Interpreting SRCs: FSI In
x>1, from (e,e’') to (e,e'NN)
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OUTLINE

(e,e’) : onset of light cone dominance and locality of FSI

FSI and quenching at large Q

FSI & looking backward




Onset of LC dominance in high QZ2A (e,e’) processes

Consider high Q2 (e,e’) process at fixed large x >| in the many nucleon

approximation for the nucleus V¢ g

pint — PA _ prec
pA prec

The on-shell condition for the struck nucleon

(pint + q)z — mz

—./— (Vertex function)? is the spectral function of the nucleus

Py(k,E) = (Yalag (k)d(E + Er — Exx)an(k)[va),

QCD analog - fully unintegrated parton density -
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Mt dr—potd- (a(MA/A)) Te=m
Use the nucleus rest frame \
_ 4P light-cone fraction
PA = PA = My, P scaled to A
da ~ 1+4(g-/a)(Ma/A) 0 |/
—  amr \(¢xMA/A) — [¢- (7 + p})][a? M4 /A = g+

0? — 0o, x = const

In high energy limit 0 depends only on the spectral function integrated over
— all variables but o - LC dominance, in particular no dependence on the mass
of the recoil system. Relevant quantity is LC nucleon density matrix - p%(a)

i=A
doy;
N 2 :
) = d"peiva (i, pri)o(ar —
pa(a) /E o T Pevalas pea)dlan —a) LC nuclear many

4 nucleon wave function




Expectation: p') (a, ki) ~ as(A)pp (o, ki) forl.3 < a < 1.6

For larger o three nucleon correlations decreases slower with increase of . Effects of 3N
correlations can be seen in Pa(k,E) but no simple relation is known (exists?) with pa(o >

I .6, Pt)

Determine (x,Q) based on dominance of two nucleon correlations in the recoil

2 2
am:2—q_+2m 1+ VW2 — dmy, where q_ = qo — qz3, W? = dm?3 + dgomy — Q°
ZmN 14

Used observation that distribution over ann around ann =2 is symmetric
function of ann - 2. Allows to take ;7,2 in average point corresponding to

ann = 2. Maximum of the spectral function distribution over E/cc.
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kmin=0.25 Gev

2/A a™(x,Q%)/0"(x,Q%)

OA, (-’Ban) - prg(atn,pt)dzpt_ aQ(A2)|1.6>0421.3

W — Mp <50 MeV

0.75
X

Masses of NN system produced in the
process are small - strong suppression
of isobar, 6q degrees of freedom.

from SLAC data Right momenta for onset of scaling of ratios !!!



%  Universality of 2N SRC is confirmed by Jlab experiments

a2(A)
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Very good agreement between three (e,e’) analyses for a; (A)



FSI and the scaling of rations

Two types - FSl interaction within SRC and knockout of low momentum nucleon
with FSI with the whole nucleon.

FSI of first type maybe large up to a factor of 2 for O(e,e’), cancels in the ratio of O’s
next slide

Second - is few % . One would come to an opposite if one does does not take into
account off mass- shell effects

Sargsian, Frankfurt, MS 2008.

P ' If [pirt| is small, the struck nucleon has large virtuality

1
AM? = m? —p2 o m?\/’ — QQ(_l + 5) _p?nt




LC collinear method calculation (FS88) , data from SLAC experiments.
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Upper curves include fsi as calculated by Arenhovel
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We used non-covariant technique where energy is not conserved and momentum is
conserved to determine what longitudinal distances, r; fsi can contribute

1
AFE + i€

A" (e A — eX) ~ /d?’pmA(pl)Jé‘m(pb q) tn(pL+q,py),

Ju is the electromagnetic current, tN represents the rescattering amplitude of struck
nucleon and AE is the energy difference between intermediate and initial states:

AE = —qy— Ma + \/m2 +(g+m)*+ \/sz—1 + 7.

-
>

v

r(fm)

Within this representation we can estimate
the characteristic distances that struck

x=1.1

1.25 |
nucleon propagates as: r oA v :
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T AE ..
0.75 K

0<:— ¥ ,

C x=1.3

025 b ¥ x=1.5

x=1.7

L N TR



At x> 1.3, Q2> 1 GeV2fsiis local (r < 1fm)
and hence should cancel in the A/D ratios if
one neglects pp SRC.

