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Outline

What are nonnucleonic degrees of freedom 
responsible for the EMC effect

The Hunting of the Snark (Δ’s) 
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Can account of Fermi motion describe the EMC effect?

YES
If one violates baryon charge conservation 

or momentum conservation or both
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Generic models of the EMC effect 

RA(x,Q
2) = 1� �Anx

1� x

extra pions  - λπ ~ 6% -for fitting Jlab and SLAC data  ~ 6%

+ enhancement for x<0.1from scattering off nuclear pion field with  απ~  0.15

6 quark configurations in nuclei with probability P6q~ 20-30%

◉

◉

◉

Color screening model - small swelling - enhancement of  
deformation at large x due to suppression of small size configurations 
in bound nucleons with effect roughly ∝	knucl2			next	few	
slides

Nucleon swelling - radius of the nucleus is  20--15% larger in nuclei. Color 
is significantly delocalized in nuclei

Larger size →fewer fast quarks - possible mechanism: gluon radiation  
starting at lower Q2

◉
(1/A)F2A(x,Q

2) = F2D(x,Q2⇠A(Q
2))/2
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Very few models of the EMC effect survive  when constraints due to the 
observations of the SRC, no enhancement of antiquarks, etc  are included - 
essentially one generic scenario - strong deformation of rare configurations 
in bound nucleons increasing with nucleon momentum  and with most of 
the effect due to the  SRCs. 

Models  with modification of rare configurations in bound nucleons
 addresses the paradox:  

evidence that the EMC effect is due to SRC

evidence that the SRCs are 90% nucleons

VS

since these models require a small nonnucleonic component — few % 

Price to pay — large modification of  rare configurations responsible for F_2 at x> 0.5. 

EMC effect for x=0.5 for Ca/(p+n)  ~ 12% while probability of SRC ~20%. 

Huge effect for scattering of SRC even if scattering off mean field gives 20 - 30%



 Nucleon in quark configurations of a size << average 
size  should interact much weaker than in average.  
Application of the variational principle indicates that  
probability of such configurations in bound nucleons 
should be  suppressed (as it leads to stronger overall 
attraction) and effect should grow with virtuality of the nucleon.

We estimated the effect in the perturbation theory over the 
difference  of the configuration dependent and average potentials 

Relevant for the EMC effect if large x configurations 
in nucleon have smaller than average size (evidence from pA LHC 
experiments and PHENIX (RHIC) - will briefly discuss later.
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Introducing in the wave function of the nucleus explicit 
dependence  of the internal variables 

In the first order perturbation theory for V << U using closure 
we find 
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As above, ⟨UA⟩ is the average potential energy per nucleon (⟨UA⟩A≫1 ≈ − 40 MeV). ∆EA ≈ MN∗ − MN = (0.3 −
0.5) GeV is the energy typical for nucleon excitations within the nucleus. (∆ED ! 2(m∆ − mN) ∼ 0.6 GeV) since due
to the zero isospin of the deuteron, the ∆N component in the deuteron wave function is forbidden.)

To estimate the deformation of the bound nucleon wave function let us consider the model where the interaction
between nucleons is described by a Schrödinger equation with potential V (Rij , yi, yj) which depends both on the
internucleon distances (spin and isospin of nucleons) and the inner variables yi and yj , where yi characterizes the
quark-gluon configuration in the ith nucleon [cf. eqs. (2.36) and (2.37)],

⎡

⎣− 1
2mN

∑

j

∇2
i +

∑

i,j

′
V (Rij , yi, yj) +

∑

i

H0(yi)

⎤

⎦ψ(yi, Rij) = Eψ(yi, Rij). (2.39)

Here H0(yi) is the Hamiltonian of a free nucleon. In the nonrelativistic theory of the nucleus the internucleon
interaction is averaged over all yi,j . Thus the nonrelativistic potential U(Rij) is related to V as

U(Rij) =
∑

yi,yj ,ỹi,ỹj

⟨ϕN(yi)ϕN(yj)|V (Rij , yi, yj , ỹi, ỹj)|ϕN(ỹi)ϕN(ỹj)⟩, (2.40)

where ϕN(y) is a free nucleon wave function. We have written explicitly the internal variables for the nucleon before
(yi) and after (ỹi) the interaction. In the following we will suppress tilda’s. Due to the existence of a small parameter
(eq. 2.38) we estimate the deformation of the wave function of the ith nucleon in the nucleus in lowest order in the
potential

∑′
j [V (Rij , yi, yj) − U(Rij)] and neglect the deformation of the other nucleons (effect ∼ κ2). (The prime on∑

indicates that the term with j = i should be omitted.) The unperturbed wave function is the solution of eq. (2.39)
with the potential V replaced by U . The correction to the ground state wave function of a nucleus when nucleon i is
in a plc is as follows:

δψ0|ri≪rN =
∑

n̸=0

|ψn⟩⟨ψn|
∑

j

′ (V − U)
E0 − En

|ψ0⟩ ≈ − 1
∆EA

∑

n̸=0

|ψn⟩⟨ψn|
∑

j

′
(V − U)|ψ0⟩

≃
∑

j

′ U(Rij)
∆EA

|ψ0⟩. (2.41)

