboring de-
pendency for SCF [22]

2.0 Throughput −0.1% to 0.0%

Reduce context coded
level bins [12]

3.0 Throughput −0.1% to 0.0%

Last position coding [20] 3.0 Throughput −0.1% to 0.0%
Group bypass level [15] 4.0 Throughput 0.0%
Diagonal scan [44] 4.0 Throughput −0.1% to 0.0%
SCGF and sub-block scan
[24], [51]

5.0 Throughput −0.1% to 0.1%

Reduce number of con-
text coded level bins per
4 × 4 [14]

6.0 Throughput −0.1% to 0.1%

Sign data hiding [55] 6.0 Coding gain −1.4% to −0.6%
Use SCGF of neighboring
sub-blocks for SCF [50]

7.0 Throughput 0.1% to 0.2%

simple shift. Table VII shows that the percentage of context
coded bins under common conditions is lower for HEVC
than H.264/AVC. Table VIII also shows that in the worst
case conditions, there are 8× fewer context coded bins in
HEVC than H.264/AVC. The reduction in context coded bins
is primarily attributed to the modifications to coefficient level
and motion vector difference.

1788 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 12, DECEMBER 2012

TABLE VII

Distribution of Context Coded, Bypass, and Termination Bins

for CABAC in H.264/AVC and HEVC Under Common

Conditions [41], [58]

Common condition Context Bypass Term
configurations (%) (%) (%)

H.264/AVC HierB 80.5 13.6 5.9
HierP 79.4 12.2 8.4

HEVC AI−MAIN 67.9 32.0 0.1
LP−MAIN 78.2 20.8 1.0
LB−MAIN 78.2 20.8 1.0
RA−MAIN 73.0 26.4 0.6
AI−HE10 68.1 31.8 0.1
LP−HE10 78.6 20.4 1.0
LB−HE10 78.6 20.4 1.0
RA−HE10 73.3 26.1 0.6

TABLE VIII

Worst Case Bin and Memory Reduction in HEVC

Over H.264/AVC

Metric H.264/AVC HEVC Reduction
Max context coded bins 7805 939 8×

Max bypass bins 13 056 13 425 1×
Max total bins 20 861 14 364 1.5×

Number of contexts 447 154 3×
Line buffer for 4k×2k 30 720 1536 20×

Coefficient storage 8×8×9-b 4×4×4-b 9×
Initialization table 64 032 3536 18×

Using the implementation found in [58], where up to two
context coded bins or four bypass coded bins can be processed
per cycle, HEVC gives 2× higher throughput than H.264/AVC
under the worst case (this includes the impact of 1.5× fewer
total bins in HEVC). This can also be translated into power
saving using voltage scaling as mentioned earlier.

2) Group Bypass Coded Bins: Grouping bypass bins to-
gether can increase the number of bins processed per cycle and
reduced the number of cycles required to process the bypass
bins. This is a technique used on motion vector difference,
intra mode, last position, and coefficient levels. In HEVC,
under common conditions, grouping of bypass bins results in
up to a 2.8× reduction in number of bypass cycles relative to
not grouping.

The benefit of bypass grouping can also be seen in the
example of Figs. 3 and 4. If bypass grouping was not used,
it would take five cycles to process the five sign bypass bins.
Assuming the architecture of [58], where four bypass bins are
processed per cycle, only two cycles are required to process
the five sign bins.

3) Group Bins With the Same Context: Grouping bins with
same context together is done for motion vector difference,
significance map, and coefficient level. As a results, fewer
speculative calculations are needed to decode multiple bins
per cycle since all bins that use the same rules for context
selection are grouped together.

Fig. 2 showed the speculation required when significant−
coeff−flag and last−significant−coeff−flag are interleaved in
H.264/AVC. In HEVC, no speculation is required for signif-
icance map as shown in Fig. 13. Thus, for this example, the
number of operations are reduced from 14 to 5.

