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PERTURBATION THEORY WITH STRONGLY REPULSIVE FORCES

% A prominent feature of the nucleon-nucleon potential is the presence of
a strong repulsive core
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* depending on the cutoff, xEFT ‘ ‘
interactions also feature )
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* Perturbative calculations of nuclear matter properties can only be
performed using softer effective interactions, obtained from
renormalisation of the bare potential




DOES IT MATTER?

* Deuteron Momentum Distribution
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* AV18 momentum distribution. Arenhovel analysis of exclusive Saclay
data + y-analysis of inclusive SLAC data performed by Ciofi, Pace &
Salme
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* in strongly degenerate systems, such as neutron star matter, the
center-of-mass energy of nucleon-nucleon collisions, Ecw, is simply
related to the particle density, n
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* Potential models used to predict the properties of dense nuclear mater
must be capable to describe nucleon-nucleon collisions at energies well
beyond pion production threshold



INTRODUCING THE EFFECTIVE INTERACTION

* Consider nuclear matter. The eigenstates of H are Fermi gas
states {|nrq)}
* Taming the matrix element of the Hamiltonian

(mpg|HegInrg) (H = Heg)
<TTLFg|H"n,Fg> =

(m|H|n) ({lnra)} = {Im})

> Use the effective Hamiltonian H.g in standard perturbation theory
with Fermi gas basis states, as in the G-matrix approach

> Use the bare Hamiltonian to do perturbative calculations in the new
basis, as in the approach based on Correlated Basis Functions (CBF)
* The effective interaction must be designed in such a way as to
provide accurate estimates of nuclear matter properties at lowest
order of standard perturbation theory



RENORMALISATION OF THE NUCLEON-NUCLEON POTENTIAL

% In the early days of nuclear matter theory, renormalisation was based on
the replacement of the bare interaction, v. with the G-matrix describing
nucleon-nucleon scattering in the nuclear medium

* The G-matrix approach has been extensively employed in conjunction
with phenomenological potentials

* More recently, soft nucleon-nucleon interactions have been obtained
from renormalisation group evolution of potentials derived within yEFT



SCREENING OF THE REPULSIVE CORE

* Renormalisation group evolution essentially amounts to screening the
repulsive core of the potential through the action of a momentum-space
cutoff, A, in momentum space

% Screening can also be implemented in coordinate space, through a
transformation of the basis of eigenstates of the non interacting system
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* Loosely speaking, the role of the momentum cutoff A is played by the
correlation range



THE CBF EFFECTIVE INTERACTION

* The Correlated Basis Function (CBF) formalism is based on the
transformation from Fermi gas (FG) states to correlated states

|npg> — \n) = F\npc) s F = SHfij

Jj>i

* The definition of the CBF effective interaction follows from the
requirement (note: H include both the two- and three-nucleon
potentials)

3 k%
H) = (0|H|0) = 2 =£ .
(H) = (0|H|0) £5 + (0rc|Verr|OFG)

implying
Heg = Ho + Ve = FTHF

* For any given density, the operator F' is determined in such a way as to
reproduce the value of (H) obtained from Quantum Monte Carlo or
Variational FHNC/SOC calculations at third order of the cluster
expansion
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% CBF effective interaction in the 7" = 1 channel at nuclear matter
equilibrium density, obtained from the Argonne vg + UIX nuclear
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E/A [MeV]

* Density dependence of the ground state energy per nucleon of
unpolarized pure neutron matter (PNM) and isopspin-symmetric
nuclear matter (SNM) obtained from the Argonne v + UIX nuclear
Hamiltonian
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* Note that the vs + UIX Hamiltonian, while yielding saturation at
p =~ po = 0.16 fm~?, underestimates the equilibrium energy of SNM by
~ 5 MeV, corresponding to a ~ 15% underestimate of the interaction
energy
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NUCLEAR MATTER ENERGY AND SINGLE-PARTICLE SPECTRUM

* The ground state energy per baryon can be computed at first
order in the effective interaction—that is, in Hartree—Fock
approximation—for fixed baryon density and arbitrary proton
fraction and polarizartions
o 3 K+t 3 AN TN KN 4 na (K)na (K)
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where A =1, 2, 3, 4 corresponds top 1, p |, n 1, n |, and

na(k) = 0(kp, —|k|) , kp, = (32p\)/?

% The same approximation can be employed to obtain the
single-nucleon spectrum and the effective masses
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PRESSURE OF SNM AND SYMMETRY ENERGY

ov 062
80
6ol ASY-FEOS B
E 1AS g J
—~ 40 = n
= -
200 ] j\ I
Z
100 |- . 20 .
L Sn+Sn
— 50 -7 B [
& s ] 0 ! ! ! !
£ ol V. B 0.0 0.5 1.0 1.5 2.0
3 / p/Po
2 10 // =
L 7/
2 5 , =
B /
N /
2 / —
1
1L | | |
1 2 3 4 5



* Energy of unpolarized nuclear matter as a function of baryon density
and proton fraction 0 < x,, < 0.5. The generalization to spin-polarized

matter is straightforward.
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SUMMARY & OUTLOOK

* Screening of nucleon-nucleon interactions in mater can be
efficiently described in coordinate space using the formalism
based on correlated states

* This formalism can be employed to derive a density-dependent
effective interaction—suitable to carry out calculations in
many-body perturbation theory—from a realistic
phenomenological Hamiltonian

% The ability of this approach to describe quantities other than the
ground-state energy has been tested extensively in the fermion
hard-shere system, comparing to the results of low-density
expansions

» Early results of calculations of nuclear matter properties relevant
to neutron stars look promising
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EOS AND MASS-RADIUS RELATION
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% The information obtained from GW170817 suggests that nuclear matter
cannot be very stiff, and that the radius of a neutron star with
M =~ 1.35 My can not exceed ~ 14 Km




TIDAL DEFORMATION FROM GW 170817

% From the MSc Thesis of A. Sabatucci
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EXTENSION TO T > 0

* Assuminhg that thermal effect do not significantly affect the
dynamics of strong interactions, the effective interaciotns can be
used to obtain the properties of nuclear matter at 7 > 0

* Replace 0(kp — k) — {1 + exple(k) — u]/T} !
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NEUTRINO LUNINOSITY OF PROTO NEUTRON STARS (PNS)
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FREQUENCIES OF QUASI NORMAL MODES OF PNS
* G. Camelio PhD Thesis and PRD (2017)
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