In the calculation we take out of the sum the factor En − E0 in the mean point, use the definition of the potential U
(eq. 2.40), and apply the closure for the functions |ψn⟩ and the inequality |U | ≫ |V | for a plc in a nucleon [cf. eqs.
(2.36), (2.37)]. It follows from eq. (2.41) that the probability of finding a plc in a bound nucleon i is suppressed by a
factor

δ =
∣∣∣∣
ψ0 + δψ0

ψ0

∣∣∣∣
2

≃ 1 + 2
∑

j

′
U(Rij)/∆EA. (2.42)

We can estimate the average value of the suppression factor δ:

⟨δA⟩ = 1 +
2
A
⟨ψA|

A∑

i,j=1

′U(Rij)
∆EA

|ψA⟩ ≈ 1 +
4⟨UA⟩
∆E

= 1 − 4(⟨k2⟩/2m + εA)
∆EA

, (2.43)

where ⟨k2/2m⟩ is the average kinetic energy of a nucleon in a nucleus, and εA is the average binding energy per
nucleon (εA|A≫1 ≃ 8 MeV). The extra factor 2 in the third of eqs. (2.43) is due to the fact that each term Uij

appears twice in eq. (2.43) but not in the relation (1/A)(T + U) = − εA. Thus we find a considerable numerical
enhancement of ⟨δA⟩ − 1 as compared to the naive estimate ⟨δA⟩ − 1 ∼ κ.

Comment. For heavy nuclei the contribution of one-pion exchange to ⟨0|U |0⟩ is largely cancelled due to its tensor
nature. Therefore we expect that for large A, ⟨0|V (ri, R)|0⟩ decreases with ri faster than r2

i for a large range of
ri < rN (cf. eq. 2.37).

For applications one needs δA(k), i.e. the suppression of plc in a bound nucleon with momentum k. It follows from
the Schrödinger equation for ψ0 that

δA(k2) ≈ 1 − 4(k2/2m + εA)/∆EA. (2.44)
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For average configurations in nucleon (V ≃ U) no deformations 

δ(p,Eexc) =
✓
1� p2int�m2

2ΔE

◆�2

�D(p) =

0

@1 +
2 p2

2m + ✏D

�ED

1

A
�2

Momentum space general case

effect ∝ virtuality
 7

�EA = mN⇤ �mN

      modification of average properties of bound nucleons  is < 2- 3 %➠

pint = MA � pA�1



Dependence of the modification of bound nucleon pdf on virtuality is a 
generic effect — the discussed mechanism - explains why effect is large 
for large x and practically absent for  x~ 0.2 (average configurations 
V(conf) ~ <V>)

Nature CLAS + MS

Model leads to universal shape and A-dependence of  deviation of the EMC ratio from one 

universality extend to x=0.8 where Fermi motion is important - another   
indication of dominance of  SRCs as Fermi motion is dominated by SRC 
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FIG. 2: | Universality of SRC pair quark distributions. The EMC e↵ect for di↵erent nuclei, as observed in (left) ratios of
FA
2 /F d

2 as a function of xB and (right) the modification of SRC pairs, as described by the right-hand side of Eq. 2. Di↵erent
colors correspond to di↵erent mass-number nuclei, as indicated by the color scale on the right. The open circles are the SLAC
data of [9] and the open squares are the Je↵erson Lab data of [10]. The nucleus-independent (universal) behavior of the SRC
modification, as predicted by the np-SRC dominance model, is clearly observed. The gray bands in both figures show the
median normalization uncertainty. See methods for details on the analysis of previous data from Refs. [9, 10].

FIG. 3: | EMC and universal modification function slopes.
The slopes of the EMC e↵ect for di↵erent nuclei from Fig. 2a
(blue) and of the universal function from Fig. 2b (red).

tion corrections for unequal numbers of protons and neu-
trons), in contrast to much published data. We do this
for two reasons, (1) to focus on asymmetric nuclei and
(2) because the isoscalar corrections are model-dependent
and di↵er between experiments [9, 10] (see Methods and
Extended Data Fig. 1). The per-nucleon nuclear struc-
ture function ratios [FA

2 (xB)/A]/[F d
2 (xB)/2] is assumed

to equal the per-nucleon cross section ratios (see Meth-
ods) [2, 7]. The ratio of structure functions F

A
2 /F

d
2 is

related to the ratio of the quark momentum distribu-
tions in nucleus A and deuterium [2, 7]. The magni-
tude of the EMC e↵ect is defined by the slope of ei-
ther the cross section or the structure function ratios for
0.3  xB  0.7. The typical normalization uncertainty
of 1–2% introduces a negligible slope uncertainty.

