Opportunities for tagged EMC studies with EIC

C. Weiss (JLab), 2nd SRC/EMC Workshop, MIT, 20-23 Mar 2019

- **Light ion physics at EIC**
 - Energy, luminosity, polarization, detection
 - Physics objectives

- **Deuteron and spectator tagging**
 - Theoretical models
 - EIC simulations unpolarized/polarized

- **Tagged EMC studies with EIC**
 - Proton tagging & momentum dependence
 - Neutron tagging
 - Polarized deuteron vector/tensor
 - $A > 2$ nuclei and breakup
 - Exclusive processes

EIC simulations: JLab 2014/15 LDRD

[Webpage]

Theory: Continuing effort
Strikman, CW, PRC97 (2018) 035209 [INSPIRE]
+ in preparation
Light ions: EIC capabilities

- CM energy $\sqrt{s_{ep}} \sim 20–100$ GeV
 - Factor $\sqrt{Z/A}$ for nuclei
 - DIS at $x \gtrsim 10^{-3}$, $Q^2 \lesssim 10^2$ GeV2

- Luminosity $\sim 10^{34}$ cm$^{-2}$ s$^{-1}$
 - Exceptional configurations in target
 - Multi-variable final states
 - Polarization observables

- Polarized protons and light ions
 - eRHIC: pol 3He
 - JLEIC: pol d and 3He with figure-8

- Forward detection of p, n, A
 - Diffractive and exclusive processes
 - Nuclear breakup and spectator tagging
 - Coherent nuclear scattering
Light ions: Physics objectives

- Neutron structure
 Flavor decomposition of PDFs/GPDs/TMDs, singlet vs. non-singlet QCD evolution, polarized gluon
 Eliminate nuclear binding, non-nucleonic DOF!

- Nucleon interactions in QCD
 Nuclear modification of quark/gluon densities
 Short-range correlations, non-nucleonic DOF
 QCD origin of nuclear forces
 Associate modifications with interactions!

- Coherent phenomena in QCD
 Coherent interaction of high–energy probe with multiple nucleons, shadowing, saturation
 Identify coherent response!

 Common challenge: Many possible nuclear configurations during high-energy process.
 Need to “control” configurations!
Light ions: Deuteron and spectator tagging

- Deuteron, incl. polarized
 - pn wave function simple, known well
 - incl. light-front WF for high-energy procs
 - Neutron spin–polarized
 - Intrinsic Δ isobars suppressed by isospin $= 0$
 - $|\text{deuteron}\rangle = |pn\rangle + \epsilon|\Delta\Delta\rangle$ negligible
 - 3He spin structure distorted by Δ's
 - Guzey, Strikman, Thomas et al 01

- Spectator nucleon tagging
 - Identifies active nucleon
 - Controls configuration through recoil momentum:
 - Spatial size, $S \leftrightarrow D$ wave
 - Typical momenta \sim few 10 – 100 MeV (rest frame)

Tagging in fixed-target experiments
- CLAS6/12 BONUS, recoil momenta $p = 70$–150 MeV
- JLab12 ALERT, Hall A
Light ions: Deuteron and spectator tagging

\[p_p^\parallel = \frac{1}{2} \left[1 + \mathcal{O} \left(\frac{p_p^{\text{rest}}}{m} \right) \right] \]

- Spectator tagging with colliding beams

 Spectator nucleon moves forward with approx. 1/2 ion beam momentum

 Detection with forward detectors integrated in interaction region and beams optics
 LHC \(pp/pA/AA \), Tevatron \(p\bar{p} \), RHIC \(pp \), ultraperiph. \(AA \)

- Advantages over fixed-target

 No target material, \(p_p^{\text{rest}} \rightarrow 0 \) possible

 Potentially full acceptance, good resolution

 Can be used with polarized deuteron

 Forward neutron detection possible

- Unique physics potential
Theoretical models for tagged DIS \(e + d \rightarrow e' + N + X \)

- **Unpolarized**: Light-front impulse approximation with realistic wave functions, final-state interactions \(x \gtrsim 0.1 \) \(\text{Strikman, CW, PRC97 (2018) 035209} \rightarrow \text{Talk Thursday} \)

- **Tensor-polarized deuteron**: General structure of response including azimuthal-angle dependence, polarization observables \(\text{Cosyn, Sargsian, CW, in progress} \)

- **Diffractive scattering \(x \ll 0.1 \)**: Theory of diffractive deuteron breakup including shadowing and low-momentum FSI \(\text{Guzey, Strikman, CW, in progress} \)

FORTRAN/C++ codes and documentation. Available at: https://www.jlab.org/theory/tag/

