Generalized Contact Formalism and The Spectral Function

Ronen Weiss and Nir Barnea

The Hebrew University of Jerusalem

SRC and EMC workshop - MIT - 22/3/2019

- Originally developed for ultracold atomic systems
- The factorization of the wave function:

- Originally developed for ultracold atomic systems
- The factorization of the wave function:

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{n_1 n_2} \to 0} \varphi_{nn}(r_{nn}) \times A_{nn}(\mathbf{R}_{nn}, \{\mathbf{r}_k\}_{k \neq n_1, n_2})$$

 $\varphi(r) \equiv$ The **zero-energy** solution of the 2N Schrodinger Eq.

- Originally developed for ultracold atomic systems
- The factorization of the wave function:

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{n_1 n_2} \to 0} \varphi_{nn}(r_{nn}) \times A_{nn}(\mathbf{R}_{nn}, \{\mathbf{r}_k\}_{k \neq n_1, n_2})$$

 $\varphi(r) \equiv$ The **zero-energy** solution of the 2N Schrodinger Eq.

▶ The simplest example – nn density:

$$\rho_{nn}(\mathbf{r}) = \langle \Psi | \delta(\mathbf{r}_{nn} - \mathbf{r}) | \Psi \rangle$$

- Originally developed for ultracold atomic systems
- The factorization of the wave function:

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{n_1 n_2} \to 0} \varphi_{nn}(r_{nn}) \times A_{nn}(\mathbf{R}_{nn}, \{\mathbf{r}_k\}_{k \neq n_1, n_2})$$

 $\varphi(r) \equiv$ The **zero-energy** solution of the 2N Schrodinger Eq.

• The simplest example – nn density:

$$\rho_{nn}(\mathbf{r}) = \langle \Psi | \delta(\mathbf{r}_{nn} - \mathbf{r}) | \Psi \rangle \xrightarrow{r \to 0} | \varphi_{nn}(\mathbf{r}) |^2 \frac{N(N-1)}{2} \langle A_{nn} | A_{nn} \rangle$$

The "motion" of the pair
The probability to find
a correlated pair

- Originally developed for ultracold atomic systems
- The factorization of the wave function:

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{n_1 n_2} \to 0} \varphi_{nn}(r_{nn}) \times A_{nn}(\mathbf{R}_{nn}, \{\mathbf{r}_k\}_{k \neq n_1, n_2})$$

 $\varphi(r) \equiv$ The **zero-energy** solution of the 2N Schrodinger Eq.

▶ The simplest example – nn density:

$$\rho_{nn}(\mathbf{r}) = \langle \Psi | \delta(\mathbf{r}_{nn} - \mathbf{r}) | \Psi \rangle \xrightarrow{r \to 0} |\varphi_{nn}(\mathbf{r})|^2 \frac{N(N-1)}{2} \langle A_{nn} | A_{nn} \rangle$$

▶ The simplest example – nn density:

$$\rho_{nn}(\mathbf{r}) \xrightarrow{\mathbf{r} \to \mathbf{0}} \mathbf{C}_{nn} |\varphi_{nn}(\mathbf{r})|^2$$

R.B Wiringa et. al., Phys. Rev. C 89, 024305 (2014)

Main channels:

The **deuteron** channel: $\ell_2 = 0,2$; $s_2 = 1$; $j_2 = 1$; $t_2 = 0$

The **spin-zero** channel: $\ell_2 = 0$; $s_2 = 0$; $j_2 = 0$; $t_2 = 1$

$$\psi \xrightarrow{\boldsymbol{r}_{ij \to 0}} \sum_{\alpha} \varphi_{ij}^{\alpha}(\boldsymbol{r}_{ij}) \times A_{ij}^{\alpha}(\boldsymbol{R}_{ij}, \{\boldsymbol{r}_k\}_{k \neq i, j}) \quad ; \quad \boldsymbol{C}_{ij}^{\alpha \beta} \propto \langle A_{ij}^{\alpha} | A_{ij}^{\beta} \rangle$$