We determined the relative probability for a nucleon to
belong to an SRC pair, a2, from the average value of the
inclusive QE electron-scattering per-nucleon cross section
ratios of nucleus A compared to deuterium at momentum

transfer Q2
> 1.5 GeV2 and 1.5  xB  2 (the red lines

in Fig. 1(right), see Methods for details).
Motivated by the correlation between the size of the

EMC E↵ect and the SRC pair density (a2), we model
the modification of the nuclear structure function, FA

2 ,
as due entirely to the modification of np-SRC pairs.
F

A
2 is therefore decomposed into contributions from un-

modified mean-field protons and neutrons (the first and
second terms in Eq. 1), and np-SRC pairs with modified
structure functions (third term):

F
A
2 = (Z � n

A
SRC)F

p
2 + (N � n

A
SRC)F

n
2 + n

A
SRC(F

p⇤
2 + F

n⇤
2 )

= ZF
p
2 +NF

n
2 + n

A
SRC(�F

p
2 +�F

n
2 ),

(1)

where nA
SRC is the number of np-SRC pairs in nucleus A,

F
p
2 (xB , Q

2) and F
n
2 (xB , Q

2) are the free proton and neu-
tron structure functions, F p⇤

2 (xB , Q
2) and F

n⇤
2 (xB , Q

2)
are the average modified structure functions for protons
and neutrons in SRC pairs, and �F

n
2 = F

n⇤
2 � F

n
2 (and

the same for �F
p
2 ). F

p⇤
2 and F

n⇤
2 are assumed to be the

same for all nuclei. In this simple model, nucleon motion
e↵ects [1–3], which are also dominated by SRC pairs due
to their high relative momentum, are folded into �F

p
2

and �F
n
2 .

This model resembles that used in [26]. However, that
work focused on light nuclei and did not determine the
shape of the modification function. Similar ideas us-
ing factorization were discussed in [1], for example [27]
where a model-dependent ansatz for the modified struc-
ture functions was shown to be able to describe the EMC
data. The analysis presented here is the first data driven
determination of the modified structure functions for nu-
clei from 3He to lead.
Since there are no model-independent measurements of

F
n
2 , we apply Eq. 1 to the deuteron, allowing us to rewrite

F
n
2 as F d

2 �F
p
2 �n

d
SRC(�F

p
2 +�F

n
2 ) and rearrange Eq. 1

�eA(x,Q
2)/�eD(x,Q2)� 1 = (a2(A)� 1)f(x,Q2)
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relative probabilityy of NN

 (mostly pn) SRC in nucleus and 
deuteron



Assuming that suppression is small for x≤ 0.45, grow linearly 
between x=0.45 and 0.65 and equal to δA(k) at larger x gives a 
reasonable description of the data within the model with SRCs with 
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FIG. 5: (Color online.) EMC ratios with and without the color screening model of medium
modifications. Q2 = 10 GeV2, and data and nucleonic structure function parametrizations

are as in Fig. 3.

The nucelon, after all, has an overall neutral color charge, so any color interaction between
nucleons owes to higher moments (dipole, quadrupole, etc.), which decrease with distance
between the color-charged constituents. Moreover, it can be shown by the renormalizability
of QCD that meson exchange between nucleons, one of which is in a PLC, is suppressed[49].

Since nucleons in an average-sized configuration (ASC) and a PLC will interact differently,
the probability that the nucleon can be found in either configuration should be modified by
the immresion of a nucleon in the nuclear medium. In particular, PLCs are expected to
be suppressed compared to ASCs since the bound nucleon will assume a configuration that
maximizes the binding energy and brings the nucleus to a lower-energy ground state. The
change in probability can be estimated using non-relativistic perturbation theory, as has
been done in Refs. [1, 49]. What is found is that the light cone density matrix should be
modified by a factor δA(k2), which depends on the nucleon momentum (or virtuality) as

δA(k
2) =

1

(1 + z)2
(34)

z =
k2

mp
+ 2ϵA

∆EA
. (35)

In analogy with electric charge screening, this is called the color screening model of the
EMC effect. We shall use it as an example of accounting for medium modifications when
calculating dijet cross sections.

Since the suppression factor depends on the total nucleon momentum rather than just
the light cone momentum fraction α, it is necessary to use the three-dimensional light cone
density ρ(α,pT ) when applying the color screening model. Moreover, since the suppression
of PLCs depends on inter-nucleon dynamics, it is expected not just that the parameters of
δA(k2) should vary with the nucleus considered, but with whether the nucleons are moving
in the mean field or are in an SRC. For a nucleon in the mean field of a heavy nucleus,
we expect the excitation energy ∆EA to be in the range 300 − 500 MeV, namely between
the excitation energies of a ∆ and an N∗ resonance. The best bit to data appears to be
with the N∗ excitation energy ∆EA ≈ 500 MeV. However, for the deuteron, as well as for a
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!9

F2A(x,Q
2) =

Z
F bound
2N (x/↵, Q2)⇢NA (↵, pt)

d↵

↵
d2pt

Allows to predict x > 1 tail.  Important already x=1 is interesting since it probes in this 
limit SRCs

<α> = χ+ 0.5



interesting to measure  tagged structure functions where modification is 
expected to increase quadratically with tagged nucleon momentum. It is 
applicable for searches of the form factor modification in (e,e’N). If  an effect is 
observed  for say 200 MeV/c - go to 400 MeV/c and see whether the effect 
would increase by a factor of ~3-4.

