Comparing proton momentum distributions in A=3 nuclei via ³He and ³H(e, e'p) measurements

Nucleon-nucleon interaction

Crucial for:

- Ab-Initio nuclear structure calculations
- understanding dense astrophysical objects such as neutron stars

Strong nuclear force, Coulomb force, spins, magnetic moments ...

There are many NN potential models...

- Hamada-Johnston Potential
- Yale-Group Potential
- Reid68 Potential
- Reid-Day Potential
- Partovi-Lomon Potential
- Paris-Group Potentials
- Stony-Brook Potential
- dTRS Super-Soft-Core Potentials
- Funabashi Potentials
- Urbana-Group Potentials
- Argonne-Group Potentials
 - Argonne V14
 - Argonne V28
 - Argonne V18
- Bonn-Group Potentials
 - Full-Bonn Potential
 - CD-Bonn Potential
 - Padua-Group Potential
 - Nijmegen-Group Potentials
 - Nijm78 Potential
 - Partial-Wave-Analysis
 - Nijm93
 - Nijml

- Nijmll
- Reid93 Potential
- Extended Soft-Core
- Nijmegen Optical Potentials
- Hamburg-Group Potentials
- Moscow-Group Potentials
- Budapest(IS)-Group Potential
- MIK-Group Potential
- Imaginary Potentials
- QCD-Inspired Potentials
- The Oxford Potential
- The First CHPT NN Potentials
- Sao Paulo-Group CHPT Potentials
- Munich-Group CHPT Potentials
- Idaho-Group CHPT Potentials
- Bochum-Julich-Group CHPT Potentials
 - LO Potentials
 - NLO Potentials
 - NNLO Potentials
 - NNNLO Potentials
- and more!

...still, short-range behavior in unconstrained

Why light nuclei?

 can be exactly calculated for a given two- and threenucleon interaction model.

Why Tritium?

- Isospin doublet:
 - ³He is stable mirror nucleus

$$\frac{{}^{3}\text{He}(p)}{{}^{3}\text{H}(p)} \cong \frac{{}^{3}\text{He}(p)}{{}^{3}\text{He}(n)}$$

Previous studies and non-QE mechanisms

F. Benmokhtar et al., PRL 94, 082305 (2005)

Minimizing non-QE mechanisms

Q² > 2 GeV² x_B > 1

Minimizing non-QE mechanisms

High Q²: factorized approximation

In PWIA:

$$\frac{d^6\sigma}{d\omega dE_p d\Omega_e d\Omega_p} = \mathbf{K}\sigma_{ep}S(|\vec{p_i}|, E_i)$$

thus:

Phenomenological expectations

np-dominance

M. Duer et al., (Jefferson Lab CLAS Collaboration) arXiv:1810.05343 (2018)

Phenomenological expectations

Phenomenological expectations

Theory predictions

Missing momentum

a proxi for the nucleon momentum before the interaction took place

Hall-A spectrometers (top view)

More information here: http://hallaweb.jlab.org/equipment/HRS.html

Angular acceptance:

- Horizontal: 28 mrad
- Vertical: 60 mrad

HRS detector package

Allow for excellent momentum reconstruction and particle identification

Kinematical settings

Measured ³He/³H ratio

arXiv:1902.06358 (2019)

Corrections

$$R_{n(p)}^{\text{meas.}}(p_{miss}) \neq R_{^{3}\text{He}/^{3}\text{H}}^{corr.yield}(p_{miss})$$

Corrections

$$R_{n(p)}^{\text{meas.}}(p_{miss}) = R_{^{3}\text{He}/^{3}\text{H}}^{corr.yield}(p_{miss}) \times C_{\text{BinMig}} \times C_{\text{Rad}} \times C_{E_{m}\text{Acc}}$$

High missing momentum setting

Final results

arXiv:1902.06358 (2019)

Final results

arXiv:1902.06358 (2019)

Effect of Final-State Interactions

Where do we go from here?

arXiv:1902.06358 (2019)

Backup slides

Event selection cuts

electron-PID: $E_{cal}/|\mathbf{p}| > 0.5$ proton in coincidence: $\Delta t_{e-p} < 3\sigma$ target wall cut: |vz| < 9.5 cm $\Delta vz_{e-p} < 1.2$ cm (< 3σ)

Acceptance: $\delta < 4\%$ ϕ (horizontal) < 25.5 mrad θ (vertical) < 55.0 mrad

FSI: $\theta_{rq} < 37.5 \text{ deg}$

non-QE events: xB > 1.3
(high-Pmiss kinematics)

From event selection

Determined as follows: for a given p_{miss} bin:

Others:

	Overall	Point-to-point
Target Walls	$\ll 1\%$	
Target Density	1.5%	
Beam-Charge and Stability	1%	
Tritium Decay	0.18%	
spectral function	30%	
isospin symmetry	J 70	
Cut sensitivity		1% - 8%
Simulation Corrections		
(bin-migration, radiation,		1% - $2%$
E_m acceptance)		

Corrections

 $R_{n(p)}^{\text{meas.}}(p_{miss}) = R_{^{3}\text{He}/^{3}\text{H}}^{corr.yield}(p_{miss}) \times C_{\text{BinMig}} \times C_{\text{Rad}} \times C_{E_{m}\text{Acc}}$

$$\begin{array}{lll} C_{\mathrm{BinMig}} &=& R_{\mathrm{Sim}}^{\sigma_{\mathrm{Rad}}}(p_{miss}^{\mathrm{gen}}) \ / \ R_{\mathrm{Sim}}^{\sigma_{\mathrm{Rad}}}(p_{miss}^{\mathrm{rec}}), \\ C_{\mathrm{Rad}} &=& R_{\mathrm{Sim}}^{\sigma_{\mathrm{Born}}}(p_{miss}^{\mathrm{gen}}) \ / \ R_{\mathrm{Sim}}^{\sigma_{\mathrm{Rad}}}(p_{miss}^{\mathrm{gen}}), \\ C_{E_{m}\mathrm{Acc}} &=& n_{^{3}\mathrm{He}/^{3}\mathrm{H}}(p_{miss}^{\mathrm{gen}}) \ / \ R_{\mathrm{Sim}}^{\sigma_{\mathrm{Born}}}(p_{miss}^{\mathrm{gen}}), \end{array}$$

Ratios of AV18/N²LO momentum distributions

FIG. 2: Ratio of different distributions obtained using the AV18 and N²LO potentials. The left figure shows the $(n_{A=3})_{AV18}/(n_{A=3})_{N^2LO}$, where $n_{A=3}$ refers to the ³He proton and ³H neutron momentum distributions. The right figure shows the double ratio $(n_{3He}^p/n_{3H}^p)_{AV18}/(n_{3He}^p/n_{3H}^p)_{N^2LO}$.

Measurement-simulation comparison

Measurement-simulation comparison

2- and 3-body breakups in ³He

