Search for 3N-SRC in Inclusive Electron Scattering

Zhihong Ye
Medium Energy Group,
Argonne National Lab

03/22/2019, SRC-EMC Workshop, MIT, Boston, MA

Simple Picture of 3N-SRC

> 2N-SRC In Initial State:

\square At close distance, NucleonNucleon are in dynamic balance w/ relatively super-high momenta

- 2N-SRC pairs have small total momentum, and interact "weakly" w/ other nucleons

\square In nuclei, the momentum distribution scale like a nucleon inside a deuteron at high-k

Simple Picture of 3N-SRC

> 3N-SRC In Initial State:

\square A 2N-SRC pair can also carry high total momentum
\square Form 3N-SRC when a third high-momentum nucleon balances the $2 \mathrm{~N}-\mathrm{SRC}$ motion
\square Extend the momentum distribution to much higher-k, and another " $\mathrm{A}=3$ "-like scaling region could exist.

\square Forming 2N-pairs is easy, no even SRC needed, but how easy to make 3 N in absolute balance?
\square No strong theory endorsement, but we just believe it is natural to happen

Simple Picture of 3N-SRC

> 3N-SRC In Final State:

- High energy particles (γ, e, p) break up 3N-SRC
\square Nucleons from 3N-SRC can go any direction in their C.M. (unlike $2 \mathrm{~N}-\mathrm{SRC}$ which is always back-to-back)!
\square Even in C.M., individual nucleons can carry very different energy (2N-SRC has two-equal " $\mathrm{p}>\mathrm{k}_{\mathrm{F}}$ " nucleons)
[How easy to know nucleons from the same 3N-SRC?

$$
\overrightarrow{p_{1}}+\overrightarrow{p_{2}}+\overrightarrow{p_{3}} \rightarrow \mathrm{k}_{\mathrm{F}}
$$

Simple Picture of 3N-SRC

> Probe $\left.3 \mathrm{~N}-\mathrm{SRC} \operatorname{In} \mathrm{A}\left(e, e^{\prime}\right)\right)^{3} \mathrm{He}\left(e, e^{\prime}\right)$:

- QE cross section in a SRC picture:

One nucleon: . Two nucleons:
$(x \sim 1) \quad(1.3<x<2)$
$(x>2)$

$$
\begin{aligned}
& \sigma_{A}\left(x, Q^{2}\right)=\sum_{j=1}^{A} \frac{A}{j} \sigma_{j}\left(x, Q^{2}\right)=A \sigma_{1 N}\left(x, Q^{2}\right)+\frac{A}{2} a_{2}(A) \sigma_{2 N}\left(x, Q^{2}\right)+\frac{A}{3} a_{3}(A) \sigma_{3 N}\left(x, Q^{2}\right) . . . \\
& \mathrm{a}_{\mathrm{j}}(\text { A) ---the probability of a nucleon in a jN-SRC. } \\
& \sigma_{\mathrm{j}}(\text { A) --- the cross section of an electron scattering on a nucleon in jN-SRC. }
\end{aligned}
$$

- QE cross sections ratios:

- Choose the right kinematic region:
- 2N-SRC: Q2>1.0 GeV ${ }^{2}, 1.3<x<2.0$
- 3N-SRC: Q2>1.0 GeV ${ }^{2}, x>2.0$?

3N-SRC Results

> Hall-B and Hall-C 3N-SRC Result:
N. Fomin et al, PRL 108,092502 (2012)

CLAS \& E02-019 don't agree in the 3N-SRC region:
> Clear plateau seen in Hall-B result
> E02-019 doesn't have a clear plateau or different values
$>$ CLAS: $Q^{2} \approx 1.6 \mathrm{GeV}^{2}$, E02-019: $Q^{2} \approx 2.7 \mathrm{GeV}^{2}$
> CLAS's plateaus were proved to be due to bin-migration

3N-SRC Results

> Hall-A 3N-SRC Result:

Z. Ye, Phys. Rev. C 97, 065204 (2018)

- Much higher precision than Hall-B/C
- Small Q2 values (close to Hall-B)
- Data from D2, He3, He4, C12, Ca40, Ca48
- No any indication of $3 \mathrm{~N}-\mathrm{SRC}$ at $\mathrm{x}>2$ in both He4/He3 and C12/He3 ratios
- Also show strong Q^{2} dependence at $x>2$

3N-SRC Results

> Hall-A 3N-SRC Result:
Z. Ye, Phys. Rev. C 97, 065204 (2018)
Z. Ye, Phys. Rev. C 97, 065204 (2018)

\square Use a different physics quantity instead of x_{B}
D. Day, L. Frankfurt, M. Sargsian, M. Strikman, arXiv:1803.0762

$$
\begin{gathered}
\alpha_{3 N}=3-\frac{q_{-}+3 m_{N}}{2 m_{N}}\left[1+\frac{m_{S}^{2}-m_{N}^{2}}{W_{3 N}^{2}}+\right. \\
\sqrt{\left.\left(1-\frac{\left(m_{S}+m_{n}\right)^{2}}{W_{3 N}^{2}}\right)\left(1-\frac{\left(m_{S}-m_{n}\right)^{2}}{W_{3 N}^{2}}\right)\right]}
\end{gathered}
$$

3N-SRC Results

> Upcoming New 3N-SRC Results:

Ca48/Ca40 ratio is consistent with one in $1.3<x<3.0$ (Dien's talk)
\square Because nucleons always pair with their closest neighbors to form $2 \mathrm{~N}-\mathrm{SRC}$ and $3 \mathrm{~N}-\mathrm{SRC}$?

For He 3 and H 3 , ratio should be one when forming 3N-SRC, but doesn't the x-dependence tells the transition from $2 \mathrm{~N}-\mathrm{SRC}$ to $3 \mathrm{~N}-\mathrm{SRC}$?
\checkmark 2N-SRC $+\mathrm{p}>2 \mathrm{~N}-\mathrm{SRC}+\mathrm{n}$?
\checkmark Transition from 2N-SRC to 3N-SRC differ in He 3 and H3?

Future Search for 3N-SRC

$>$ What Next?

\square Forming 3 N -SRC clusters are much harder than 2N-SRC clusters

- Also very complicated to probe/reconstruct after breaking up 3 N -SRC

I No any indication of 3N-SRC from existing measurement
The kinematic regions where 3N-SRC exist (if it does) is also not very clear
(e, e) measurement at high Q^{2} are so difficult (no rates!)
\square (e, e'NNN) measurement is even harder to image

Way-Out?

Can we consider (p, p' NNN) which provides much larger cross sections?

- New observables better other than Cross-Section Ratios?

My personal question: Why 3N-SRC has to exist? The world is still happy with only 2N-SRC!