TABLE IX

Context Memory Requirements for H.264/AVC (4:2:0) and HEVC

H.264/AVC HEVC
(w/ interlace) (w/o interlace)

CU contexts 23 20 14
PU contexts 26 26 14
TU contexts 398 252 124
LF contexts n/a n/a 2
Total 447 298 154

4) Reduce Context Selection Dependencies: Context se-
lection dependencies were reduced such that coding gains
could be achieved without significant penalty to throughput.
For instance, last significant coefficient position information
is sent before significant−coeff−flag to remove a tight bin
to bin data dependency. Relative to HM-1.0, the neighboring
dependencies for significant−coeff−flag were reduced from 10
to 5, and then further modified to only depend on neighboring
4 × 4 sub-blocks. The rest of the significant−coeff−flag are
position based as in H.264/AVC.

5) Reduce Total Number of Bins: When comparing the
total number of bins in the worst case, and thus the throughput
requirement, HEVC has 1.5× fewer bins than H.264/AVC.
Assuming the same number of cycles are required per bin,
HEVC can run at a 1.5× lower clock rate at a lower voltage
for 50% power savings assuming linear scaling with voltage
and frequency, or it can process at a bin-rate that is 1.5× faster
than H.264/AVC.

6) Reduce Parsing Dependencies: Parsing dependencies
were removed or reduced such that coding gains could be
achieve without significant penalty to throughput. Removing
the parsing dependency for merge and mvp enables parsing
to be mostly decoupled from other video modules as in
H.264/AVC. HEVC does have parsing dependencies on intra
mode reconstruction, which is not present in H.264/AVC;
however, effort was made to keep intra mode reconstruction
simple to avoid effecting parsing throughput.

B. Memory Requirement Reduction

This section describes how the various memories in CABAC
have been reduced in HEVC.

1) Context Memory: The motivation for context re-
duction was first proposed in [26], where the number of
contexts was reduced for coeff−abs−level−greater1−flag and
coeff−abs−level−greater2−flag without impacting coding ef-
ficiency. Subsequent proposals [59]–[61] were made to re-
duce the number of contexts for other syntax elements (e.g.,
significant−coeff−flag). HEVC uses only 154 contexts as com-
pared to 447 (or 298 without interlaced) used in H.264/AVC
as shown in Table IX; thus, a 3× reduction in context memory
size is achieved with HEVC.

2) Line Buffer Memory: The motivation to reduce the size
of the line buffer in the CABAC was first proposed in [27],
[62], where the line buffer size was reduced by changing
the context selection for motion vector difference. Subsequent
proposals [13], [33], [34], [63]–[65] were made to further
reduce neighboring dependencies to reduce the line buffer size.

SZE AND BUDAGAVI: HIGH THROUGHPUT CABAC ENTROPY CODING IN HEVC 1789

Fig. 13. No context speculation is required to achieve 5× parallelism when processing the 4 × 4 significance map in HEVC. i = coefficient position. EOB
= end of block. SIG = significant−coeff−flag.

TABLE X

Summary of Throughput Improvement Techniques and

Related Contributions

Technique PU coding TU coding
Reduce context coded bins [13] [12], [14]
Group bypass bins [16], [17] [15]
Group bins with same context [13] [18]–[20]
Reduce context selection [11], [21]
dependencies [22], [44]
Reduce total number of bins [23], [24]
Reduce memory [13], [27] [26], [34], [47], [52]
requirements [33], [34] [53], [59]–[61], [63]–[65]
Reduce parsing dependencies [25], [31]

Based on these optimizations, only 3-b are required per CU in
the line buffer to store the CU depth (2-b) of the top neighbor
for context selection of split−coding−unit−flag, and to indicate
if the top neighbor is skipped (1-b) for the context selection of
skip−flag. Assuming a minimum CU size of 8×8 for a 4k×2k

sequence, HEVC only requires a line buffer size of 1536-b
versus 30 720-b in H.264/AVC, which is a 20× reduction.