The universal functions using the AV18 potential

$$\psi \xrightarrow{r_{ij \to 0}} \sum_{\alpha} \varphi_{ij}^{\alpha}(\boldsymbol{r}_{ij}) \times A_{ij}^{\alpha}(\boldsymbol{R}_{ij}, \{\boldsymbol{r}_k\}_{k \neq i,j}) \quad ; \quad \boldsymbol{C}_{ij}^{\alpha\beta} \propto \langle A_{ij}^{\alpha} | A_{ij}^{\beta} \rangle$$

The nuclear contact relations

The nuclear contact relations

Momentum & coordinate-space distributions

RW, B. Bazak, N. Barnea, PRC **92**, 054311 (2015) M. Alvioli, CC. Degli Atti, H. Morita, PRC **94**, 044309 (2016) **RW**, R. Cruz-Torres, N. Barnea, E. Piasetzky and O. Hen, PLB **780**, 211 (2018)

Photo-absorption (the Levinger constant)

RW, B. Bazak, N. Barnea, PRL **114**, 012501 (2015) **RW**, B. Bazak, N. Barnea, EPJA **52**, 92 (2016)

• The Coulomb sum rule (and a review)

RW, E. Pazy, N. Barnea, Few-Body Systems 58, 9 (2017)

Spectral function and Exclusive electron scattering

RW, I. Korover, E. Piasetzky, O. Hen and N. Barnea, PLB **791**, 242 (2019)

Charge density

RW, A. Schmidt, G. A. Miller, and N. Barnea, PLB 790, 484 (2019)

• Coupled-channels theory

RW and N. Barnea, PRC **96**, 041303(R) (2017) **RW** and N. Barnea, arXiv:1801.04526 [nucl-th] (2017)

Correlation functions

R. Cruz-Torres, A. Schmidt, G. A. Miller, L. B. Weinstein, N. Barnea, **RW**, E. Piasetzky and O. Hen, PLB **785**, 304 (2018)

Symmetry energy

BJ. Cai, BA. Li, PRC 93, 014619 (2016)

The EMC effect

JW. Chen et al. PRL 119, 262502 (2017)

The nuclear contact relations

Momentum & coordinate-space distributions

RW, <u>B. Bazak</u>, <u>N. Barnea</u>, PRC **92**, 054311 (2015) M. Alvioli, CC. Degli Atti, H. Morita, PRC **94**, 044309 (2016) **RW**, <u>R. Cruz-Torres</u>, N. Barnea, <u>E. Piasetzky</u> and <u>O. Hen</u>, PLB **780**, 211 (2018)

Photo-absorption (the Levinger constant)

RW, B. Bazak, N. Barnea, PRL **114**, 012501 (2015) **RW**, B. Bazak, N. Barnea, EPJA **52**, 92 (2016)

• The Coulomb sum rule (and a review)

RW, E. Pazy, N. Barnea, Few-Body Systems 58, 9 (2017)

Spectral function and Exclusive electron scattering

RW, I. Korover, E. Piasetzky, O. Hen and N. Barnea, PLB 791, 242 (2019)

Charge density

RW, A. Schmidt, G. A. Miller, and N. Barnea, PLB 790, 484 (2019)

Coupled-channels theory

RW and N. Barnea, PRC **96**, 041303(R) (2017) **RW** and N. Barnea, arXiv:1801.04526 [nucl-th] (2017)

Correlation functions

R. Cruz-Torres, A. Schmidt, G. A. Miller, L. B. Weinstein, N. Barnea, **RW**, E. Piasetzky and O. Hen, PLB **785**, 304 (2018)

Symmetry energy

BJ. Cai, BA. Li, PRC 93, 014619 (2016)

The EMC effect

JW. Chen et al. PRL 119, 262502 (2017)

 $\rho_{nn}(\mathbf{r}) \xrightarrow{\mathbf{r} \to 0} C_{nn} |\varphi_{nn}(\mathbf{r})|^2$