1� F bound
2N (x/↵, Q2)/F2N (x/↵, Q2) = f(x/↵, Q2)(m2 � p2int)

Here α is the light cone fraction of interacting nucleon

Tagging  of  proton and neutron in  e+D→e+ backward 
N +X (lab frame).

↵spect = (2� ↵) = (EN � p3N )/(mD/2)

 10

γ

D
p

Collider kinematics -- nucleons with pN>pD/2 - C.Weiss talk, 
Jlab experiments -L. Weinstein’s talk 

“Gold plated test”  FS 83-85
*



Tagging combined with detection of forward pions for flavor separation 

⟹ Separate EMC effect for u and d quarks in the proton/neutron.  
Maybe rather different  as d/u strongly changes with x

11
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Extended Data Fig. 1: Fn
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2 Models. The ratio of neutron to proton structure functions, Fn
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2 , derived from the
np-dominance SRC model (blue band), assumed in the isoscalar corrections of Refs. [9] (red line) and [10] (green line), and
derived in the CT14 global fit [36], shown here for Q2 = 10 GeV2 (grey band). The large spread among the various models
shows the uncertainty in Fn

2 , a key ingredient in the isoscalar corrections previously applied to the EMC e↵ect data.
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Extended Data Fig. 2: E↵ects of Isoscalar Corrections. The per-neutron and per-proton EMC-slope predictions
of Eq. 12 for the various nuclei shown in Fig. 4 of the main text, without (red squares) and with (blue circles) applying
self-consistent isoscalar corrections.

correcting for the EMC effect 
based on pn src dominance



is the EMC effect the same for S and D waves?  Different interactions in S and 
D wave —> different sensitivity to the size of configurations. 

Tagging with polarized deuteron: 

is the EMC effect  the same for parallel and antiparallel helicities 
 of quark and nucleon ?

Topic for further exploration: pattern of f.s.i. - change of spectator rate, momentum 
distortions. Needs further studies (C.Weiss  talk)

tagging for A>2 — can produce backward nucleon 
 in a final state scattering off NN SRC.

example: neutrino experiment off Ne and D

Different EMC effect for                     
�u = �D/2

�u = ��D/2 �d = ��D/2

�d = �D/2



Interesting  possibility - EMC effect maybe missing some significant 
deformations which average out when integrated over the angles 

A priori the deformation of a bound nucleon can also depend on the  angle 
φ between the momentum of the struck nucleon and the reaction axis as 

Here <σ> is cross section averaged over φ and  dΩ is  the phase volume 
and the factor  c characterizes non-spherical deformation. 

d�/d⌦/ < d�/d⌦ >= 1 + c(p, q).

Optimistic possibility - EMC effect maybe missing some significant 
deformations  

A priori the deformation of a bound nucleon can also depend on the  angle φ 
between the momentum of the struck nucleon and the reaction axis as 

Here <σ> is cross section averaged over φ and  dΩ is  the phase volume and the 
factor  c characterizes non-spherical deformation. 

Such non-spherical polarization  is well known in atomic physics (discussion with 
H.Bethe). Contrary to  QED detailed calculations of this effect  are not possible 
in QCD.    However, a qualitatively similar deformation of the bound nucleons 
should arise  in QCD. One may expect that the  deformation of bound nucleon 
should be maximal in the  direction of radius vector between two nucleons of 
SRC.

d�/d⌦/ < d�/d⌦ >= 1 + c(p, q).

Such non-spherical polarization  is well known in 
atomic physics (discussion with H.Bethe). In 
difference from QED detailed calculations of this 
effect  are not possible in QCD.    However, a 
qualitatively similar deformation of the bound 
nucleons should arise  in QCD. One may expect 
that the  deformation of bound nucleon should be 
maximal in the  direction of radius vector between 
two nucleons of SRC.  13
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FIG. 3: (Color online) Rhard
⌫ (RpPb) for pPb collisions at LHC energy, with the values of x and � available to us. Centrality bins

were extracted from the ATLAS data [9] using ⌫ distributions given by the CF model [4, 21]. Experimental errors are combined
statistical and systematic errors, while the shaded bands represent theoretical uncertainties obtained by a minimum-�2 fit
procedure to data.

Deviations from Glauber model for 
production of dijets as a funciton of 
number of wounded nucleons,  
described in the color fluctuation 
model as due to decrease of 
<σeff(x)>/σin   

Data from pA ATLAS

In QCD interaction depends on the size of hadron or configuration in the hadron
Expectation: Quarks in nucleon with x>0.5 --0.6 belong to small size configurations 
with  strongly suppressed pion & gluon fields (while pion exchange is critical for SRC 
especially D-wave.).  Test we suggested in 83 is to measure number of wounded 
nucleons, ν,  in pA collisions  for hard trigger with large x.
Prediction: . drop of ν, with increase of x. Observed at LHC and RHIC.
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Similar analysis with DAu 
RHIC jet production data at 

zero rapidity and high pT.
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FIG. 4: (Color online) Rhard
⌫ (RCP ) for dAu collisions at RHIC energy, with the values of x and � available to us. Centrality

bins were extracted from the PHENIX data [27] using ⌫ distributions given by the CF model [4, 21]. Experimental errors are
combined statistical and systematic errors, while the shaded bands represent theoretical uncertainties obtained by a minimum-
�2 fit procedure to data.
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p
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Implicit eqn for relation of λ(xp, s1 ) and λ(xp, s2 ) 

