Analyzing SRC through the Nonlocal Dispersive Optical Model

Mack C. Atkinson

Washington University in St. Louis

2nd Workshop on SRC and EMC Research (2019)

Analyzing SRC through the Nonlocal Dispersive Optical Model

Mack C. Atkinson

Willem Dickhoff

Louk Lapikás

Cole Pruitt Lee Sobotka

Bob Charity Henk Blok

Washington University in St. Louis

Hossein Mahzoon 2nd Workshop on SRC and EMC Research (2019) • Want to know how nucleons arrange themselves in nuclei, in particular momentum distributions

- Want to know how nucleons arrange themselves in nuclei, in particular momentum distributions
- Scattering experiments are used to look inside the nucleus

- Want to know how nucleons arrange themselves in nuclei, in particular momentum distributions
- Scattering experiments are used to look inside the nucleus
- Goal is to connect scattering experiments with nuclear structure

- Want to know how nucleons arrange themselves in nuclei, in particular momentum distributions
- Scattering experiments are used to look inside the nucleus
- Goal is to connect scattering experiments with nuclear structure
 - Green's function formalism

- Want to know how nucleons arrange themselves in nuclei, in particular momentum distributions
- Scattering experiments are used to look inside the nucleus
- Goal is to connect scattering experiments with nuclear structure
 - Green's function formalism
 - 2 The dispersive optical model

- Want to know how nucleons arrange themselves in nuclei, in particular momentum distributions
- Scattering experiments are used to look inside the nucleus
- Goal is to connect scattering experiments with nuclear structure
 - Green's function formalism
 - 2 The dispersive optical model
 - Momentum distributions and high-momentum content

- Want to know how nucleons arrange themselves in nuclei, in particular momentum distributions
- Scattering experiments are used to look inside the nucleus
- Goal is to connect scattering experiments with nuclear structure
 - Green's function formalism
 - 2 The dispersive optical model
 - Momentum distributions and high-momentum content
 - Asymmetry dependence of high-momentum content

- Want to know how nucleons arrange themselves in nuclei, in particular momentum distributions
- Scattering experiments are used to look inside the nucleus
- Goal is to connect scattering experiments with nuclear structure
 - Green's function formalism
 - 2 The dispersive optical model
 - Momentum distributions and high-momentum content
 - Asymmetry dependence of high-momentum content
 - So The role of high-momentum content in exclusive (e, e'p) reactions

$$G_{\ell j}(r, r'; E) = \sum_{m} \frac{\langle \Psi_{0}^{A} | a_{r\ell j} | \Psi_{m}^{A+1} \rangle \langle \Psi_{m}^{A+1} | a_{r'\ell j}^{\dagger} | \Psi_{0}^{A} \rangle}{E - (E_{m}^{A+1} - E_{0}^{A}) + i\eta} + \sum_{n} \frac{\langle \Psi_{0}^{A} | a_{r'\ell j}^{\dagger} | \Psi_{n}^{A-1} \rangle \langle \Psi_{n}^{A-1} | a_{r\ell j} | \Psi_{0}^{A} \rangle}{E - (E_{0}^{A} - E_{n}^{A-1}) - i\eta}$$

$$G_{\ell j}(r,r';E) = \sum_{m} \frac{\langle \Psi_{0}^{A} | a_{r\ell j} | \Psi_{m}^{A+1} \rangle \langle \Psi_{m}^{A+1} | a_{r'\ell j}^{\dagger} | \Psi_{0}^{A} \rangle}{E - (E_{m}^{A+1} - E_{0}^{A}) + i\eta} + \sum_{n} \frac{\langle \Psi_{0}^{A} | a_{r'\ell j}^{\dagger} | \Psi_{n}^{A-1} \rangle \langle \Psi_{n}^{A-1} | a_{r\ell j} | \Psi_{0}^{A} \rangle}{E - (E_{0}^{A} - E_{n}^{A-1}) - i\eta}$$

• Poles correspond to excitation energies of (A + 1) or (A - 1) nucleus

$$G_{\ell j}(r,r';E) = \sum_{m} \frac{\langle \Psi_{0}^{A} | a_{r\ell j} | \Psi_{m}^{A+1} \rangle \langle \Psi_{m}^{A+1} | a_{r'\ell j}^{\dagger} | \Psi_{0}^{A} \rangle}{E - (E_{m}^{A+1} - E_{0}^{A}) + i\eta} + \sum_{n} \frac{\langle \Psi_{0}^{A} | a_{r'\ell j}^{\dagger} | \Psi_{n}^{A-1} \rangle \langle \Psi_{n}^{A-1} | a_{r\ell j} | \Psi_{0}^{A} \rangle}{E - (E_{0}^{A} - E_{n}^{A-1}) - i\eta}$$