3) Coefficient Storage: Large transform sizes have large
hardware cost implications. Compared to H.264/AVC, the
16×16 and 32×32 transforms in HEVC have 4× and 16×
more coefficients and consequently requires an increase in
storage cost. Several techniques were used to reduce the
coefficient storage cost. First, the sign information is sent
before coeff−abs−level−remaining such that only 4-b storage
is required per coefficient for the partial decoded value.
Second, the coefficient information is interleaved at a 16
coefficient level, such that the fully constructed coefficient can
be achieved every 16 and be sent out to the next module [66].
Thus, only a coefficient storage of 4×4×4-b is required in
HEVC CABAC (compared with 8×8×9-b in H.264/AVC) in
order to reconstruct the coefficient levels.

4) Context Initialization Tables: To reduce storage table
sizes for context initialization, [67] first proposed to use 8-b
values to derive the initial context state, rather than the 16-b
values used in H.264/AVC. In both H.264/AVC and HEVC,
the initial state and MPS for each context is derived using a
linear model. The 8-b initValues are mapped to the slope (m)
and offset (n) of this model using [68]

m = initValue[7:4]×5 − 45
n = (initValue[3:0] � 3) − 16.

In H.264/AVC, there are different sets of initValue depend-
ing on slice type and for each slice type there are three sets of
initValue depending on cabac−init−idc. In HEVC, each slice
type has one set of initValue and cabac−init−idc is replaced by
cabac−init−flag which allows a P slice to be initialized by the
initValue of a B slice and vice versa [69]. Accounting for the
reduction in number of contexts, number of bits per initValue

and number of initValue sets, HEVC has 18× smaller context
initialization table than H.264/AVC.

VIII. Conclusion

Entropy coding was a highly active area of development
throughout the HEVC standardization process with proposals
for both coding efficiency and throughput improvement. The
tradeoff between the two requirements was carefully evaluated
in multiple core experiments and ad hoc groups [39], [70]–
[73]. Many techniques were used to improve throughput,
including reducing context coded bins, grouping bypass bins
together, grouping bins that use the same contexts together,
reducing context selection dependencies, and reducing the
total number of signaled bins. CABAC memory requirements
were also significantly reduced. A summary of the throughput
techniques and related contributions are found in Table X. The
final design shows that accounting for implementation cost
when designing video coding algorithms results in a design
that can maximize processing speed and minimize area cost,
while delivering high coding efficiency in the next generation
video coding standard.

Acknowledgment

The work presented in this paper was carried out as a part of
several core experiments and ad hoc groups on entropy coding
and coefficient scanning and coding for HEVC standardization
[39], [70]–[73].

References

[1] D. Marpe, H. Schwarz, and T. Wiegand, “Context-based adaptive binary
arithmetic coding in the H.264/AVC video compression standard,” IEEE
Trans. Circuits Syst. Video Technol., vol. 13, no. 7, pp. 620–636, Jul.
2003.

[2] Recommendation ITU-T H.264: Advanced Video Coding for Generic
Audiovisual Services, Tech. Rep., ITU-T, 2003.

[3] B. Bross, W.-J. Han, J.-R. Ohm, G. J. Sullivan, and T. Wiegand, High
Efficiency Video Coding (HEVC) Text Specification Draft 8, document
JCTVC-J1003, Joint Collaborative Team on Video Coding (JCT-VC),
Jul. 2012.

[4] V. Sze, M. Budagavi, and M. U. Demircin, CABAC Throughput Require-
ments for Real-Time Decoding, document VCEG-AJ31, Video Coding
Experts Group (VCEG), Oct. 2008.

[5] A. Chandrakasan, S. Sheng, and R. Brodersen, “Low-power CMOS
digital design,” IEEE J. Solid-State Circuit, vol. 27, no. 4, pp. 473–484,
Apr. 1992.

