# The Isospin Dependence of Short Range Correlations through Inclusive Electron Scattering from <sup>40</sup>Ca and <sup>48</sup>Ca



Dien Nguyen University of Virginia

2<sup>nd</sup> SRC and EMC Workshop MIT 03/20/2019

# **Inclusive electron scattering**

Kinematic variables: $v = E_0 - E$ Transfer energye' $Q^2 = 4E_0E\sin^2(\theta/2)$ 4-momentum transfer squared $Q^2 = 4E_0E\sin^2(\theta/2)$ 4-momentum transfer squared $x_{bj} = \frac{Q^2}{2mv}$ Momentum fraction of a nucleon<br/>shared by the struck quark. $y \approx -q/2 + mv/q$ Momentum of struck nucleon<br/>parallel to q vector

e-p elastic scattering: x = 1, Quasi-elastic scattering x  $\approx$  1

Motion of nucleon in the nucleus broadens the peak to x~ 1.3



# **SRCs kinematics**



**In addition**: with x>1.5 and large Q<sup>2</sup> we suppress many effects, ensuring clean "quasi-elastic" scattering on nucleon in a pair.

# We need to go to high x and $Q^2$ where $P_{min} > P_f$ where SRCs are dominant.

2N-SRCs region: 1<x<2 3N-SRCs region: 2<x<3

#### Minimum initial struck nucleon momentum



### Experiment E08-014: Hall A Jefferson Lab



4

# Experiment E08-014:

- Measuring the inclusive Cross section
- Isospin dependence of the 2N SRCs using <sup>40,48</sup>Ca
- Isospin-independence assumption

$$\frac{\sigma_{^{48}\mathrm{Ca}}/48}{\sigma_{^{40}\mathrm{Ca}}/40} = \frac{(20\sigma_p + 28\sigma_n)/48}{(20\sigma_p + 20\sigma_n)/40} \xrightarrow{\sigma_p \sim 3\sigma_n} \sim 0.92$$

Isospin-dependence assumption

$$\frac{\sigma_{\rm ^{48}Ca}/48}{\sigma_{\rm ^{40}Ca}/40} \sim$$

M. Vanhalst, J. Rycketcbusch, Wim Cosyn Phys. Rev. C86 (2012) M. Vanhalst, J. Rycketcbusch, Wim Cosyn J. Phys. G. 42 (2015)

|   | $^{2}\mathrm{H}$ | 1.128 | $^{40}Ca$         | 1.637 |  |  |
|---|------------------|-------|-------------------|-------|--|--|
|   | <sup>4</sup> He  | 1.327 | $^{48}Ca$         | 1.629 |  |  |
| I | <sup>9</sup> Be  | 1.384 | $^{56}$ Fe        | 1.638 |  |  |
|   | $^{12}C$         | 1.435 | <sup>108</sup> Ag | 1.704 |  |  |
|   | <sup>16</sup> O  | 1.527 | <sup>197</sup> Au | 1.745 |  |  |
| ſ | <sup>27</sup> Al | 1.545 | <sup>208</sup> Pb | 1.741 |  |  |



Targets : Cryo targets: LH<sub>2</sub> , <sup>3</sup>He, <sup>4</sup>He Solid targets: C12, <sup>40</sup>Ca, <sup>48</sup>Ca

Beam Energy:E0 = 3.356 GeVMomentum:Ep: 2.505 - 3.055 GeVAngle:21, 23, 25, 28

Q<sup>2</sup> range : 0.8 GeV<sup>2</sup> – 2.8 GeV<sup>2</sup> X<sub>bj</sub> range:  $1 < X_{bj} < 2$  and  $X_{bj} > 2$ 

# **Cross Section Extraction Methods**

For each bin in  $\Delta E$ ,  $\Delta \Omega$ , the number of detected electrons is:

 $N^{-} = L^{*}(d\sigma/d\Omega dE')^{*}(\Delta E' \Delta \Omega)^{*} \varepsilon^{*} A(E',\theta)^{*} B + BG$ 

Where:

- L: Integrated Luminosity (# of beam electrons\*targets/area)
- ε: Total efficiency for detection
- A(E', $\theta$ ): Acceptance for bin
- B : Binning correction
- BG: Background events.

Notation:  $(d\sigma/d\Omega dE') = \sigma^{data}$ 

N-: obtained by applying selection cuts: Tracking, trigger, PID, acceptance

The efficiency corrected electron yield is

 $Y = (N^{-} - BG)/\epsilon = L * \sigma^{data} * (\Delta E \Delta \Omega) * A(E', \theta) * B$ 

For known A(E', $\theta$ ),  $\sigma^{data} = Y/[(\Delta E \Delta \Omega) * A(E', \theta) * B * L]$ 

### **1. Acceptance correction method:**

$$\sigma^{\text{data}} = Y(E',\theta) / [(\Delta E \Delta \Omega) * A(E',\theta) * B * L]$$

 $A(E',\theta)$  is the probability that a particle will make it through the spectrometer and *must be measured or determined from simulation!* 

 $\Delta \Omega_{eff} = \Delta \Omega^* A(E', \theta)$  is the *effective solid angle* or *solid angle acceptance*.