Relative momentum distribution

$$F_{pn}(k_{rel}) \xrightarrow[k \to \infty]{} C^d_{pn} |\varphi^d_{pn}(k_{rel})|^2 + C^0_{pn} |\varphi^0_{pn}(k_{rel})|^2$$
$$F_{nn}(k_{rel}) \xrightarrow[k \to \infty]{} C^0_{nn} |\varphi^0_{nn}(k_{rel})|^2$$

k [fm⁻¹]

 $F_{pn}(k_{rel}) \xrightarrow[k \to \infty]{} \frac{C_{pn}^d}{\rho_{pn}^d} \left| \varphi_{pn}^d(k_{rel}) \right|^2 + C_{pn}^0 \left| \varphi_{pn}^0(k_{rel}) \right|^2$ Relative momentum $F_{nn}(k_{rel}) \xrightarrow[k \to \infty]{} C_{nn}^0 |\varphi_{nn}^0(k_{rel})|^2$ distribution Momentum space 10⁴ ¹⁰B nn VMC ----- ¹⁰B nn Contact 10³ ¹⁰B pn VMC F_{pn}(k) 10² ----- ¹⁰B pn Contact 10 ^{10}B 1 F_{nn}(k) 10^{-1} 10^{-2} 10^{-3} 10^{-4} 10^{-5} 10^{-6} 4.5 5 4

 $C^d_{nn} \approx 11.7$; $C^0_{pn} \approx C^0_{pp} \approx 0.8$

Coordinate space ¹⁰B nn VMC ρ_{pn}(r) ¹⁰B nn Contact 0.25 ¹⁰B pn VMC¹⁰B pn Contact 0.2 ^{10}B 0.15 0.1 0.05 ρ_{nn}(r) 0^L 0 2.5 0.5 1.5 2 1 3 r [fm] $C_{nn}^d \approx 10.7$; $C_{pn}^0 \approx C_{pp}^0 \approx 0.6$

$$n_{p}(k) \xrightarrow[k \to \infty]{} C^{d}_{pn} |\varphi^{d}_{pn}(k)|^{2} + C^{0}_{pn} |\varphi^{0}_{pn}(k)|^{2} + 2C^{0}_{pp} |\varphi^{0}_{pp}(k)|^{2}$$

 $n_{p}(k) \xrightarrow[k \to \infty]{} \frac{C_{pn}^{d}}{\varphi_{pn}^{d}(k)} \Big|^{2} + C_{pn}^{0} |\varphi_{pn}^{0}(k)|^{2} + 2C_{pp}^{0} |\varphi_{pp}^{0}(k)|^{2}$

Electron-scattering experiments

$$S(p_{1},\epsilon_{1}) = \sum_{s} \sum_{f_{A-1}} \delta(\epsilon_{1} + E_{f}^{A-1} - E_{0}) \left| \left\langle f_{A-1} \middle| a_{p_{1},s} \middle| \psi_{0} \right\rangle \right|^{2}$$

$$S(p_{1},\epsilon_{1}) = \sum_{s} \sum_{f_{A-1}} \delta(\epsilon_{1} + E_{f}^{A-1} - E_{0}) \left| \left\langle f_{A-1} \middle| a_{p_{1},s} \middle| \psi_{0} \right\rangle \right|^{2}$$

The initial wave function

$$\boldsymbol{\psi}_{0} \rightarrow \sum_{\alpha} \varphi_{ij}^{\alpha} (\boldsymbol{r}_{ij}) A_{ij}^{\alpha} (\boldsymbol{R}_{ij}, \{\boldsymbol{r}_{k}\}_{k \neq i, j})$$

$$S(p_{1},\epsilon_{1}) = \sum_{s} \sum_{f_{A-1}} \delta(\epsilon_{1} + E_{f}^{A-1} - E_{0}) \left| \left\langle f_{A-1} \middle| a_{p_{1},s} \middle| \psi_{0} \right\rangle \right|^{2}$$

The initial wave function

$$\boldsymbol{\psi}_{0} \rightarrow \sum_{\alpha} \varphi_{ij}^{\alpha} (\boldsymbol{r}_{ij}) A_{ij}^{\alpha} (\boldsymbol{R}_{ij}, \{\boldsymbol{r}_{k}\}_{k \neq i, j})$$