[6] HEVC Test Model, HM 8.0. (2012, Aug.) [Online]. Available:
https://hevc.hhi.fraunhofer.de/svn/svn−HEVCSoftware/tags/HM-8.0/

[7] T. Davies and A. Fuldseth, Entropy Coding Performance Simulations,
document JCTVC-F162, Joint Collaborative Team on Video Coding
(JCT-VC), Jul. 2011.

[8] W.-J. Chien, M. Karczewicz, J. Sole, and J. Chen, On Coefficient Level
Remaining Coding, document JCTVC-I0487, Joint Collaborative Team
on Video Coding (JCT-VC), Apr. 2012.

[9] V. Sze, M. Budagavi, V. Seregin, J. Sole, and M. Karczewicz, AHG5:
Bin Reduction for Delta QP Coding, document JCTVC-J0089, Joint
Collaborative Team on Video Coding (JCT-VC), Jul. 2012.

1790 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 22, NO. 12, DECEMBER 2012

[10] V. Sze, M. Budagavi, A. Chandrakasan, and M. Zhou, “Parallel CABAC
for low power video coding,” in Proc. IEEE Int. Conf. ICIP, Oct. 2008,
pp. 2096–2099.

[11] V. Sze, Context Selection Complexity in HEVC CABAC, document
JCTVC-D244, Joint Collaborative Team on Video Coding (JCT-VC),
Jan. 2011.

[12] T. Nguyen, CE11: Coding of Transform Coefficient Levels With Golomb-
Rice Codes, document JCTVC-E253, Joint Collaborative Team on Video
Coding (JCT-VC), Mar. 2011.

[13] T. Nguyen, D. Marpe, H. Schwarz, and T. Wiegand, Modified Binariza-
tion and Coding of MVD for PIPE/CABAC, document JCTVC-F455,
Joint Collaborative Team on Video Coding (JCT-VC), Jun. 2011.

[14] J. Chen, W. J. Chien, R. Joshi, J. Sole, and M. Karczewicz, Non-
CE1: Throughput Improvement on CABAC Coefficients Level Coding,
document JCTVC-H0554, Joint Collaborative Team on Video Coding
(JCT-VC), Feb. 2012.

[15] V. Sze and M. Budagavi, Parallel Context Processing of Coefficient
Level, document JCTVC-F130, Joint Collaborative Team on Video
Coding (JCT-VC), Jul. 2011.

[16] H. Sasai and T. Nishi, Modified MVD Coding for CABAC, document
JCTVC-F423, Joint Collaborative Team on Video Coding (JCT-VC),
Jul. 2011.

[17] W.-J. Chien, J. Chen, M. Coban, and M. Karczewicz, Intra Mode Coding
for INTRA−NxN, document JCTVC-I0302, Joint Collaborative Team on
Video Coding (JCT-VC), Apr. 2012.

[18] M. Budagavi and M. U. Demircin, Parallel Context Processing Tech-
niques for High Coding Efficiency Entropy Coding in HEVC, document
JCTVC-B088, Joint Collaborative Team on Video Coding (JCT-VC),
Jul. 2010.

[19] M. Budagavi, TE8: TI Parallel Context Processing (PCP) Proposal,
document JCTVC-C062, Joint Collaborative Team on Video Coding
(JCT-VC), Oct. 2010.

[20] J. Sole, R. Joshi, and M. Karczewicz, CE11: Parallel Context Processing
for the Significance Map in High Coding Efficiency, document JCTVC-
E338, Joint Collaborative Team on Video Coding (JCT-VC), Mar. 2011.

[21] V. Sze and M. Budagavi, Parallelization of HHI−TRANSFORM−
CODING, document JCTVC-C227, Joint Collaborative Team on Video
Coding (JCT-VC), Oct. 2010.

