#### MARATHON ratio analysis

Tyler Kutz Stony Brook University

March 23, 2019

2nd Workshop on Quantitative Challenges in SRC and EMC Research Boston, MA

#### 1. Introduction

- 2. Target density correction
- 3. Radiative correction
- 4. Tritium  $\beta$ -decay correction
- 5. Ratios

#### Introduction

## MARATHON

• Measure  $\sigma(^{3}\mathbf{H})/\sigma(^{3}\mathbf{He})$  to extract  $F_{2}^{n}/F_{2}^{p}$ 

Extraction from deuterium and proton...



- Sensitive to *absolute* magnitude of nuclear effects
- Large model dependence at high x

MARATHON extraction...



- Sensitive to *relative* magnitude of nuclear effects
- Reduced model dependence at high x
- Measure  $\sigma(^{3}H)/\sigma(^{2}H)$  and  $\sigma(^{3}He)/\sigma(^{2}H)$  to observe EMC effect in A = 3 nuclei

## Status of ratio analysis

- Extracting three ratios:
  - ${}^{3}\mathrm{H}/{}^{3}\mathrm{He}\;(F_{2}^{n}/F_{2}^{p},\,d/u)$
  - ${}^{3}\mathrm{H}/{}^{2}\mathrm{H}$ ,  ${}^{3}\mathrm{He}/{}^{2}\mathrm{H}$  (EMC effect)
- Data covers range 0.2 < x < 0.8
- Status of ratio analysis:
  - Ratios show good stability to changes in cuts, corrections
  - Converging on first results for APS April meeting

## Density fluctuation

Credit: Nathaly Santiesteban, et al.



## Model input

Credit: Hanjie Liu

Radiative correction requires input model:

- $F_2^d, F_2^p$ 
  - 1. Bodek
  - 2. NMC 1995 (Phys. Lett. B364 107-115,1995)
- ${}^{3}H$ ,  ${}^{3}He$  EMC ratio
  - 1. Kulagin & Petti (no isoscalar corrections)
  - 2. SLAC EMC (isoscalar)
- SLAC EMC requires  $F_2^n/F_2^p$  to remove isoscalar correction
  - 1.  $F_2^n/F_2^p = 1 0.8x$
  - 2. CJ15
  - 3. NMC 1992 (Nucl. Physics. B 371(1992) 3-31)<sup>1</sup>

Notation example: 122 = Bodek + SLAC EMC + CJ15

<sup>1</sup>Neglects nuclear effects in <sup>2</sup>H; not valid at high x

## Model dependent uncertainty



• Model dependence of EMC ratios  $<\!0.5\%$ 

• Neglecting high-x NMC, model dependence of  ${}^{3}\text{H}/{}^{3}\text{He} < 0.5\%$ 

## Target evolution



- Tritium  $\beta$ -decays with half life  $\tau_{1/2} = 4500 \pm 8$  days
- Parameterize helium contamination by helium fraction:

$$f_H = \frac{n_H(t)}{n_{tot}} = \frac{n_H^0 + n_T^0 (1 - e^{-t/\tau})}{n_{tot}}$$

•  $f_H \approx 3\%$  by end of spring run

#### Correction and uncertainty

Can obtain pure tritium yield in terms of raw yield  $Y_{raw}$  and helium yield  $Y_H$ :

$$Y_T = Y_{raw} \left(\frac{1}{1 - \langle f_H \rangle}\right) - Y_H \left(\frac{\langle f_H \rangle}{1 - \langle f_H \rangle}\right)$$

where  $\langle f_H \rangle$  is charge-weighted helium fraction:

$$\langle f_H \rangle = \frac{\sum Q_i f_{H,i}}{\sum Q_i}$$

Effect on ratios:

- $\langle f_H \rangle \le 2.5\%$
- Uncertainty  $\leq 0.5\%$

Ratio

D/p ratio



#### Ratio

# A = 3 ratios

| \$250     | E12 01                                          | 0 103          | EI02105  | LAE     |
|-----------|-------------------------------------------------|----------------|----------|---------|
| ADMISSION | JLAB TRITIUN                                    | GROUP PRESENTS | EVENT ID | NOS     |
| E12       | FIRST RESULTS<br>FROM<br>MARATHON<br>DENVER, CO |                | E12      | JEFFERS |
| 78RT768   |                                                 |                | ADULT    |         |
| 010       |                                                 |                | 010      |         |
| OZX7 OZ   |                                                 |                | 250 C    | voit    |
| 103       | SUN APR 14,                                     | 2019 1:30 P    | M 103    | 1010010 |
| XI02105   | GOVERNOR'S                                      | SQUARE 14      | 023MAR9  | IOA     |