4

cleon at resolution scales Q2 / 1/⇢ and xp ⇠ Q2/s. At
large Q2, g grows quickly with decreasing xp, resulting
in an increase of the cross-section (and of �(xp) at fixed
xp) for these small configurations with increasing colli-
sion energy. However, this increase is slower than what
is observed for perturbative processes, such as J/ pho-
toproduction [13]. Thus the interaction at high energies
may be thought of as lying between the perturbative and
non-perturbative domains, suggesting that chiral sym-
metry is restored for the probed components of the light
cone proton wave function. Finally, the fast growth of
the cross section for small configurations is consistent
with the expected narrowing of the PN (�) distribution
at increasing collision energies [30].

A consistency check of our results can be performed
under the assumption that the probability to find a con-
figuration with some large xp is the same at two collision
energies

p
s1 and

p
s2. If the fluctuations in �(xp) are

small such that, at fixed xp, there is a one-to-one corre-
spondence between �(xp) at two di↵erent energies, one
may express this as the probability to find a configuration
with cross section smaller than �(xp)�tot,

Z �(xp;
p
s1)�tot(

p
s1)

0
d� PN (�;

p
s1) =

Z �(xp;
p
s2)�tot(

p
s2)

0
d� PN (�;

p
s2),

(4)
which along with Eq. (1) is an implicit equation for the
energy dependence of �(xp) at fixed xp.

Starting with the LHC results for �(xp), we use Eq. 4
to systematically predict �(xp) at RHIC energies at the
same values of xp, and vice versa. Fig. 3 shows the re-
sults of this check. For xp

>⇠ 0.15, the relationship be-
tween the extracted �(xp) values at RHIC and LHC ener-
gies is consistent with that predicted by Eq. 4. At lower
xp, this method predicts a larger di↵erence in �(xp) at
the two energies than is extracted in data, suggesting
that our model does not provide a complete description
of color fluctuation phenomena in this xp range (for ex-
ample, since it ignores a possible parton flavor depen-
dence). Using the parameterization for PN (�) at the
lower, fixed–target energies given in Ref. [23], one finds
that �(xp ⇠ 0.5) ⇡ 0.38 at

p
s = 30 GeV.

Recently, data on 200 GeV proton–gold collisions were
recorded at RHIC, allowing for a further test of our
model. Using the same parameters which relate ⌫ to the
hadronic activity as in the d+Au data, we calculate the
distributions of ⌫ in example centrality bins and the RCP

values for hard triggers with di↵erent ranges of xp. These
predictions are summarized in Fig. 2. As also argued in
Ref. [29], the magnitude of the observable e↵ect should
be larger than in the d+Au data, where it is expected to
be washed out by the additional projectile nucleon.

The global analysis presented in this Letter quanti-
tatively extends our initial interpretation of the LHC
data on forward jet production in p+A collisions as aris-
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FIG. 3. Extracted values of �(xp) as a function of xp at
RHIC and LHC energies (solid points), with exponential fits
shown as dashed lines to guide the eye. The shaded bands
are a prediction for �(xp) at each energy using the results at
the other energy as input (see text).

ing from an xp-dependent decrease in the interaction
strength of proton configurations [2], and demonstrates
that the same picture successfully describes RHIC data
on large-xp jet production. Our analysis finds that the
suppression of the interaction strength is stronger at
lower energies, consistent with expectations from QCD
that cross-sections for small configurations grow faster
with energy than do those for average configurations.
Measurements of other processes arising from a di↵erent
mixture of large-xp quarks and gluons (e.g. Drell-Yan or
electroweak processes) would allow for a comparison of
quark- vs. gluon-dominated configurations. Analogous
studies in ultraperipheral collision data [31] may probe
color fluctuations in the photon wavefunction.

Our conclusions also have implications for understand-
ing features in the quark–gluon structure of nuclei such
as the observed suppression of the nuclear structure func-
tion at large-x, commonly known as the EMC e↵ect [32].
Since nucleons in a configuration with a large-x parton
are weakly interacting and the strength of the interaction
at fixed x falls at lower energies, it is natural to expect
that such configurations interact very weakly with other
nucleons at the energy ranges relevant for nuclei. In the
bound nucleon wavefunction, such weakly interacting nu-
cleon configurations are strongly suppressed [12]. Thus,
this picture suggests a natural explanation for the ob-
served suppression of partons in the EMC e↵ect region.

We thank B. Muller for the suggestion to add predic-
tions for p+A running at RHIC within our framework,
A. Mueller for discussion of proton squeezing at large xp,
and J. Nagle for suggestions on the manuscript. L.F.’s
and M.S.’s research was supported by the US Department
of Energy O�ce of Science, O�ce of Nuclear Physics un-
der Award No. DE-FG02-93ER40771.