[22] A. Cheung and W. Lui, Parallel Processing Friendly Simplified Context
Selection of Significance Map, document JCTVC-D260, Joint Collabo-
rative Team on Video Coding (JCT-VC), Jan. 2011.

[23] M. Budagavi and V. Sze, coeff−abs−level−remaining Maximum Code-
word Length Reduction, document JCTVC-J0142, Joint Collaborative
Team on Video Coding (JCT-VC), Jul. 2012.

[24] N. Nguyen, T. Ji, D. He, G. Martin-Cocher, and L. Song, Multi-Level
Significant Maps for Large Transform Units, document JCTVC-G644,
Joint Collaborative Team on Video Coding (JCT-VC), Nov. 2011.

[25] M. Zhou, V. Sze, and Y. Mastuba, A Study on HEVC Parsing Throughput
Issue, document JCTVC-F068, Joint Collaborative Team on Video
Coding (JCT-VC), Jul. 2011.

[26] V. Sze, Reduction in Contexts Used for significant−coeff−flag and
Coefficient Level, document JCTVC-F132, Joint Collaborative Team on
Video Coding (JCT-VC), Jun. 2011.

[27] V. Sze and A. P. Chandrakasan, Joint Algorithm-Architecture Optimiza-
tion of CABAC, document JCTVC-E324, Joint Collaborative Team on
Video Coding (JCT-VC), Mar. 2011.

[28] B. Bross and J. Jung, Description of Core Experiment CE13: Motion
Data Parsing Robustness and Throughput, document JCTVC-F913, Joint
Collaborative Team on Video Coding (JCT-VC), Jul. 2011.

[29] T. Hellman and Y. Yu, Decoder Performance Restrictions due to
Merge/MVP Index Parsing, document JCTVC-F341, Joint Collaborative
Team on Video Coding (JCT-VC), Jul. 2011.

[30] T. Sugio and T. Nishi, Parsing Robustness for Merge/AMVP, document
JCTVC-F470, Joint Collaborative Team on Video Coding (JCT-VC), Jul.
2011.

[31] M. Zhou and V. Sze, A Study on HM2.0 Bitstream Parsing and Error
Resiliency Issue, document JCTVC-E118, Joint Collaborative Team on
Video Coding (JCT-VC), Mar. 2011.

[32] J. Jung and G. Laroche, Competition-Based Scheme for Motion Vector
Selection and Coding, document VCEG-AC06, Video Coding Experts
Group (VCEG), Jul. 2006.

[33] V. Sze and A. P. Chandrakasan, Simplified MVD Context Selection (Ex-
tension of JCTVC-E324), document JCTVC-F133, Joint Collaborative
Team on Video Coding (JCT-VC), Jun. 2011.

[34] V. Sze, BoG Report on Context Reduction for CABAC, document
JCTVC-F746, Joint Collaborative Team on Video Coding (JCT-VC),
Jun. 2011.

[35] V. Sze and R. Allen, BoG Report on Intra Mode Coding, document
JCTVC-G1017, Joint Collaborative Team on Video Coding (JCT-VC),
Nov. 2011.

[36] K. Chono, BoG Report on Intra Mode Coding Cleanup and Simplifi-
cation, document JCTVC-H0712, Joint Collaborative Team on Video
Coding (JCT-VC), Feb. 2012.

[37] C. Lan, J. Xu, G. J. Sullivan, and F. Wu, Intra Transform Skipping,
document JCTVC-I0408, Joint Collaborative Team on Video Coding
(JCT-VC), Apr. 2012.

[38] X. Peng, C. Lan, J. Xu, and G. J. Sullivan, Inter Transform Skipping,
document JCTVC-J0237, Joint Collaborative Team on Video Coding
(JCT-VC), Jul. 2012.

[39] V. Sze, K. Panusopone, J. Chen, T. Nguyen, and M. Coban, Description
of Core Experiment 11: Coefficient Scanning and Coding, document
JCTVC-C511, Joint Collaborative Team on Video Coding (JCT-VC),
Oct. 2010.

