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Electron-nucleus scattering

Schematic representation of the inclusive cross section as a function of the energy loss.
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The different reaction mechanisms can be clearly identified




_epton-nucleus scattering

The inclusive cross section of the process in which
a lepton scatters off a nucleus and the hadronic
final state is undetected can be written as

d?o
dQpd Eyr

= L, WH

« The Leptonic tensor is fully specified by the lepton kinematic variables. For instance, in the electron-
nucleus scattering case

Ly = kukl, + k. kv — gu (kE') + i€ apk’ "k

« The Hadronic tensor contains all the information on target response

W = 3017 (@) (177 (0)]0)5D (o + g — py)
f

Non relativistic nuclear many-body theory (NMBT) provides a fully consistent theoretical approach
allowing for an accurate description of |0>, independent of momentum transfer.




Non relativistic Nuclear Many Body Theory

» Within NMBT the nucleus is described as a collection of A point-like nucleons, the dynamics of
which are described by the non relativistic Hamiltonian

Argonne vig is a finite, local, configuration-space potential which has been fit to ~4300 np and pp
scattering data below 350 MeV of the Nijmegen database, low-energy nn scattering parameters,

and deuteron binding energy.

Some of the diagrams included in this potential are
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Non relativistic Nuclear Many Body Theory

» Within NMBT the nucleus is described as a collection of A point-like nucleons, the dynamics of
which are described by the non relativistic Hamiltonian

The nuclear electromagnetic current is constrained through the continuity equation

V - Jem +i[H, Joy] =0

* The above equation implies that Jem involves two-
nucleon contributions.

« Non relativistic expansion of Jem, in powers |q|/m \ﬁ’ .................... é_ e




The Green’s Function Monte Carlo approach

- Diffusion Monte Carlo methods use an imaginary-time projection technique to enhance the
ground-state component of a starting (correlated) trial wave function.
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* Suitable to solve A < 12 nuclei with ~1% accuracy
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Integral transform technigques

< Accurate GFMC calculations of the electroweak responses of 4He and 12C have been recently
performed:

Rag(w,q) = ) (07L(a)| /) (f1Ts(@)[0)d(w — By + Eo)
f

 Valuable information on the energy dependence of the response functions can be inferred from the
their integral transforms

Eop(o,q) = /dWK(UaW)RaB(WaQ) = (vo| T} (@)K (0, H — Eo)Js(a)l¢bo)

Using the completeness relation for the final states, we are left with a ground-state expectation value




Integral transform technigques

e The Lorentz integral transform (LIT)
1

K _
G (w—0R)?+ 02

has been successfully exploited in
the calculation of nuclear responses:
Using HH: V. D. Efros et al., Phys
Lett B 338, 130 (1994)

Using CC: Bacca et al., PRC 76,
014003 (2007), PRL 111, 122502

(2013)

* The Laplace integral transform

K(o,w) =¢e %7

of the nuclear responses is computed within
GFMC and inverted using bayesian
techniques: Maximum Entropy

A. Lovato et al, Phys.Rev.Lett. 117 (2016),
082501, Phys.Rev. C97 (2018), 022502
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GFMC electromagnetic responses
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Limitations of the original method:

* The quantum mechanical approach (e.g. the kinematics) is non relativistic—relativistic correction up

to order g2/m2 are included in the currents

* The computational effort required by the inversion of EQB makes the direct calculation of inclusive
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cross sections unfeasible — novel algorithm based on first-kind scaling




Relativistic effects in a correlated system

» We extend the applicability of GFMC in the quasielastic region to intermediate momentum transfers
by performing the calculation in a reference frame that minimizes nucleon momenta.