Highly nontrivial consistency check of interpretation of data at 
different energies and in different kinematics
suggests  λ(xp=0.5, low energy) ~1/4 ). Such a strong suppression 
results in the EMC effect of reasonable magnitude  due to 
suppression of small size configurations in bound nucleons - -
(Frankfurt & MS83) - discussion above.  16



Intermediate states with Δ -isobars.

Often hidden in the potential.  Probably OK for calculation of the  energy 
binding,  energy levels.  However wrong for  high Q2 probes. role of Δ’s -
Explicit calculations of B.Wiringa (1991) reported at Penn State - 
 ~(1/3 —1/2) of  high momentum component  is due to ΔN correlations, 
significant also ΔΔ . Tricky part - match with observables - momentum of   
Δ in the wf and initial state

Large Δ admixture in high momentum component  
⇐

Suppression of NN correlations in kinematics of SRCs  experiment☛
☛ Presence of large ER tail (~ 300 MeV) in the spectral function  

A new quantity to provide even cleaner test of the structure of SRCs- nuclear decay function (FS 77-88) - probability to emit a nucleon with momentum k2  after removal of a fast nucleon with momentum k1, leading to a state with excitation energy Er nonrelativistic definition

Studies of the spectral and decay function of 3He reveal both two nucleon and three nucleon correlations - Sargsian et al 2004

For 2N SRC  can model decay function as decay of a NN pair moving in mean field (like for spectral function  PA)                 Piasetzky et al 06

 Instantaneous removal of one nucleon of 2N SRC leads to release of the second nucleon of SRC with initial momentum (more precisely light cone  fraction and transverse momentum) due to a large difference between the scale of local NN potential and interaction with the rest of the nucleons

☝
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I do not discuss N*’s but they 
may contribute as well

HUNTING for Δ -isobars is nuclei  



Generic feature: distribution of  ΔΔ over relative momenta in the 
deuteron wave function  is broad  similar trend  for  ΔN 

1

2E� �md
=

1

2
p
m2

� + k2 �md

Reason: the energy denominator in difference from NN state  is practically constant  up 
to k ~ mΔ/2


m2

� + k2t
↵(2� ↵)

�m2
d

��1

The same in the light cone formalism

α/2 is the light-cone fraction carried by isobar

Since difference is large  small sensitivity to change of  α:  
change of α from 1 to 1.3:  α(2-α) --- 1  to 0.91   
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Δ-isobars are natural candidate for most important nonnucl. degrees of freedom 
Large energy denominator for NN →NΔ transition 

Expectations during EMC effect rush

VOLUME 51, NUMBER 9 PHYSICAL REVIEW LETTERS 29 AUcUsT 1983

Realistic nuclear Hamiltonians can be written in the form

H =P [-(k'/2ni;)V;'+&n; -mn]+ Q (V,, + V, , "), (10)

where V, , represents the rest of the interaction
(primarily short-range repulsion) between nu-
cleons, and m, =m„(m~} when i is in a nucleon
(6) state. In practice the &(k') and V,.„"are
fitted to the two-nucleon data. In the present
work the realistic Argonne National Laboratory
v„model' of the Hamiltonian (10) is used. The
tensor part of V, , " in this model is consistent
with the form factor (9) for A = 7 fm '.
The ground-state wave function is calculated

exactly for the deuteron, and by the variational
method' for nuclear matter. The variational
wave functions include 4 components generated
by correlation operators" containing transition
spins and isospins S and T. Techniques for cal-
culating expectation values of two-body opera-
tors such as 6e,-, ' are discussed in Refs. 9 and
10.
The (6n") calculated in SPA with the full Ham-

iltonian (10) is 0.18/nucleon in nuclear matter at
k F =1.33 fm '. This value is much less than the
perturbative estimates obtained for the model
Hamiltonian in which V;,. is neglected (Table I,
A. =7 fm ' values). The short-range correlations
induced by V, , reduce (6n") by a large amount,
much greater than the uncertainty introduced by
using the SPA. The main advantages of the SPA
are that (i) models of V;, and A(k') consistent
with the two-nucleon data are available, and (ii)
the many-body calculations can be done nonper-
turbatively. The SPA is more accurate for cal-
culating energies than pion excess; the diagrams
included in Table I give 31.8 MeV (97.2 Me V) in
field theory and 33.0 MeV (113.6 MeV) in SPA
for A. =4.8 fm ' (7.0 fm '). It is also a reasonable

approximation for calculating the scattering of
slow nucleons. "
Our results for the pion excess and the momen-

tum distribution of the excess pions (&n'(k)) are
given in Table II and Fig. 2, respectively. The
A fraction, i.e., the expectation value (n )/A
is also given in Table II. We note that (5n "(k))
is negative at small k, because of the Pauli block-
ing of self-energy processes, and has a large
peak at k -2 fm ', which is mostly due to tensor
contributions through the 1V = 4 diagrams. The
nN~ coupling gives the dominant contribution in
nuclear matter. When 4 states are neglected,
(ht")/& at k„=1.33 fm ' is only 0.04, because
of a cancellation between the N = 2 Pauli blocking
term of -0.05 and higher-order terms that give
+0.09. By contrast, in the deuteron the 4 states
give only & of the calculated (5n').
The results reported in Table II for Al, ' Fe,

and 'O'Pb nuclei are obtained in the local density
approximation using nuclear matter results from
k, =0.93 to 1.43 fm '. The fact that these nuclei
have unequal numbers of neutrons and protons is
ignored. The neutron-proton asymmetry effects
are proportional to [(N —Z}/A J', and are thus
negligible in the present context.
For 'He and 4He we have used the three- and

four-body wave functions calculated' '' with a
Hamiltonian containing the Argonne National Lab-
oratory v„ two-nucleon potential' and the Uni-

0.12

TABLE II. Pion excess and ~ fraction in nuclear
matter (NM) and nuclei.