[40] Joint Call for Proposals on Video Compression Technology, doc-
ument VCEG-AM91, ITU-T Q6/16 Visual Coding and ISO/IEC
JTC1/SC29/WG11 Coding of Moving Pictures and Audio, Jan. 2010.

[41] F. Bossen, HM 8 Common Test Conditions and Software Reference
Configurations, document JCTVC-J1100, Joint Collaborative Team on
Video Coding (JCT-VC), Jul. 2012.

[42] T. Nguyen, D. Marpe, H. Schwarz, and T. Wiegand, CE11: Evaluation
of Transform Coding Tools in HE Configuration, document JCTVC-
D061, Joint Collaborative Team on Video Coding (JCT-VC), Jan.
2011.

[43] M. Winken, S. BoBe, B. Bross, P. Helle, T. Hinz, H. Kirchhoffer,
H. Lakshman, D. Marpe, S. Oudin, M. PreiB, H. Schwarz, M. Siekmann,
K. Suhring, and T. Wiegand, Description of Video Coding Technology
Proposal by Fraunhofer HHI, document JCTVC-A116, Joint Collabo-
rative Team on Video Coding (JCT-VC), Apr. 2010.

[44] V. Sze and M. Budagavi, CE11: Parallelization of HHI−TRANSFORM−
CODING Fixed Diagonal Scan, document JCTVC-F129, Joint Collab-
orative Team on Video Coding (JCT-VC), Jul. 2011.

[45] J. Sole, R. Joshi, and M. Karczewicz, CE11: Unified Scans for the
Significance Map and Coefficient Level Coding in High Efficiency,
document JCTVC-F288, Joint Collaborative Team on Video Coding
(JCT-VC), Jul. 2011.

[46] J. Sole, R. Joshi, and M. Karczewicz, Removal of the 8 × 2/2 × 8
Coefficient Groups, document JCTVC-J0256, Joint Collaborative Team
on Video Coding (JCT-VC), Jul. 2012.

[47] K. Terada, H. Sasai, and T. Nishi, Non-CE11: Simplification of Context
Selection for significant−coeff−flag, document JCTVC-H0290, Joint
Collaborative Team on Video Coding (JCT-VC), Feb. 2012.

[48] Y. Zheng, M. Coban, X. Wang, J. Sole, R. Joshi, and M. Karczewicz,
CE11: Mode Dependent Coefficient Scanning, document JCTVC-D393,
Joint Collaborative Team on Video Coding (JCT-VC), Jan. 2011.

[49] N. Nguyen, T. Ji, D. He, and G. Martin-Cocher, Non-CE1: Throughput
Improvement on CABAC Coefficients Level Coding, document JCTVC-
H0554, Joint Collaborative Team on Video Coding (JCT-VC), Feb.
2012.

[50] S. Kumakura, T. Fukushima, Non-CE3: Simplified Context Derivation
for Significance Map, document JCTVC-I0296, Joint Collaborative
Team on Video Coding (JCT-VC), Apr. 2012.

[51] J. Sole, R. Joshi, and M. Karczewicz, Non-CE11: Diagonal Sub-
Block Scan for HE Residual Coding, document JCTVC-G323, Joint
Collaborative Team on Video Coding (JCT-VC), Nov. 2011.

[52] V. Sze, Reduction in Contexts Used for significant−coeff−flag and
Coefficient Level, document JCTVC-F132, Joint Collaborative Team on
Video Coding (JCT-VC), Jul. 2011.

[53] Y. Piao, J. Min, E. Alshina, and J. T. Park, Reduced Chroma Contexts
for Significance Map Coding in CABAC, document JCTVC-G781, Joint
Collaborative Team on Video Coding (JCT-VC), Nov. 2011.