Other way to probe locality of FSl is to consider the correlator of the two e.m. currents.

2magso™ = [ €A [1(y), 1(0)] | A)eDeldly.
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where ¢z = \/Q2 + Q*/4m?a?,
Strong oscillations in the ei(ponential lead to the condition that in the discussed
kinematic range yo and y. are small. For example for Q2=1.5 GeV2, x=1.5

1 1
y. = — ~01fm,y, = — ~ 0.3 fm,

q+ q—
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Open questions: R(x=1)=5 in DIS limit

T | | 7
X<2 2'0__—

SRC +inel 7
-®- testing scaling of ratios for larger Q2 ~ 6 QE 15 = ’ % g
GeV2- graduate onset of new regime 8§ ‘
. . . . ~ 1.0 — —
where inelastic contribution becomes ' : SRC +inel +EMC

significant (dominates - outside 12 GeV
range! ) -
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| no inel
-o- differential Isotopic structure of correlations (pn vs pp)

-®-  onset of 0xN scaling - plot ratios at fixed On  as a function of Q2.

-o- Testing tensor structure of SRC: eD — e+ X,e+p+n
v+ D — 7 + p+ slow proton
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Onset of high energy picture and nuclear transparency

Experience of quantum field theory - interactions at different resolutions (momentum
transfer) resolve different degrees of freedom - renormalization,.... No simple
relation between relevant degrees of freedom at different scales.

Short—-range interactions After Q q
Low Q2 o O -
Long range interactions Q
scale O
Removal of a quasiparticle
—k
~ -0

- O

Knockout of a nucleon

After

Before

Possible to describe low energy nucleon-nucleon (nucleus) interactions, main
characteristics of nuclei (radii, binding,...) using effective interactions where high
momentum interactions are absent - Landau - Migdal Fermi liquid logic, Effective Field

theory
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Q2 dependence of the spectroscopic factor

Rather rapid transition from regime of interaction with
quasiparticles to regime of interaction with nucleons

taransition ~(0.8 GeV-2

Still need to study transition in a single experiment.
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Glauber model ( Frankfurt, MS, Zhalov) with HFS wave function

: very small suppression at large Q2 ; Confirms conclusion of Lapikas et al
Quenching factor Q > 0.9 of Q2dependence of Q factor
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Au(e,ep) reaction at Q2=1.8 GeV?

| 5'SFe(e,ep) reaction at Q2=1.8 GeV?

12C(e,ep) reaction at Q2=1.8 GeV>
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blue curves include
soft rescatterings
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: Comparison of Small quenching is consistent
: | transparency calculated with a small strength at large
) using HFS spectral function excitation energies for the
o with the data. No room momentum range of the NE-|8
2 | for large quenching, though experiment (R. Milner - private
0 | 10-15% effect does not communication)
L contradict to the data.
Need data on (e,e’p) for small k and large E; and Q2 ~ 2 GeV?2

Alternative possibility - 10-15% chiral transparency effect
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In the calculation we checked that normalization of the spectral function is
correct using (e,e’) data at x=1 and moderate Q2. classical mechanics
calculation of transparency gives similar result.

So in (e,e’p) one can use QM for 2N fsi (Misak’s talk) and classical for the
nucleons at distances > 1.5 fm.

Also, elastic rescaterings produce via elastic rescattering forward nucleons with
relatively large pr - mimic SRCs with larger internal momenta.

Open question: how much down in Q one can go in calculation of transparency? -
Glauber approximation for pA elastic scattering had problems at T_p ~ 600 MeV (LAMPF) -
(straight line geometry breaks down) expect similar problems for GEA.
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Evidence for 2N SRC from (anti) neutrino scattering (BEBC, 1988)

v=Xxy - related to muon angle, measured better than x &y
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Solid curve is “Doppler effect”’prediction (FS77) <V> o / <V> — 2 —«

Data with selection of events with one proton (to suppress two step
processes). In early FNAL data where all events were included, the effect is a

factor of two smaller - 1/2 protons from two step processes.

Studies of (eA->e’ backward +X) are necessary at the very least to understand
possible role of the fsi in the tagged structure function search for the EMC effect,
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