(Bn )/A

0.08

I

E 00~-

NM, Q F
——0.93

NjVI Q F —1.13
NM, $F—1.33

H
He
"He
7Al
56' e
~OBpb

0.08
p.l2
0.18
0.024
0.05
0.09
0.11
p.l2
0.14

0.03
0.04
0.06
0.005
0.02
0.04
0.04
0.04
0.05

-0.04 I a I

2 -13
K( frn ')

FIG. 2. The calculated values of k (pn~(k))/2~ A are
shown for various systems. (pn")/A is the integral
over p of this quantity.
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appears to be ruled 
out by Drell - Yan data

P (�)

PSRC(N)
⇠ 0.04

0.2

Too high fraction ?

~ 0.2
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➡ Δ’s predominantly in SRCs 
➡ Δ’s much more important  in I=1 (pp,nn)  SRCs 
➡ Δ’s much broader distribution in  momenta ( α,kt)
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As a quasi-free particle, it is supposed to absorb a mo- 

mentum of about 300 MeV/c from the neutrino inter- 

action. The plr + effective mass distributions are shown 

in fig. 1 for two intervals of the combined prr + mo- 
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Fig. 1. Effective mass  distr ibutions o f  wr + combinat ions  for 

u (top) and 5 (bo t tom)  interactions.  The distr ibutions are pre- 

sented for two intervals of  the  combined per ÷ m o m e n t u m :  0 -  

400 and 4 0 0 - 8 0 0  MeV/c. The chosen bin size is 30 MeV]c :2 

= _r(1235)/4. The solid lines show the calculated background 

of  combinat ions  of  a pion with a spectator proton.  The 

do t ted  lines show p rompt  p~r + product ion as obtained from 

v/~-hydrogen data. 

mentum, 0 -400  MeV/c and 400-800 MeV/c. The 

delta spectators should appear only in the first inter- 

val. 

3. Background. Three sources of background to 

the possible delta spectator signal should be taken in- 

to account: 

(1) A++(1236) resonances produced in u/9-proton 

interactions. 

(2) Accidental combinations of positive pions pro- 

duced in u/P-neutron interactions and spectator pro- 

tons. 

(3) Combinations of positive pions and protons, 

where at least one of the particles emerges from a re- 

scattering reaction (secondary vertex) inside the deu- 

teron. 

All sources of background specifically occur in the 

odd-prong event sample. The background evaluation 

which is discussed in more detail in ref. [6], proceeds 

as follows: 

(1) Effective mass values of prr + combinations 

were obtained from the proton events of the ABCMO 

u/P-hydrogen experiment [7] which uses a neutrino 

beam with similar characteristics. The events were 

transformed to account for the Fermi motion of the 

target particle and normalized to the number of pro- 

ton events in deuterium. A weight factor was applied 

to account for the different flux and beam energy as 

experienced by the moving target particle in its rest 

frame. The calculated background is shown as dashed 

curves in fig. 1. It is very small and has little structure 

in the momentum intervals under investigation. Copi- 

ous production of delta resonances in neutrino-pro- 

ton interactions proceeds at higher p~r + momenta. 

(2) The combinatorial background was estimated 

by combining spectators with positive pions produced 

in spectatofless neutron events (even prongs). Since 

spectators emitted in the forward direction of the in- 

teraction cannot be distinguished from protons of 

other sources, a special method was applied to con- 

struct a spectator sample. The sample contained all 

measured backward spectators. Moreover, it con- 

tained a forward spectator derived from each back- 

ward one. The forward spectators were weighted in 

order to account for the difference in beam flux and 

energy as observed by forward and backward moving 

targets. The result of the calculation is automatically 

normalized to the number of events, it is shown as 

solid curves in fig. 1. 
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SEARCH FOR A A(1236)-A(1236) STRUCTURE OF THE DEUTERON 
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An analysis has been made of 15 400 v-d interactions in order to find a A++(1236)--A-(1236) structure of the deuteron. 
An upper limit of 0.2% at 90% CL is set to the probability of finding the deuteron in such a state. 

1. I n t r o d u c t i o n .  It has been suggested that the 

deuteron, part of  its time, exists in a state of  two 

A(1236) resonances [1]. If the probability for this 

state is G, the deuteron should be found with equal 

probabilities G/ 2  in the states A++--A- and A+--A 0 

due to isospin symmetry. The first state can be easily 

detected in a bubble chamber, since it would yield a 

A++(1236) spectator particle in high-energy particle- 

induced reactions on the A - .  A slow proton and a 

slow positive pion would result as decay particles. In- 

vestigations have been performed in various experi- 

ments, yielding generally values of  G below 1% [2,3] 

which is in agreement with a theoretical estimate [4]. 

