Opportunities for tagged EMC studies with EIC

C. Weiss (JLab), 2nd SRC/EMC Workshop, MIT, 20-23 Mar 2019

Light ion physics at EIC Energy, luminosity, polarization, detection Physics objectives

• Deuteron and spectator tagging Theoretical models

EIC simulations unpolarized/polarized

- Tagged EMC studies with EIC
 Proton tagging & momentum dependence
 Neutron tagging
 Polarized deuteron vector/tensor
 A > 2 nuclei and breakup
 - Exclusive processes

EIC simulations: JLab 2014/15 LDRD

W. Cosyn, V. Guzey, D. Higinbotham, Ch. Hyde, K. Park, P. Nadel-Turonski, M. Sargsian, M. Strikman, C. Weiss* [Webpage]

Theory: Continuing effort Strikman, CW, PRC97 (2018) 035209 [INSPIRE] + in preparation

Light ions: EIC capabilities

• CM energy $\sqrt{s_{ep}}\sim$ 20–100 GeV

Factor $\sqrt{Z/A}$ for nuclei DIS at $x\gtrsim 10^{-3}$, $Q^2\lesssim 10^2~{\rm GeV^2}$

• Luminosity $\sim 10^{34}\,{\rm cm}^{-2}\,{\rm s}^{-1}$

Exceptional configurations in target Multi-variable final states Polarization observables

- Polarized protons and light ions
 eRHIC: pol ³He
 JLEIC: pol d and ³He with figure-8
- Forward detection of p, n, A

Diffractive and exclusive processes Nuclear breakup and spectator tagging Coherent nuclear scattering

Light ions: Physics objectives

[Nucleus rest frame view]

• Neutron structure

Flavor decomposition of PDFs/GPDs/TMDs, singlet vs. non-singlet QCD evolution, polarized gluon

Eliminate nuclear binding, non-nucleonic DOF!

• Nucleon interactions in QCD

Nuclear modification of quark/gluon densities Short-range correlations, non-nucleonic DOF QCD origin of nuclear forces

Associate modifications with interactions!

• Coherent phenomena in QCD

Coherent interaction of high–energy probe with multiple nucleons, shadowing, saturation

Identify coherent response!

Common challenge: Many possible nuclear configurations during high-energy process. Need to "control" configurations!

Light ions: Deuteron and spectator tagging

• Deuteron, incl. polarized

pn wave function simple, known well incl. light-front WF for high-energy procs

Neutron spin-polarized

 $\begin{array}{l} \mbox{Intrinsic } \Delta \mbox{ isobars suppressed by isospin} = 0 \\ |\mbox{deuteron}\rangle = |pn\rangle + \epsilon |\Delta\Delta\rangle \mbox{ negligible} \\ \mbox{3He spin structure distorted by } \Delta' \mbox{s} \\ \mbox{Guzey, Strikman, Thomas et al } 01 \end{array}$

• Spectator nucleon tagging

Identifies active nucleon

Controls configuration through recoil momentum: Spatial size, S \leftrightarrow D wave

Typical momenta \sim few 10 – 100 MeV (rest frame)

Tagging in fixed-target experiments CLAS6/12 BONUS, recoil momenta p= 70-150 MeV JLab12 ALERT, Hall A

[Nucleus rest frame view]

Light ions: Deuteron and spectator tagging

• Spectator tagging with colliding beams

Spectator nucleon moves forward with approx. $1/2 \mbox{ ion beam momentum}$

Detection with forward detectors integrated in interaction region and beams optics LHC pp/pA/AA, Tevatron $p\bar{p}$, RHIC pp, ultraperiph. AA

Advantages over fixed-target
 No target material, *p*_p[rest] → 0 possible
 Potentially full acceptance, good resolution
 Can be used with polarized deuteron

Forward neutron detection possible

• Unique physics potential

 $p_{p\parallel} = \frac{1}{2} \left[1 + \mathcal{O}\left(\frac{p_p[\text{rest}]}{m}\right) \right]$

[Collider frame view]

Tagging with EIC: Tools and results

Theoretical models for tagged DIS $e + d \rightarrow e' + N + X$

- Unpolarized: Light-front impulse approximation with realistic wave functions, final-state interactions $x\gtrsim 0.1$ Strikman, CW, PRC97 (2018) 035209 \rightarrow Talk Thursday
- Vector-polarized deuteron: Light-front impulse approximation with deuteron spin structure, polarization observables Frankfurt, Strikman NPA405, 557 (1983). Cosyn, CW, arXiv:1902.03678; in progress
- Tensor-polarized deuteron: General structure of response including azimuthal-angle dependence, polarization observables Cosyn, Sargsian, CW, in progress
- Diffractive scattering $x\ll 0.1$: Theory of diffractive deuteron breakup including shadowing and low-momentum FSI Guzey, Strikman, CW, in progress