- Poles correspond to excitation energies of (A + 1) or (A 1) nucleus
- Numerator like a transition probability to given excitation

$$G_{\ell j}(r, r'; E) = \sum_{m} \frac{\langle \Psi_{0}^{A} | a_{r \ell j} | \Psi_{m}^{A+1} \rangle \langle \Psi_{m}^{A+1} | a_{r' \ell j}^{\dagger} | \Psi_{0}^{A} \rangle}{E - (E_{m}^{A+1} - E_{0}^{A}) + i\eta} + \sum_{n} \frac{\langle \Psi_{0}^{A} | a_{r' \ell j}^{\dagger} | \Psi_{n}^{A-1} \rangle \langle \Psi_{n}^{A-1} | a_{r \ell j} | \Psi_{0}^{A} \rangle}{E - (E_{0}^{A} - E_{n}^{A-1}) - i\eta}$$

- Poles correspond to excitation energies of (A + 1) or (A 1) nucleus
- Numerator like a transition probability to given excitation
- Close connection with experimental observables

$$G_{\ell j}(r,r';E) = \sum_{m} \frac{\langle \Psi_{0}^{A} | a_{r\ell j} | \Psi_{m}^{A+1} \rangle \langle \Psi_{m}^{A+1} | a_{r'\ell j}^{\dagger} | \Psi_{0}^{A} \rangle}{E - (E_{m}^{A+1} - E_{0}^{A}) + i\eta} + \sum_{n} \frac{\langle \Psi_{0}^{A} | a_{r'\ell j}^{\dagger} | \Psi_{n}^{A-1} \rangle \langle \Psi_{n}^{A-1} | a_{r\ell j} | \Psi_{0}^{A} \rangle}{E - (E_{0}^{A} - E_{n}^{A-1}) - i\eta}$$

- Poles correspond to excitation energies of (A + 1) or (A 1) nucleus
- Numerator like a transition probability to given excitation
- Close connection with experimental observables
- Perturbation expansion of G leads to the Dyson equation

$$G_{\ell j}(r,r';E) = \sum_{m} \frac{\langle \Psi_{0}^{A} | a_{r\ell j} | \Psi_{m}^{A+1} \rangle \langle \Psi_{m}^{A+1} | a_{r'\ell j}^{\dagger} | \Psi_{0}^{A} \rangle}{E - (E_{m}^{A+1} - E_{0}^{A}) + i\eta} + \sum_{n} \frac{\langle \Psi_{0}^{A} | a_{r'\ell j}^{\dagger} | \Psi_{n}^{A-1} \rangle \langle \Psi_{n}^{A-1} | a_{r\ell j} | \Psi_{0}^{A} \rangle}{E - (E_{0}^{A} - E_{n}^{A-1}) - i\eta}$$

- Poles correspond to excitation energies of (A + 1) or (A 1) nucleus
- Numerator like a transition probability to given excitation
- Close connection with experimental observables
- Perturbation expansion of G leads to the Dyson equation
- If the irreducible self-energy (Σ^*) is known, then so is G

• Irreducible self-energy at positive energies corresponds to an optical potential

- Irreducible self-energy at positive energies corresponds to an optical potential
- Use same functional form as standard optical potentials to parametrize self-energy

- Irreducible self-energy at positive energies corresponds to an optical potential
- Use same functional form as standard optical potentials to parametrize self-energy
- $\Sigma^*(\mathbf{r}, \mathbf{r'}; E)$ is explicitly **nonlocal**

- Irreducible self-energy at positive energies corresponds to an optical potential
- Use same functional form as standard optical potentials to parametrize self-energy
- $\Sigma^*(\mathbf{r}, \mathbf{r'}; E)$ is explicitly **nonlocal**
- Dispersion relation connects to negative energies

- Irreducible self-energy at positive energies corresponds to an optical potential
- Use same functional form as standard optical potentials to parametrize self-energy
- $\Sigma^*(\mathbf{r}, \mathbf{r'}; E)$ is explicitly **nonlocal**
- Dispersion relation connects to negative energies