In all these experiments hadrons were used as incident 

particles. In this letter we use data from a u and 9 ex- 

periment. Neutrinos would interact with a valence 

quark o f  the A -  in a A--A deuteron, leaving a A ++ 

spectator. Antineutrinos would interact with the val- 

ence quarks of  the A++, leaving a A -  spectator that 

cannot be detected in our experiment. The antineu- 

1 Present address: Dipartimento di Fisica, Universith di 
Padova, 1-35131 Padua, Italy. 
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trino data mainly serve as a cross check in the present 

analysis. All A ++ spectators are expected to be found 

in the odd-prong sample of  the experiment. 

2. E x p e r i m e n t a l  analysis.  The experiment was per- 

formed with the bubble chamber BEBC exposed to 

neutrino and antineutrino beams from the CERN SPS 

accelerator. The primary proton energy was 400 GeV. 

Details of the experiment have been given elsewhere 

[5]. For the present study 15 400 neutrino and 11 300 

antineutrino charged-current events were selected by 

requiring a detection of  the secondary muon in both 

layers of  the external muon identifier (EMI). Only 

events with a muon momentum above 4 GeV/c were 

accepted; no other cuts were applied on the sample. 

All protons and pions selected from the final states 

were identified on the scanning table by means of  

bubble density and endpoint characteristics. 

Effective mass distributions of  prr + combinations 

were obtained from the odd-prong neutrino and anti- 

neutrino subsamples, consisting of  8570 and 8500 

events respectively. The A++ spectator must reach its 

mass shell, before becoming visible in the chamber. 

0370-2693/86/$ 03.50 © Elsevier Science Publishers B.V. 

(North-Holland Physics Publishing Division) 
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PD(��)

PD(SRC)
< 0.1

Based on the analysis of 15499 νD interactions
probability to find deuteron in Δ++Δ- state < 0.2% on 90% CL 



  Possible evidence for Δ’s in nuclei

Indications from DESY AGRUS  data (1990) on electron - 
air scattering at Ee=5 GeV (Degtyarenko et al). 

Measured Δ++/p, Δ0/p  for the same light cone 
fraction α.

�(e + A⇥ �0 + X)
�(e + A⇥ �++ + X)

= 0.93± 0.2± 0.3

�(e + A⇤ �++ + X)
�(e + A⇤ p + X)

= (4.5 ± 0.6 ± 1.5) · 10�2

New data are necessary:  many options in Jlab kinematics ? New Jlab 
experiments ? 
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P (�)

PSRC(N)
⇠ 0.1

⇓

Perfect  kinematics for EIC in particular ~e+ ~D ! e+�++ +X(or forward⇡±)

Δ ‘s in 3He on 1% level from Bjorken sum rule for A=3 - Guzey &F&S 96

suppression at α~1 

expect R=1 for 
isosinglet 
nucleus

◉
◉
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☛
PROTON (ANTIPROTON) BEAMS CRITICAL FOR TESTING FACTORIZATION): 
LOOK FOR CHANNELS FORBIDDEN FOR SCATTERING OFF SINGLE 
NUCLEONS BUT ALLOWED FOR SCATTERING OFF EXOTICS: Δ’S 6Q... AT 
LARGE C.M. ANGLES

p + A → ∆++ + p + (A − 1)

Important tool for the analysis:  αΔ < 1 cut as the αΔ distribution is 
broader than αN   distribution. Measuring the strength of charge 
exchange using αΔ = 1range

Background: two step process with charge exchange at the second 
step (drops with pinc)

p

p

p

p

p
n

Δ++

A-2



γ*

D Δ

Looking for Δ ‘s, 6q…. in DIS
spectator mechanism

�eD!e�+X = �e�!X(x/(2� ↵), Q2)
 2
�,�(↵, pt)

2� ↵

p is target rest frame momentum of Δ isobar

α=1, pt=0 corresponds to p3 ~ 300 MeV/c forward - for good acceptance in 
Jlab kinematics necessary to detect slow protons and pions. forward nucleon 
and pion (in the deuteron fragmentation) at EIC (Easy (?)).

Competing mechanism  - Δ’s from nucleon fragmentation

↵� =

p
m2

� + p2 � p3
md/2

Advantage σ(e Δ) can be estimated with a reasonable accuracy in difference 
from                                  e+2H! e+ f orward Δ++ + slow Δ�

=direct mechanism



For scattering of stationary nucleon

↵� < 1� x

xF =
↵�

1� x

Also there is strong suppression for production of slow  Δ’s - larger x stronger 
suppression

�eN!e+�+X / (1� xF )
n, n � 1

Numerical estimate for PΔΔ  =0.4%

Tests possible to exclude rescattering mechanism: πN→Δ FS90

For the deuteron one can reach sensitivity better than 0.1 % for  ΔΔ especially with quark 
tagging  (FS 80-90)
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—  to go where the ducks are

Good hunting and don’t forget  the No.1  rule of duck hunting

Conclusions 