[54] G. Clare, F. Henry, and J. Jung, Sign Data Hiding, document
JCTVC-G271, Joint Collaborative Team on Video Coding (JCT-VC),
Nov. 2011.

[55] X. Yu, J. Wang, D. He, G. Martin-Cocher, and S. Campbell, Multiple
Sign Bits Hiding, document JCTVC-H0481, Joint Collaborative Team
on Video Coding (JCT-VC), Feb. 2012.

[56] G. Bjontegaard, VCEG-M33: Calculation of Average PSNR Differ-
ences Between RD Curves, Video Coding Experts Group (VCEG),
Apr. 2001.

[57] H.264/AVC Reference Software, JM 16.2 [Online]. Available: http://
iphome.hhi.de/suehring/tml/

[58] Y. C. Yang and J. I. Guo, “High-throughput H.264/AVC high-profile
CABAC decoder for HDTV applications,” IEEE Trans. Circuit Syst.
Vedio Technol., vol. 19, no. 9, pp. 1395–1399, Sep. 2009.

SZE AND BUDAGAVI: HIGH THROUGHPUT CABAC ENTROPY CODING IN HEVC 1791

[59] H. Sasai and T. Nishi, CE11: Context Size Reduction for the Significance
Map, document JCTVC-E227, Joint Collaborative Team on Video Cod-
ing (JCT-VC), Mar. 2011.

[60] V. Sze and H. Sasai, Modification to JCTVC-E227 in CE11 for Reduced
Dependency With MDCS, document JCTVC-E489, Joint Collaborative
Team on Video Coding (JCT-VC), Mar. 2011.

[61] C. Auyeung, J. Xu, G. Korodi, J. Zan, D. He, Y. Piao, J. Alshina, E. Min,
and J. Park, A Combined Proposal from JCTVC-G366, JCTVC-G657,
and JCTVC-G768 on Context Reduction of Significance Map Coding
With CABAC, document JCTVC-G1015, Joint Collaborative Team on
Video Coding (JCT-VC), Nov. 2011.

[62] V. Sze and A. P. Chandrakasan, “Joint algorithm-architecture optimiza-
tion of CABAC to increase speed and reduce area cost,” in Proc. IEEE
Int. Conf. Acoust. Speech Signal Process., May 2011, pp. 1577–1580.

[63] H. Sasai and T. Nishi, Modified Context Derivation for Neighboring
Dependency Reduction, document JCTVC-F429, Joint Collaborative
Team on Video Coding (JCT-VC), Jun. 2011.

[64] V. Seregin and I. K. Kim, Binarisation Modification for Last Position
Coding, document JCTVC-F375, Joint Collaborative Team on Video
Coding (JCT-VC), Jun. 2011.

[65] W.-J. Chien, M. Karczewicz, and X. Wang. (2009, Nov.). Memory
and Parsing Friendly CABAC Context, document JCTVC-F606, Joint
Collaborative Team on Video Coding (JCT-VC), Jun. 2011.

[66] J. Sole, R. Joshi, and M. Karczewicz, Scanning of Residual Data in
HE, document JCTVC-F552:CE11, Joint Collaborative Team on Video
Coding (JCT-VC), Jun. 2011.

[67] D. Marpe, H. Kirchhoffer, B. Bross, V. George, T. Nguyen, M. Preiß,
M. Siekmann, J. Stegemann, and T. Wiegand, Unified PIPE-Based
Entropy Coding for HEVC, document JCTVC-F268, Joint Collaborative
Team on Video Coding (JCT-VC), Jun. 2011.

[68] L. Guo, J. Sole, R. Joshi, C. Karczewicz, M. Yeo, Y. Tan, and Z. Li, CE1-
B3: 8-Bit Linear Initialization for CABAC, document JCTVC-H0535,
Joint Collaborative Team on Video Coding (JCT-VC), Feb. 2012.