Dispersive Correction

$$\begin{aligned} Re\Sigma_{\ell j}(r,r';E) &= Re\Sigma_{\ell j}(r,r';\epsilon_F) - \frac{1}{\pi}(\epsilon_F - E)\mathcal{P}\int_{\epsilon_T^+}^{\infty} dE' Im\Sigma_{\ell j}(r,r';E') [\frac{1}{E - E'} - \frac{1}{\epsilon_F - E'}] \\ &+ \frac{1}{\pi}(\epsilon_F - E)\mathcal{P}\int_{-\infty}^{\epsilon_T^-} dE' Im\Sigma_{\ell j}(r,r';E') [\frac{1}{E - E'} - \frac{1}{\epsilon_F - E'}] \end{aligned}$$

- Irreducible self-energy at positive energies corresponds to an optical potential
- Use same functional form as standard optical potentials to parametrize self-energy
- $\Sigma^*(\mathbf{r}, \mathbf{r'}; E)$ is explicitly **nonlocal**
- Dispersion relation connects to negative energies

Dispersive Correction

$$\begin{aligned} Re\Sigma_{\ell j}(r,r';E) &= Re\Sigma_{\ell j}(r,r';\epsilon_F) - \frac{1}{\pi}(\epsilon_F - E)\mathcal{P}\int_{\epsilon_T^+}^{\infty} dE' Im\Sigma_{\ell j}(r,r';E') [\frac{1}{E - E'} - \frac{1}{\epsilon_F - E'}] \\ &+ \frac{1}{\pi}(\epsilon_F - E)\mathcal{P}\int_{-\infty}^{\epsilon_T^-} dE' Im\Sigma_{\ell j}(r,r';E') [\frac{1}{E - E'} - \frac{1}{\epsilon_F - E'}] \end{aligned}$$

• This constraint ensures bound and scattering quantities are simultaneously described

 \bullet Parameters of self-energy varied to minimize χ^2

• Parameters of self-energy varied to minimize χ^2

Data: J.M. Mueller et al. Phys. Rev. C, 83 064605, 2011

• Parameters of self-energy varied to minimize χ^2

Data: J.M. Mueller et al. Phys. Rev. C, 83 064605, 2011

Mack C. Atkinson

• Parameters of self-energy varied to minimize χ^2

Data: J.M. Mueller et al. Phys. Rev. C, 83 064605, 2011

Mack C. Atkinson DOM

• Parameters of self-energy varied to minimize χ^2

- Parameters of self-energy varied to minimize χ^2
- Reproducing the data means self-energy is found

0.09

0.08

0.07

Experiment DOM

- Parameters of self-energy varied to minimize χ^2
- Reproducing the data means self-energy is found

Data: J.M. Mueller et al. Phys. Rev. C, 83 064605, 2011

Mack C. Atkinson DOM

- Parameters of self-energy varied to minimize χ^2
- Reproducing the data means self-energy is found

0.07

0.06

Experiment

$$S^{h}(\alpha,\beta;E) = \frac{1}{\pi} Im\{G(\alpha,\beta;E)\}$$
 $S^{h}(E) = \sum_{\alpha} S(\alpha,\alpha;E)$

$$S^{h}(\alpha,\beta;E) = \frac{1}{\pi} Im\{G(\alpha,\beta;E)\}$$
 $S^{h}(E) = \sum_{\alpha} S(\alpha,\alpha;E)$

$$\rho_{\alpha,\beta} = \int_{-\infty}^{\varepsilon_F} dES(\alpha,\beta;E)$$

$$S^{h}(\alpha,\beta;E) = \frac{1}{\pi} Im\{G(\alpha,\beta;E)\}$$
 $S^{h}(E) = \sum_{\alpha} S(\alpha,\alpha;E)$

$$\rho_{\alpha,\beta} = \int_{-\infty}^{\varepsilon_F} dES(\alpha,\beta;E) \qquad N, Z = \sum_{\alpha} \rho_{\alpha,\alpha}^{N,Z}$$

. .

$$S^{h}(\alpha,\beta;E) = \frac{1}{\pi} Im\{G(\alpha,\beta;E)\}$$
 $S^{h}(E) = \sum_{\alpha} S(\alpha,\alpha;E)$

