

Deuteron Electro-Disintegration Experiment at Hall C (E12-10-003)

Carlos Yero

Spokespeople: Drs. Werner Boeglin and Mark Jones

March 21, 2019

Motivation

 $\mathbf{\overline{M}}$ Study Deuteron at short ranges (< 1 fm).

High momentum transfers probe the Deuteron at smaller distances. Smaller inter-nucleon distances enables one to access the high momentum components of nucleons

I First time measurements of high missing momentum at large Q2

- **M** Extract D(e,e'p)n cross-section beyond 500 MeV/c missing momentum at high Q2
- **I** Extract momentum distributions (not an observable) from cross sections.

D(e,e'p)n Reaction Kinematics

D(e,e'p)n Interactions

 $p_{i,p} + p_{i,n} = 0$

Meson-Exchange Currents (MEC)

Isobar Configurations (IC)

Plane Wave Impulse Approximation (PWIA)

Final State Interactions (FSI)

4 / 54

Meson-Exchange Currents (MEC)

- ☑ Virtual photon couples with exchange meson between nucleons.
- ☑ Virtual meson may become real after photon absorption.
- Meson exchange propagator is proportional to

$$p_{i,p} + p_{i,n} = 0$$

5 / 54

$$(1 + \frac{Q^2}{m_{meson}^2})^{-1}$$

 \implies MEC suppressed for $Q^2 \gg m^2_{meson}$

Isobar Configurations (IC)

6 / 54

x = 1.35 (E12-10-003)

Final State Interactions (FSI)

- ☑ In final state, the nucleons are at short enough distances (~ 2 fm) and continue to interact
- ☑ Neutron re-scatters with a final momentum different than inside the deuteron

7 / 54

FSI are still dominant, even at high momentum transfers and x > 1.
 Certain kinematics must be chosen to suppress this process

Plane Wave Impulse Approximation (PWIA) 8 / 54

 $\mathbf{\underline{M}}$ Virtual photon couples to proton

- \mathbf{V} The other nucleon is a spectator
- Final state particles treated as plane waves (free particles)

 Direct access to the deuteron momentum distribution (factorization)

Deuteron Momentum Distribution

9 / 54

$$\sigma_{exp} \equiv \frac{d^6 \sigma}{d\omega d\Omega_e dT_p d\Omega_p} = K \cdot \sigma_{ep} \cdot S(E_m, p_m)$$
$$S(p_m) \approx \sigma_{red} \equiv \frac{\sigma_{exp}}{K \sigma_{ep}}$$

ep off-shell cross section

electron scatters off a bound proton within the nucleus; usually, de Forest σ_{cc1} or σ_{cc2} is prescribed

Spectral Function, $S(p_m)$

the momentum distribution inside the deuteron is interpreted as the probability density of finding a bound proton with momentum p_i

Experimental Support for D(e,e'p)n at Hall C 10/54

Previous D(e,e'p)n data from Hall A at $Q^2 = 3.25 \text{ GeV}^2$

 $\mathbf{\mathscr{O}}$ E12-10-003 Experiment at Hall C focused at $\theta_{nq} \sim 40^{\circ}$ and $p_m \geq 500 \text{ MeV/c}$ at $Q^2 = 4.25 \text{ GeV}^2$

Greater sensitivity of deuteron momentum distribution to different NN potential models (e.g. CD-Bonn, Paris, Laget, etc.)

D(e,e'p)n (E12-10-003) Theoretical Background ^{11/54}

Theoretical Calculation by: M. Sargsian

E12-10-003

Deuteron Break-Up Experiment Background

Particle Detectors inside the HMS

14 ′ 54

Particle Detectors inside the SHMS

Experiment Time Line (Year 2018)^{16/54}

April 3

April 5

Carbon Hole 1 H(e,e'p) Elastic Proton Absorption Al. Dummy

D(e,e'p)n: Pm=80 MeV D(e,e'p)n: Pm=580 MeV

NOT YET ANALYZED!

1 H(e,e'p) Elastic 1 D(e,e'p)n : 80 MeV

D(e,e'p)n : 580 MeV D(e,e'p)n : 750 MeV

D(e,e'p)n : 580 MeV D(e,e'p)n : 750 MeV

H(e,e'p) Elastics

Spectrometer Moved!

April

Analyze data sets separately

```
D(e,e'p)n : 750 MeV
```

SHMS Q3 Un-Necessary Optics Correction Removed.

ANALYZED

H(e,e'p) Elastics Kinematics ^{17/54}

RUN	SHMS Momentu m [GeV]	SHMS Angle [deg]	HMS Momentum [GeV]	HMS Angle [deg]	SHMS Delta Range [%]	HMS Delta Range [%]
3288	-8.7	12.194	2.938	37.338	(-6, 2)	(-12,10)
3371	-8.7	13.93	3.480	33.545	(-12, 4)	(-12,10)
3374	-8.7	9.928	2.31	42.9	(3, 8)	(-12,10)
3377	-8.7	8.495	1.8899	47.605	(8, 12)	(-12,10)

Cover Entire HMS Momentum Range of D(e,e'p)n

18 / 54 Spectrometers Momentum Corrections / Optimization Using H(e,e')p Elastics

SIMC/DATA COMPARISONS BEFORE CORRECTIONS:

Kinematics for one (run 3288) of the four elastic points analyzed.