Event generators and analysis tools

- **\(e + d \rightarrow e' + p + X \)** event generator: 4-vectors generated in collider frame.
 Includes crossing angle and intrinsic momentum spread in ion beam.
 Fixed-target applications possible \(\text{K. Park, Ch. Hyde} \)

- **Analysis tools**: Neutron structure, on-shell extrapolation

Forward detector model \(\rightarrow \) Following
Tagging with EIC: Unpolarized

- Measure tagged structure functions

 Recoil momentum dependence α_p, p_T

 Uncertainty mainly systematic:
 Steep recoil momentum dependence, beam momentum spread
 LDRD project: Detailed estimates

- Extract free neutron structure

 On-shell extrapolation in $t - m^2 \leftrightarrow |p_{pT}|^2$

 Eliminates nuclear binding and FSI
 Sargsian, Strikman 05

 F_{2n} extracted with few-percent accuracy

- Same measurements could be used to study tagged EMC effect

 Finite $|p_{pT}| \sim$ few 100 MeV

 Theoretical interpretation, EMC \leftrightarrow FSI?
Tagging with EIC: Polarized

- Measure tagged spin asymmetries

 Momentum smearing/resolution effects largely cancel in asymmetry

 Physical asymmetries ~ 0.05-0.1, effective polarization $P_e P_D \sim 0.5$

 Possible with int lumi \sim few 10 fb$^{-1}$

- Extract neutron spin structure

 D-wave drops out at $p_{pT} = 0$: Neutron 100% polarized

 Asymmetry depends weakly on off-shellness $t - m^2 \sim |p_{pT}|^2$

 On-shell extrapolation of asymmetry

- Same measurements can be used to study spin-dep EMC effect

Cosyn, CW arXiv:1902.03678
Tagged EMC studies with EIC*

- Recoil momentum dep of tagged structure fns
 What momenta/distances cause modification?
 Connection with NN short-range correlations?
 Separate EMC ↔ FSI?

- Neutron tagging and modified proton structure
 Free proton structure known, serves as reference point
 Should be possible with forward neutron detectors.

- Vector-polarized tagged structure functions
 S vs. D waves, polarization observables.
 Spin-orbit effects in ϕ_p dependence.

- Tensor-polarized tagged structure functions
 Certain ϕ_p harmonics specific to tensor polarization, provide unique signal.
 Pure $N = 2$ effect. Complements inclusive b_1 structure function measurements.

* EIC will also enable non-tagged EMC measurements. Opportunities, specific challenges, need for discussion!
Tagged EMC studies with EIC II

- Tagging Δ isobars

 Tagged DIS $e + d \rightarrow e' + \pi + N$, reconstruct Δ from πN

 Direct demonstration of non-nucleonic degrees of freedom
 → Talk Strikman

- Tagging with complex nuclei $A > 2$

 Could test isospin dependence and/or universality of bound nucleon structure
 $(A - 1)$ ground state recoil, e.g. 3He ($e, e' d$) X

 Theoretically challenging, cf. experience with quasielastic breakup

- Tagged exclusive processes — meson production, DVCS

 Nuclear generalized parton distributions (GPDs).
 Measurements benefit from simpler final state, constrained kinematics (\rightarrow FSI).

 Includes nuclear coherent processes $A \rightarrow A$
EIC simulations: Forward detection

- Forward detector integrated in IR and beam optics

 Protons/neutrons/fragments travel through ion beam quadrupole magnets

 Dispersion generated by dipole magnets

 Detection using forward detectors — Roman pots, ZDCs

 Tagging studies: Full acceptance, proton momentum resolution longit $\delta p/p \sim 10^{-3}$, angular $\delta \theta \sim 0.2$ mrad

 P. Nadel-Turonski, Ch. Hyde et al.

- Intrinsic momentum spread in ion beam

 Transverse momentum spread $\sigma \sim$ few 10 MeV

 Smearing effect $p_{pT}(\text{vertex}) \neq p_{pT}(\text{measured})$, partly corrected by convolution

 Dominant systematic uncertainty in tagged neutron structure measurements. Correlated, x and Q^2-independent.

 JLab LDRD
Summary

- Light-ion physics program with EIC has great potential, should be developed & articulated at same level as ep and eA(heavy)

- Spectator tagging permits nuclear DIS in controlled nuclear configuration: Neutron structure, EMC effect, coherent phenomena

- Interesting theoretical challenges

 Intersection of low-energy nuclear structure and high-energy scattering

 Workshop “Polarized light ion physics with EIC”, 5-9 Feb 2018, Ghent U, Belgium [webpage]

 Progress with final-state interactions, polarized deuteron, diffraction and shadowing

- Ready for simulations with next-generation physics models

 JLab 2014/15 LDRD project. Physics model codes publicly available at [webpage]. Open for collaboration!

- Needs further development/model implementation of forward detector