Proton Spectral Functions in 40 Ca

$$\rho_{\alpha,\beta} = \int_{-\infty}^{\varepsilon_F} dES(\alpha,\beta;E) \qquad N, Z = \sum_{\alpha} \rho_{\alpha,\alpha}^{N,Z}$$

$$E_0^{\mathcal{A}} = \frac{1}{2} \sum_{\alpha\beta} \left[T_{\beta\alpha} \rho_{\alpha\beta} + \delta_{\alpha\beta} \int_{-\infty}^{\epsilon_f^-} dEES_h(\alpha; E) \right]$$

$$S^{h}(\alpha,\beta;E) = \frac{1}{\pi} Im\{G(\alpha,\beta;E)\}$$
 $S^{h}(E) = \sum_{\alpha} S(\alpha,\alpha;E)$

$$\rho_{\alpha,\beta} = \int_{-\infty}^{\varepsilon_F} dES(\alpha,\beta;E) \qquad N, Z = \sum_{\alpha} \rho_{\alpha,\alpha}^{N,Z}$$

$$E_{0}^{A} = \frac{1}{2} \sum_{\alpha\beta} \left[T_{\beta\alpha} \rho_{\alpha\beta} + \delta_{\alpha\beta} \int_{-\infty}^{\epsilon_{f}^{-}} dEES_{h}(\alpha; E) \right]$$

	Ν	Z	DOM E_0^A/A	Exp. E_0^A/A
⁴⁰ Ca	19.9	19.8	-8.49	-8.55
⁴⁸ Ca	27.9	19.9	-8.7	-8.66
²⁰⁸ Pb	125.8	81.7	-7.83	-7.87

$$n(\mathbf{k}) = \int d^3r \int d^3r' e^{i\mathbf{k}\cdot(\mathbf{r}-\mathbf{r}')}\rho(\mathbf{r},\mathbf{r}')$$

⁴⁰Ca DOM Single-Particle Momentum Distribution

$$n(\mathbf{k}) = \int d^3r \int d^3r' e^{i\mathbf{k}\cdot(\mathbf{r}-\mathbf{r}')}\rho(\mathbf{r},\mathbf{r}')$$

 $^{40}\mathrm{Ca}$ DOM Single-Particle Momentum Distribution

 Short-range correlations (SRC) responsible for this high-momentum content

$$n(\mathbf{k}) = \int d^3r \int d^3r' e^{i\mathbf{k}\cdot(\mathbf{r}-\mathbf{r}')}\rho(\mathbf{r},\mathbf{r}')$$

 $^{40}\mathrm{Ca}$ DOM Single-Particle Momentum Distribution

• Short-range correlations (SRC) responsible for this high-momentum content

$$n(\mathbf{k}) = \int d^3r \int d^3r' e^{i\mathbf{k}\cdot(\mathbf{r}-\mathbf{r}')} \rho(\mathbf{r},\mathbf{r}')$$

⁴⁰Ca DOM Single-Particle Momentum Distribution Proton Spectral Functions in ⁴⁰Ca 10^{4} 10^{0} 10^{3} $k_F \approx 1.4 \text{ fm}^{-1}$ 10^{-1} 10^{2} n(k) [fm³] 10^{1} $\underbrace{\textcircled{H}}_{0}$ 10⁻² 10^{0} $n(k_{\text{high}}) = 14\%$ 10^{-1} 10^{-3} 10^{-2} 10^{-4} 10^{-3} -100 - 90 - 80 - 70 - 60 - 50 - 40 - 30 - 20-100.51.52 2.53 3.5 ε_F E_{cm} [MeV] $k \, [{\rm fm}^{-1}]$

$$\phi_2 = \int_{k_1}^{k_2} dk k^2 n_\tau(k)$$

Mack C. Atkinson DOM

²⁰⁸Pb Momentum Distribution

²⁰⁸Pb Momentum Distribution

A	$n_{ m high}$	$p_{ m high}$
⁴⁰ Ca	0.14	0.14
⁴⁸ Ca	0.14	0.156
²⁰⁸ Pb	0.106	0.132

• (e, e'p) probes the momentum content of nuclei

- (e, e'p) probes the momentum content of nuclei
- Excitation spectrum provides evidence of many-body correlations

- (e, e'p) probes the momentum content of nuclei
- Excitation spectrum provides evidence of many-body correlations

- (e, e'p) probes the momentum content of nuclei
- Excitation spectrum provides evidence of many-body correlations
- Spectroscopic factor, \mathcal{Z} , quantifies correlations

- (e, e'p) probes the momentum content of nuclei
- Excitation spectrum provides evidence of many-body correlations
- Spectroscopic factor, \mathcal{Z} , quantifies correlations

- (e, e'p) probes the momentum content of nuclei
- Excitation spectrum provides evidence of many-body correlations
- Spectroscopic factor, \mathcal{Z} , quantifies correlations
- Distorted-wave impulse approximation for exclusive reaction (C. Giusti's DWEEPY code)

- (e, e'p) probes the momentum content of nuclei
- Excitation spectrum provides evidence of many-body correlations
- Spectroscopic factor, \mathcal{Z} , quantifies correlations
- Distorted-wave impulse approximation for exclusive reaction (C. Giusti's DWEEPY code)