Spectrometers Momentum Corrections / Optimization ¹⁹/⁵⁴ Using H(e,e')p Elastics

SIMC/DATA COMPARISONS AFTER CORRECTIONS:

Kinematics for one (run 3288) of the four elastic points analyzed.

H(e,e'p) Check: DATA/SIMC Yield Ratio^{20/54}

D(e,e'p)n Kinematics

Pmiss [MeV]	SHMS Momentum [GeV]	SHMS Angle [deg]	HMS Momentum [GeV]	HMS Angle [deg]
80	-8.7	~12.2	2.844	~37.3
580	-8.7	~12.2	2.194	~55
750	-8.7	~12.2	2.091	~58.4

Spectrometer Acceptance Cuts

22/54

M General cuts to select reliable event reconstruction region

Spectrometer Optics is well known in this region

D(e,e'p)n Particle Identification ^{23/54}

Coincidence rates were low due to small cross sections at higher missing momentum tail.

e-Proton Coincidence Time

D(e,e'p)n Particle Identification

24/54

For the HMS (protons), Missing Energy Cut was made.

D(e,e'p)n Particle Identification ^{25/54}

SHMS Calorimeter Cut to select electrons.

ecal etotnorm **Entries** 95444 Mean 0.9097 1.4 **Std Dev** 0.2877 $\geq 0.6 \,\,\mathrm{GeV}$ 1.2 Charge Normalized Counts Pm = 580 MeV, dataset1 $E_{Norm} \equiv \frac{E_{deposited}}{P_{central}}$ **'0.4** 0.2 0.8 0.2 0.4 0.6 1.2 1.8 1 1.4 1.6 **Calorimeter Normalized Energy [GeV]**

SHMS Calorimeter Total Norm. Energy

D(e,e'p)n: 80 MeV Setting

26/54

This low missing momentum setting serves as the control for the 580 / 750 MeV settings.

D(e,e'p)n: 80 MeV Setting **Additional Kinematics**

Laget FSI **Laget PWIA**

27/54

cut theta ele ntries

10

Electron Scatt. Angle

D(e,e'p)n: 80 MeV Setting Additional Kinematics

Laget FSI Laget PWIA

28/54

Neutron Final Energy

D(e,e'p)n: 580 / 750 MeV Setting^{29/54}

Spectrometer was moved in between data sets of the same setting.

Mev Pm = 580 MeV has 2 data sets

 \mathbf{M} Pm = 750 MeV has 3 data sets

Can the data sets be combined ?

- How do the cross-sections for each data set compare ?
- How sensitive are cross sections to spectrometer motion?

Extracting the Cross Sections^{30/54}

Data Set Charge Normalized Missing Momentum Yield $31\,/\,54$

missing momentum

Missing Momentum Phase Space from SIMC

missing momentum

Model of the set of t

M Data sets can be combined

Ratio of Data Yield to Phase Space: Pm = 580 MeV

Good agreement between the three 750 MeV data sets

M Data sets can be combined

Ratio of Data Yield to Phase Space: Pm = 750 MeV

Selecting Small FSI Region

FSI ~ PWIA at:

35/54

 $35^{\circ} \le \theta_{nq} \le 45^{\circ}$

Kinematic region of interest at high missing momentum

FSI contributions are small

Deuteron Momentum Distribution can be extracted

Selecting Small FSI Region

FSI ~ PWIA at:

 $Q^2 \ge 4 \ {
m GeV}^2$

Selecting Small FSI Region

Extraction of Momentum Distributions^{38/54}

$$\sigma_{exp} \equiv \frac{d^6 \sigma}{d\omega d\Omega_e dT_p d\Omega_p} = K \cdot \sigma_{ep} \cdot S(E_m, p_m)$$
$$S(p_m) \approx \sigma_{red} \equiv \frac{\sigma_{exp}}{K \sigma_{ep}}$$

 $\sigma_{ep}
ightarrow \sigma_{
m cc1~or~cc2}$ Off-shell proton cross-section (from SIMC)

Monitorial Sectorion Possible

Small FSI region has been selected in experiment (See previous slides)

Reduced Cross Sections: Pm = 580 MeV

Reduced Cross Sections: Pm = 750 MeV

41/54 $\theta_{nq} \ge 45^{o}$

Reduced Cross Sections: Pm = 580 MeV

Reduced Cross Sections: Pm = 580 MeV

Reduced Cross Sections: Pm = 750 MeV

Reduced Cross Sections: Pm = 750 MeV

Summary

M(e,e'p) Elastic Check looks OK

Model Setting SIMC/DATA looks OK

First Look at Deuteron High Missing Momentum Components

Magreement of 580 / 750 MeV data in the overlap region

Data need further corrections

Systematic Uncertainties need to be studied

Thank You !

Any Questions ?

Any Questions?

Back-Up Slides

Beam Current

Markov Beam Current ranged from 45 - 60 uA

Charge Normalized Counts

Charge Normalized Counts vs Run Number

SHMS Tracking Efficiencies

50/54

SHMS electron tracking efficiencies ranged from 95-98 %

HMS Tracking Efficiencies

51/54

Markov HMS electron tracking efficiencies ranged from 98-99 %

HMS Tracking Efficiency vs Run Number

Computer / Total Live Time

52/54

Computer Live Time was ~ 98-99%

M Total Live Time was ~92-94% (Due to electronics pile-up at high rates)

Trigger Rates

Beam Positions (BPMs)