[69] K. Misra and A. Segall, CE1: Subtest B4—On cabac−init−idc, document
JCTVC-H0540, Joint Collaborative Team on Video Coding (JCT-VC),
Feb. 2012.

[70] M. Budagavi and A. Segall, AHG Report: Parallel Entropy Coding,
document JCTVC-B009, Joint Collaborative Team on Video Coding
(JCT-VC), Jul. 2010.

[71] M. Budagavi, Tool Experiment 8: Parallel Entropy Coding, document
JCTVC-B308, Joint Collaborative Team on Video Coding (JCT-VC),
Jul. 2010.

[72] M. Budagavi, G. Martin-Cocher, and A. Segall, JCT-VC AHG Report:
Entropy Coding, document JCTVC-D009, Joint Collaborative Team on
Video Coding (JCT-VC), Mar. 2010.

[73] R. Joshi, E. Alshina, H. Sasai, H. Kirchhoffer, and J. Lainema, Descrip-
tion of Core Experiment 1: Entropy Coding, document JCTVC-F901,
Joint Collaborative Team on Video Coding (JCT-VC), Jul. 2011.

Vivienne Sze (M’10) received the B.A.Sc. (Hons.)
degree in electrical engineering from the University
of Toronto, Toronto, ON, Canada, in 2004, and the
S.M. and Ph.D. degrees in electrical engineering
from the Massachusetts Institute of Technology,
Cambridge, in 2006 and 2010, respectively.

Since 2010, she has been a Technical Staff Mem-
ber with the Systems and Applications Research
and Development Center, Texas Instruments (TI),
Dallas, where she designs low-power algorithms and
architectures for video coding. She also represents TI

at the international JCT-VC standardization body developing high-efficiency
video coding, the next-generation video coding standard. Within the com-
mittee, she is the Primary Coordinator of the core experiment on coefficient
scanning and coding, and has been the Chair and Vice Chair of several ad
hoc groups related to entropy coding.

Dr. Sze was a recipient of the 2007 DAC/ISSCC Student Design Contest
Award and a co-recipient of the 2008 A-SSCC Outstanding Design Award.
She received the Jin-Au Kong Outstanding Doctoral Thesis Prize, awarded
for the Best Ph.D. Thesis in Electrical Engineering in 2011. She received
the Natural Sciences and Engineering Research Council of Canada (NSERC)
Julie Payette Fellowship in 2004, the NSERC Postgraduate Scholarship in
2005 and 2007, and the Texas Instruments Graduate Woman’s Fellowship for
Leadership in Microelectronics in 2008.

Madhukar Budagavi (SM’05) received the B.E.
(First Class With Distinction) degree in electronics
and communications engineering from the National
Institute of Technology, Trichy, India, in 1991, the
M.Sc. (Eng.) degree in electrical engineering from
the Indian Institute of Science Bangalore, India, in
1994, and the Ph.D. degree in electrical engineering
from Texas A&M University, College Station, in
1998.

From 1993 to 1995, he was with Motorola India
Electronics, Ltd., Bangalore, developing DSP soft-

ware and algorithms for Motorola DSP chips. Since 1998, he has been
with the Texas Instruments (TI) Systems and the Application Research and
Development Center, engaged in video coding, 3-D graphics, and image
processing research, design, and implementation. From 2003 to 2007, he
was an Adjunct Assistant Professor with Southern Methodist University,
University Park, TX, where he taught courses in DSP and image processing
to undergraduate and graduate students. He has published more than 35
journal and conference papers (including seven book chapters) in the field
of video coding, multimedia communications, DSP programming, speech
coding, and biomedical data compression. He has been representing TI in
ITU and ISO international video coding standardization activity. His most
recent participation has been in the next-generation video coding standard
HEVC being standardized by the JCTVC Committee of ITU and ISO. Within
the committee, he has helped coordinate core experiments and AhG activity
on spatial transforms, quantization, entropy coding, in-loop filters, and intra
prediction.