- (e, e'p) probes the momentum content of nuclei
- Excitation spectrum provides evidence of many-body correlations
- Spectroscopic factor, \mathcal{Z} , quantifies correlations
- Distorted-wave impulse approximation for exclusive reaction (C. Giusti's DWEEPY code)
- DOM can provide all ingredients

$$J^{\mu}(\mathbf{q}) = \int \chi^{(-)*}_{E\alpha}(\mathbf{r}) j^{\mu}(\mathbf{r}) \phi_{E\alpha}(\mathbf{r}) [\mathcal{Z}_{\alpha}(E)]^{1/2} e^{i\mathbf{q}\cdot\mathbf{r}} d^{3}r$$

Mack C. Atkinson DOM

• No imaginary component of Σ^* around ϵ_F

$$J^\ell_W(E) = (4\pi)^2 \int_0^\infty dr r^2 \int_0^\infty dr' r'^2 \mathrm{Im}\{\Sigma^*_\ell(r,r';E)\}$$

$$\mathcal{Z} = \left(1 - \frac{\partial \Sigma^*(\alpha_{qh}, \alpha_{qh}; E)}{\partial E}\Big|_{\epsilon}\right)^{-1}$$

• No imaginary component of Σ^* around ϵ_F

$$J^{\ell}_{W}(E) = (4\pi)^2 \int_0^\infty dr r^2 \int_0^\infty dr' r'^2 \operatorname{Im}\{\Sigma^*_{\ell}(r,r';E)\}$$

$$\mathcal{Z} = \left(1 - \frac{\partial \Sigma^*(\alpha_{qh}, \alpha_{qh}; E)}{\partial E}\Big|_{\epsilon}\right)^{-1}$$

• No imaginary component of Σ^* around ϵ_F

$$J_W^\ell(E) = (4\pi)^2 \int_0^\infty dr r^2 \int_0^\infty dr' r'^2 \operatorname{Im} \{ \Sigma_\ell^*(r, r'; E) \}$$

$$\mathcal{Z} = \left(1 - \frac{\partial \Sigma^*(\alpha_{qh}, \alpha_{qh}; E)}{\partial E}\Big|_{\epsilon}\right)^{-1}$$

$$n_{n\ell j} = \int_{-\infty}^{\epsilon_f} dES^h_{n\ell j}(E) \qquad d_{n\ell j} = \int_{\epsilon_f}^{\infty} dES^p_{n\ell j}(E)$$

• No imaginary component of Σ^* around ϵ_F

$$J^{\ell}_{W}(E) = (4\pi)^2 \int_0^\infty dr r^2 \int_0^\infty dr' r'^2 \operatorname{Im}\{\Sigma^*_{\ell}(r,r';E)\}$$

$$\mathcal{Z} = \left(1 - \frac{\partial \Sigma^*(\alpha_{qh}, \alpha_{qh}; E)}{\partial E}\Big|_{\epsilon}\right)^{-1}$$

$$n_{n\ell j} = \int_{-\infty}^{\epsilon_f} dES^h_{n\ell j}(E) \qquad d_{n\ell j} = \int_{\epsilon_f}^{\infty} dES^p_{n\ell j}(E)$$

Orbital	\mathcal{Z}	n _{nlj}	$d_{n\ell j}$
$0d\frac{3}{2}$	0.71	0.80	0.17
$1s\frac{1}{2}$	0.60	0.82	0.15

⁴⁰Ca(e,e'p)³⁹K Momentum Distributions (100 MeV)

$T_p=100$ MeV	$0d\frac{3}{2}$	$1s\frac{1}{2}$
Kramer <i>et al.</i>	0.65 ± 0.06	0.55 ± 0.05
DOM	0.71 ± 0.04	0.60 ± 0.03

M. Atkinson et al., PRC 98, 044627 (2018)

Mack C. Atkinson DOM

- Willem Dickhoff Advisor
- Robert Charity DOM and data for DOM
- Henk Blok (e, e'p) data at Nikhef
- Louk Lapikás (e, e'p) data at Nikhef
- Carlotta Giusti DWEEPY Code
- Hossein Mahzoon DOM
- Lee Sobotka Data for DOM

Comparing high-k

 Monte-Carlo results borrowed from Bob Wiringa's website_[1]

https://www.phy.anl.gov/theory/research/QMCresults.html
 R.B. Wiringa *et al.*, PRC **89**, 024305 (2014)
 D. Lonardoni *et al.*, PRC **96**, 024326 (2017)