### 2. Yield ratio method

we can simulate Monte Carlo data using a cross section model to obtain

MC: 
$$Y_{MC}(E',\theta) = L*\sigma^{mod}*(\Delta E \Delta \Omega)*A_{MC}(E',\theta)*B$$

Data  $Y = L * \sigma^{data} * (\Delta E \Delta \Omega) * A(E', \theta) * B$ 

Taking the ratio to data and assuming that  $A_{MC} = A$  yields

 $\sigma^{\text{data}} = \sigma^{\text{mod}} * [Y(E',\theta)/Y_{\text{MC}}(E',\theta)]$ 

# Acceptance study using the SAMC

#### <u>Goal:</u>

- Simulate the experiment using SAMC
- Compare the target reconstruction variables from data to simulation
- Determine the range for acceptance cuts for cross section analysis

#### Simulation SAMC

#### <u>Generator : uniformly generate:</u>

- Es : beam energy
- Th\_tg\_gen : the out-plane angle
- Ph\_tg\_gen: the in-plane angle
- dp\_tg\_gen: relative momentum

#### Transport functions:

- Forward matrix: transport generated event from target to the focal plan and then add the VDC smearing
- Backward matrix: reconstruct event to target

#### Cross section model: XEMC

- This cross section model uses the F1F209 for DIS and F(y) for QE, Born = DIS + QE
- The radiative correction was merged in the cross section model
- The simulation output will be weighted by radiative cross section

#### **Reconstruction variables comparison**

- Optics reconstruction matrix
- Cross section model
- Acceptance model

## Data and simulation comparison after every correction

1D reconstruction variables: comparison of Data and simulation: looks pretty good even now with the larger acceptance cuts



3/19/19 Kin 5.0 Acceptance comparison Data and Simulation: Angle 25, P0 = 2.505

## **Systematic Uncertainty**

| Systematic                  | $\delta\sigma/\sigma$ (Norm) | $\delta\sigma/\sigma$ (pt-pt) | $\delta R/R$ (Norm) | $\delta R/R$ (pt-pt) |
|-----------------------------|------------------------------|-------------------------------|---------------------|----------------------|
| Acceptance dependence       | 2%                           | 1.5%                          | -                   | 0.2%                 |
| Model dependence            | -                            | 0.5%                          | -                   | 0.5%                 |
| Tracking efficiency         | 1%                           | 0.3%                          | -                   | 0.2%                 |
| Cer efficiency              | 0.3%                         | 0.1%                          | -                   | 0.1%                 |
| E/p efficiency              | 0.3%                         | 0.1%                          | -                   | 0.1%                 |
| Target density <sup>*</sup> | 1%                           | -                             | 1%                  | -                    |
| Beam Charge <sup>*</sup>    | 0.5%                         | -                             | -                   | 0.5%                 |
| radiative correction*       | 1.5%                         | -                             | -                   | 0.5%                 |
| Total                       | 2.9%                         | 1.6%                          | 1%                  | 0.9%                 |

# **Results: Extracted absolute cross section**

Ca<sup>40</sup>:

Ca48



Uncertainty: Norm ~2.9% Uncertainty: point-to-point ~ 1.6%

# Cross section ratio per nucleon



R = 1.006 +/- 0.002

Uncertainty: norm: 1% Uncertainty: point-to-point: 0.9%

#### Cross section ratio per nucleon



#### Discussion

1. Cross section ratio per nucleon is close to **1** compared to the is isospin independent assumption **0.92**.

#### Evidence of the isospin dependence from inclusive scattering

M. Vanhalst, J. Rycketcbusch, Wim Cosyn Phys. Rev. C86 (2012) M. Vanhalst, J. Rycketcbusch, Wim Cosyn J. Phys. G. 42 (2015)

| <sup>2</sup> H   | 1.128 | $^{40}Ca$         | 1.637 |
|------------------|-------|-------------------|-------|
| <sup>4</sup> He  | 1.327 | $^{48}Ca$         | 1.629 |
| <sup>9</sup> Be  | 1.384 | $^{56}$ Fe        | 1.638 |
| $^{12}C$         | 1.435 | <sup>108</sup> Ag | 1.704 |
| <sup>16</sup> O  | 1.527 | <sup>197</sup> Au | 1.745 |
| <sup>27</sup> Al | 1.545 | $^{208}$ Pb       | 1.741 |

$$a_2({}^{40}\text{Ca}) = \frac{\sigma^{40}\text{Ca}/40}{\sigma^2\text{D}/2} = \frac{(1.637 - 1)}{(1.128 - 1)} = 4.97$$
  
 $a_2({}^{48}\text{Ca}) = \frac{\sigma^{48}\text{Ca}/48}{\sigma^2\text{D}/2} = \frac{(1.629 - 1)}{(1.128 - 1)} = 4.92$ 

$$\frac{\sigma^{48} \text{Ca}/48}{\sigma^{40} \text{Ca}/40} = 4.92/4.97 = 0.989$$

# Thank you