FORTRAN/C++ codes and documentation. Available at: https://www.jlab.org/theory/tag/

Event generators and analysis tools

- $e + d \rightarrow e' + p + X$ event generator: 4-vectors generated in collider frame. Includes crossing angle and intrinsic momentum spread in ion beam. Fixed-target applications possible K. Park, Ch. Hyde
- Analysis tools: Neutron structure, on-shell extrapolation

Forward detector model \rightarrow Following

Tagging with EIC: Unpolarized

• Measure tagged structure functions

Recoil momentum dependence $\alpha_p, \boldsymbol{p}_T$

Uncertainty mainly systematic: Steep recoil momentum dependence, beam momentum spread LDRD project: Detailed estimates

• Extract free neutron structure

On-shell extrapolation in $t-m^2 \leftrightarrow |oldsymbol{p}_{pT}|^2$

Eliminates nuclear binding and FSI Sargsian, Strikman 05

 F_{2n} extracted with few-percent accuracy

• Same measurements could be used to study tagged EMC effect

Finite $|oldsymbol{p}_{pT}| \sim$ few 100 MeV

Theoretical interpretation, EMC \leftrightarrow FSI?

Tagging with EIC: Polarized

• Measure tagged spin asymmetries

Momentum smearing/resolution effects largely cancel in asymmetry

Physical asymmetries \sim 0.05-0.1, effective polarization $P_eP_D\sim 0.5$

Possible with int lumi \sim few 10 fb $^{-1}$

• Extract neutron spin structure

D-wave drops out at $p_{pT} = 0$: Neutron 100% polarized

Asymmetry depends weakly on off-shellness $t-m^2 \sim |{\bm p}_{pT}|^2$

On-shell extrapolation of asymmetry

• Same measurements can be used to study spin-dep EMC effect

Tagged EMC studies with EIC*

• Recoil momentum dep of tagged structure fns

What momenta/distances cause modification? Connection with NN short-range correlations? Separate EMC \leftrightarrow FSI?

• Neutron tagging and modified proton structure

Free proton structure known, serves as reference point Should be possible with forward neutron detectors.

• Vector-polarized tagged structure functions

S vs. D waves, polarization observables. Spin-orbit effects in ϕ_p dependence.

• Tensor-polarized tagged structure functions

Certain ϕ_p harmonics specific to tensor polarization, provide unique signal. Pure N = 2 effect. Complements inclusive b_1 structure function measurements.

* EIC will also enable non-tagged EMC measurements. Opportunities, specific challenges, need for discussion!

Tagged EMC studies with EIC II

• Tagging Δ isobars

Tagged DIS $e+d \rightarrow e'+\pi+N,$ reconstruct Δ from πN

Direct demonstration of non-nucleonic degrees of freedom \rightarrow Talk Strikman

• Tagging with complex nuclei A>2

Could test isospin dependence and/or universality of bound nucleon structure (A - 1) ground state recoil, e.g. 3He (e, e' d) X

Theoretically challenging, cf. experience with quasielastic breakup

• Tagged exclusive processes — meson production, DVCS

Nuclear generalized parton distributions (GPDs). Measurements benefit from simpler final state, constrained kinematics (\rightarrow FSI).

Includes nuclear coherent processes $A \rightarrow A$

EIC simulations: Forward detection

• Forward detector integrated in IR and beam optics

Protons/neutrons/fragments travel through ion beam quadrupole magnets

Dispersion generated by dipole magnets

Detection using forward detectors — Roman pots, ZDCs

Tagging studies: Full acceptance, proton momentum resolution longit $\delta p/p \sim 10^{-3}$, angular $\delta \theta \sim 0.2$ mrad P. Nadel-Turonski, Ch. Hyde et al.

• Intrinsic momentum spread in ion beam

Transverse momentum spread $\sigma \sim {\rm few} \; 10 \; {\rm MeV}$

Smearing effect $p_{pT}(vertex) \neq p_{pT}(measured)$, partly corrected by convolution

Dominant systematic uncertainty in tagged neutron structure measurements. Correlated, x and $Q^2\text{-indpendent}.\ _{\rm JLab}\ _{\rm LDRD}$

Summary

- Light-ion physics program with EIC has great potential, should be developed & articulated at same level as ep and eA(heavy)
- Spectator tagging permits nuclear DIS in controled nuclear configuration: Neutron structure, EMC effect, coherent phenomena
- Interesting theoretical challenges

Intersection of low-energy nuclear structure and high-energy scattering Workshop "Polarized light ion physics with EIC", 5-9 Feb 2018, Ghent U, Belgium [webpage]

Progress with final-state interactions, polarized deuteron, diffraction and shadowing

- Ready for simulations with next-generation physics models JLab 2014/15 LDRD project. Physics model codes publicly available at [webpage]. Open for collaboration!
- Needs further development/model implementation of forward detector