» The importance of relativity emerges in the frame dependence of non relativistic calculations at high
values of q

* In a generic reference frame the longitudinal non relativistic response reads

R{f—zwng W) S(EST — BIT - i)

5(Ejfr—Ezfr—wf) 5[ e+ (P{")?/(2Mr) — ef" — (P]7)?/(2Mr) — "]

* The response in the LAB frame is given by the Lorentz transformation

q2 EfT

(qfr) MO Rfr(q wf)

Rp(q,w) =

where

¢’ = (g — w), W =y(w - Bq), P/" = —pyMy, EI" =yM,



Relativistic effects in a correlated system
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* Longitudinal responses of 4He for |g|=700 MeV in the four different reference frames.
The curves show differences in both peak positions and heights.



Relativistic effects in a correlated system

* The frame dependence can be drastically reduced if one assumes a two-body breakup model with
relativistic kinematics to determine the input to the non relativistic dynamics calculation

fr fr N,pN

fro_ (p_N _ Px )
p 1% . M 4
Pfr —p{\; +p§g @

* The relative momentum is derived in a relativistic fashion
Efr \/mN + [p/" +M/MXPfT + \/M)% + [p/" — ,u/mNPfT

_ pfr _ opfr
—Ef kb

 And it is used as input in the non relativistic kinetic energy
fr r\2
er” = (p'")?/(2)

* Analogy with NN potential model where the NN relative scattering momentum p12 is determined in a
relativistically correct fashion and used —> E12=p122/2p



Relativistic effects in a correlated system
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* Longitudinal responses of 4He for |g|=700 MeV in the four different reference frames.
The different curves are almost identical.



Relativistic effects in a correlated system
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* Relativistic effects are much smaller in the ANB frame where the final nucleon momentum

is &< q/2, the position of the peak remains almost unchanged



—lectron- and neutrino-scattering cross sections

» We start by defining the nuclear response functions, for a given value of g and w

Rag(w,a) = Y (0]73(a)|f){f|T5(a)|0)6(w — Ef + Eo)
f

* Electron case we write the double differential cross section as:

do q> ’ —q° 50
dEdQ 0 Mott <¥) Ry + (ﬁ +tan 9 Ry

where: RL — W()() ; RT - wa + Wyy

* Neutrino case:

A

do G? K . . . .
(=5 ) = T79E LecRee +2LorRon + Lo Ru + LrRy 2L Ry ||

* Where the nuclear responses are given by

Roo = W™ | Ry = W? , Rp = _%.(W12 — Wzl)
Rop = —5 (W +w®)  Rr=WH+w=
2



Scaling in the Fermi gas model

* Scaling of the first kind: the nuclear electromagnetic responses divided by an appropriate function
describing the single-nucleon physics no longer depend on the two variables w and q, but only upon ¥(q,w)

Adimensional variables: Scaling function:
A =w/2m
1 A—T
k= [ql/2m ) =
7=k — N 5F\/(1+A)T+/<;\/T(1+T)
nr = pr/m
€F — \/p%‘ + m2/m —1 8 | I | fexp(zlp) q=570 MeV +—e—s
0.7 F FemP (1)) q=380 MeV + o -
06 L FeP (1) g=300 MeV --x- -
In the Fermi Gas the L and T responses | F(¥) FG
have the same functional form : 0.5 -
= o4t l
2 2 -
Rpr=(1—-97)0(1-v7) xGrr 03 | _
0.2 - ih*ﬁ : { I_
* In the Fermi Gas picture only statistical 0.1F oy 1S
correlations are accounted for 0 :




Scaling as a tool to interpolate the responses
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* In order to obtain the GFMC inclusive
electron-nucleus cross sections we developed
a novel interpolation algorithm based on the
scaling of the nuclear responses.

e For a fixed value of F. and 0.

