Recent results for EM coupling of d*(2380) (& a speculative aside)

Dan Watts University of York

Outline

d*(2380) – a multiquark state ?

- Evidence for the d*(2380)
- First calculation of potential impact on neutron stars

A new method for extracting nucleon momentum distributions?

pn scattering with large acceptance

•
$$pn \rightarrow d^* \rightarrow \Delta \Delta \rightarrow d\pi \pi$$

PWA including new polarized np data

PRL 112, 202301, (2014) PRC 90, 035204, (2014)

What is the d* - Hexaquark ?

Any quark model with confinement and one gluon exchange *inevitably* predicts a d* with (I)J^P=(0)3⁺ T Goldman et. al. Phys. Rev. C 39, 1889 (1989)

Recent microscopic CC chiral quark model <u>AA</u> + hidden colour

F. Huang et al, Chin. Phys. C39 (2015) 7, 071001

Does the d* have EM coupling – can we *measure* it's size ??

Photoproduction of the d*

-> active deuteron target

Deuterium photodisintegration with linearly polarised photons

 $\Sigma \sim \sum_{l=2} a_l P_l^2(\cos\Theta)$

Deuterium photodisintegration with linearly polarised photons

Large acceptance nucleon polarimeter at MAMI

Experimental beamtime - late 2016

Induced nucleon polarisation (P)

First detailed measurement of final state neutron polarization in D(γ,pn)

+ Fixed
$$p_y = 0$$

+ Fixed p_y
+ Variable p_y

The d*(2380) in neutron stars ?

Neutron star model:

Nucleons -> Relativistic mean field (GM1) -> Compatible with recent GW data

electrons, muons, \triangle -> Free fermi gas

d*(2380) -> Free boson gas

Tolmann–Oppenheimer–Volkoff equations -> hydrostatic equilibrium with GR

Physics Letters B 781 (2018) 112-116					
	Contents lists available at ScienceDirect	PHYSICS LETTERS B			
	Physics Letters B				
ELSEVIER	www.elsevier.com/locate/physletb				
The $d^*(2380)$ in Neutron Stars – A New Degree of Freedom?					
I. Vidaña ^a , M. Bashkanov ^{b,*} , D.P. Watts ^b , A. Pastore ^c					
INFN Sezione di Catania, Dipartimento di Fisica, Università di Catania, Via Santa Safia 64, 95123 Catania, Italy School of Physics and Astronomy, University of Edinburgh, James Clerk Maxwell Building, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK Department of Physics, University of York, Hestington, York, Y010 5DD, UK					

d*(2380) – influence on the EoS

d*(2380) -> Higher energy densities achieved with lower pressure (Bosonic!)
 -> Abrupt cutoff in maximum neutron star mass around 2M_©

Composition – "Standard" with d*(2380)

Composition – "Standard" with Δ quartet and d*(2380)

Recent running @ MAMI

Experiment carried out in Feb 19

Target	Diameter	mass	Beamtime (hours)
⁴⁸ Ca	10mm	502.6	180
⁴⁰ Ca	10mm	503.2	120
¹¹² Sn	20mm	3800	54

⁴⁸Ca(γ,π⁰) @ MAMI

Analysis at <u>very early</u> stage

-> Cannot draw physics conclusions but can see data quality

In medium nucleon Compton scattering

- Favourable entrance and exit probe (ISI/FSI negligible)
- Amplitude ~identical protons/neutrons
- Can we see it in nuclei ??

Compton scattering from in medium nucleons?

-10 L 0

2 3

4 5 6

 $k (fm^{-1})$

1

-8

-10

0

1

2 3

k (fm

4 5 6

-1)

Compton scattering from in medium nucleons?

Compton scattering from in medium nucleons?

Summary

- EM probes -> helping to elucidate the detailed physics of strongly interacting matter and nuclei
- Ongoing programme will provide valuable data to constrain the nucleonic (and non-nucleonic) contributions to the equation of state

Hadron & medical physics group at York

Dr Mikhail Baskanov Rutherford fellow

Dr Nick Zachariou Rutherford fellow

Dr Dominik Werthmueller PDRA

Dr Jamie Brown

PDRA (medical)

Dr Julien Bordes PDRA (medical)

Large acceptance nucleon, polarimeter, RL112 022501 (2014)

$$n(\theta,\phi) = n_{0}(\theta) \{1 + A(\theta)[P_{y}\cos(\phi) - P_{x}\sin(\phi)]$$

$$\uparrow$$
Number of nucleons
scattered In the
direction θ, ϕ
Polar angle distribution
for unpolarised nucleons
$$x \text{ and } y \text{ (transverse) components}$$
of nucleon polarisation

Hadronic matter at high density

- Neutron skins -> experimental constraint on nucleonic based matter
- At higher densities (>2-3p_o): our understanding of strongly interacting matter is still evolving -> better nuclear data

What is the d* - Deltaron hypothesis

PHYSICAL REVIEW D 89, 043014 (2014)

Can very compact and very massive neutron stars both exist?

Alessandro Drago,¹ Andrea Lavagno,² and Giuseppe Pagliara¹ ¹Dipartimento di Fisica e Scienze della Terra dell'Università di Ferrara and INFN Sezione di Ferrara.

FIG. 1. Particle fractions as functions of baryon density, for $x_{\sigma\Delta} = 1.25, x_{\omega\Delta} = 1.$

EDPOL2

Neutron A_{y} on Carbon

$d^*(2380)$ internal structure

$\Delta\Delta$ molecule $\approx 33\%$ Hexaquark $\approx 66\%$ 0.9 fm 0.7 fm 95% 5%

$\gamma d \rightarrow d^* \rightarrow pn$

Conventional background

 $\sigma(\gamma d \rightarrow pn) \sim 8 \mu b$

$$\sigma(\gamma d \to d^*(2380) \to pn) \sim 10nb$$

$$\frac{\sigma(\gamma d \to pn)}{\sigma(\gamma d \to d^*(2380) \to pn)} \sim 1000$$

BUT

Polarization observables

Federico Ronchetti arXiv 1301.5886 33

d*(2380) SU(3) multiplet

Strange Dibaryon decays

Fig. 7.1.3: Multipole strengths up to L = 4 contributing to the total cross section with inclusion of MEC, IC and RC for the Bonn r-space potential.

H. Arenhoevel, M. Sanzone "Photodisintegration of the deuteron"

7

$$\frac{\Sigma(\Theta)\sigma(\Theta)}{\sigma_0} \sim \sum_{J=2} B_J P_J^2(\cos\Theta)$$

Strange Dibaryon decays

 $d_{s}^{*}(2530\text{-}2600) \xrightarrow{N\Lambda} \Delta \Sigma^{*} \rightarrow (N\pi)(\Lambda\pi) \rightarrow NN\pi\pi\pi$ $\gamma d \rightarrow (K^+) + d_s^* \rightarrow (K^+) + pp\pi^-\pi^-\pi^0$ $\begin{array}{c} & \overset{\bullet}{\Sigma}^{0}\Sigma^{*0} \\ & \overset{\bullet}{\mu} \overset{\bullet}{\Sigma}^{+} & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\$

$$\gamma d \rightarrow (K^+) + d_s^* \rightarrow (K^+) + \vec{\Lambda}\vec{n}$$