0.
Q* = 4E.(E. —w)sin® 7, |a] = VQ* +

» We first compute w;w then the set of RL,T(MW q)
is interpolated in |q].

e For a given value of MW the curves
corresponding to different values of |q| are
almost perfectly aligned and monotonic
functions of |q|. Using the concept of scaling,
largely improves the accuracy of the
interpolation procedure and reduces the
computational cost




Scaling as a tool to interpolate the responses
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Scaling as a tool to interpolate the responses
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12C charge-current response

 We computed the charged-current response function of 12C

* Two-body currents have little effect in the vector term, but enhance the axial contribution at

energy larger than quasi-elastic kinematics
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12C charge-current response

 We computed the charged-current response function of 12C

* Two-body currents have a sizable effect in the transverse response, both in the vector and in
the axial contributions
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12C charge-current response

 We computed the charged-current response function of 12C

* Two-body currents have a sizable effect in the interference between the axial and vector
current contributions, important to asses neutrino/antineutrino event rates

12C, q=700 MeV
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Summary

< Relativistic effects in the kinematics can be accounted for choosing a reference frame that
minimizes the nucleon momentum + two-fragment model

<+ Using the concept of scaling of the electromagnetic responses we were able to efficiently
interpolate the response functions and obtain cross sections

< Neutrino physics is entering a new precision era; realistic models of nuclear dynamics are
fundamental for an accurate analysis of neutrino oscillation data

<+ Neutral and Charge current response functions have been obtained within GFMC.
Generalize what has been already done for the electromagnetic case compare with the
MiniBooNE data: two-body current contribution is needed to explain the excess.

<+ Implement chiral currents obtained from the chiral potential developed by M.Piarulli in the
electroweak response functions



GFMC results for muon capture in 4He

* Negative muons can be captured by the nucleus in a weak-interaction process resulting in the
change of one of the protons into a neutron and a neutrino emission: inverse process of charge
current neutrino scattering

The muon rest mass is converted
in energy shared by the emitted >
neutrino and recoiling final nucleus

A calculation of the total inclusive rate requires requires knowledge of both the low-lying discrete
states and higher-energy continuum spectrum of the final nucleus; it is given in terms of five
response functions

dl’
dFE,

B 62:_7: 9(0)]? EZ[Roo(Ey) + R.-(Ey) + Ro-(E,) + Ryz(Ey) — Ryy(Ey)]

Atomic wave function of the muon approximated as  —3  (z) ~ (0) = (Zap)® /7



MUOH Capture ||"] 4He AL, N. Rocco, R. Schiavilla (in prep.)

following total rates

The differential capture rate can be 10
computed interpolating the response :
functions at 8 b
w=my, +my, —m,—E, a;6

a| = B, =

R :

S 4}

< |

Integrating the differential capture rate, we get the 2
0

V-1b | V-2b || A-1b | A-2b || CC-1b | CC-2b

T(s~")[65 £ 1|73 £ 1||171+6|200 £ 6265+ 9[306 £ 9

- Two-body currents increase the capture rate by about 15%.

« The predicted value is consistent with the lower range of available experimental determinations

Exp [47] |Exp [48]|Exp [49]|| Th [50] |Th [51]
['(s~)|[336 £ 75| 375730, |364 & 46([345 + 110| 278




Back up slides



Benchmark the nuclear model: 160 charge density distribution

3
e The nuclear charge density distribution is the P ( /) _ d’q e—iq-r/ Ia (q)
Fourier transform of the charge elastic form factor: ch (27)3 L

NR, C. Barbieri, Phys.Rev. C98 (2018) 025501
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* Nice agreement between the SCGF and QMC calculations

 SCGF results agree with experiments (corroborates the goodness of NNLOsat)



Benchmark the nuclear model: 160 momentum distribution

 Single particle momentum distribution of 160
NR, C. Barbieri, Phys.Rev. C98 (2018) 025501
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* The momentum distribution reflects the fact that NNLOsat is softer the AV18+UIX.



Benchmark the nuclear model: 160 momentum distribution

 Single particle momentum distribution of 16Q, log scale
NR, C. Barbieri, Phys.Rev. C98 (2018) 025501
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* The momentum distribution reflects the fact that NNLOsat is softer than AV18+UIX.