The final wave function

$$|\psi_f^{12}\rangle = a_{p_1,s}^{\dagger}|f_{A-1}\rangle \propto |\Psi_v^{A-2}\rangle e^{ip_1 \cdot r_1 + ip_2 \cdot r_2} \chi_{s_1} \chi_{s_2}$$

$$S(\boldsymbol{p_1}, \boldsymbol{\epsilon_1}) = \sum_{s} \sum_{f_{A-1}} \delta(\boldsymbol{\epsilon_1} + E_f^{A-1} - E_0) \left| \left\langle f_{A-1} \middle| a_{\boldsymbol{p_1}, s} \middle| \psi_0 \right\rangle \right|^2$$

The initial wave function

$$\boldsymbol{\psi}_{0} \rightarrow \sum_{\alpha} \varphi_{ij}^{\alpha} (\boldsymbol{r}_{ij}) A_{ij}^{\alpha} (\boldsymbol{R}_{ij}, \{\boldsymbol{r}_{k}\}_{k \neq i, j})$$

The final wave function

$$|\psi_f^{12}\rangle = a_{p_1,s}^{\dagger}|f_{A-1}\rangle \propto |\Psi_v^{A-2}\rangle e^{ip_1\cdot r_1 + ip_2\cdot r_2}\chi_{s_1}\chi_{s_2}$$

Energy conservation:

$$S(\boldsymbol{p_1}, \boldsymbol{\epsilon_1}) = \sum_{s} \sum_{f_{A-1}} \delta(\boldsymbol{\epsilon_1} + E_f^{A-1} - E_0) \left| \left\langle f_{A-1} \middle| a_{\boldsymbol{p_1}, s} \middle| \psi_0 \right\rangle \right|^2$$

The initial wave function

$$\boldsymbol{\psi}_{0} \rightarrow \sum_{\alpha} \varphi_{ij}^{\alpha} (\boldsymbol{r}_{ij}) A_{ij}^{\alpha} (\boldsymbol{R}_{ij}, \{\boldsymbol{r}_{k}\}_{k \neq i, j})$$

The final wave function

$$|\psi_f^{12}\rangle = a_{p_1,s}^{\dagger}|f_{A-1}\rangle \propto |\Psi_v^{A-2}\rangle e^{ip_1 \cdot r_1 + ip_2 \cdot r_2} \chi_{s_1} \chi_{s_2}$$

Energy
conservation:
$$E_f^{A-1} = \epsilon_2 + (A-2)m - B_f^{A-2} + \frac{P_{12}^2}{2m(A-2)}$$
$$B_f^{A-2} \approx \langle B_f^{A-2} \rangle = B^{A-2} - E^*$$

$$p_1 > k_F$$

 $S^{p}(\boldsymbol{p_{1}}, \epsilon_{1}) = C^{1}_{pn}S^{1}_{pn}(\boldsymbol{p_{1}}, \epsilon_{1}) + C^{0}_{pn}S^{0}_{pn}(\boldsymbol{p_{1}}, \epsilon_{1}) + 2C^{0}_{pp}S^{0}_{pp}(\boldsymbol{p_{1}}, \epsilon_{1})$

$$p_1 > k_F$$

 $S^{p}(\boldsymbol{p_{1}}, \epsilon_{1}) = C^{1}_{pn}S^{1}_{pn}(\boldsymbol{p_{1}}, \epsilon_{1}) + C^{0}_{pn}S^{0}_{pn}(\boldsymbol{p_{1}}, \epsilon_{1}) + 2C^{0}_{pp}S^{0}_{pp}(\boldsymbol{p_{1}}, \epsilon_{1})$

$$S_{ab}^{\alpha}(\boldsymbol{p_1},\epsilon_1) = \frac{1}{4\pi} \int \frac{d^3 p_2}{(2\pi)^3} \delta(f(\boldsymbol{p_2})) n_{CM}(\boldsymbol{p_1} + \boldsymbol{p_2}) |\tilde{\varphi}_{ab}^{\alpha}(|\boldsymbol{p_1} - \boldsymbol{p_2}|/2|)|^2$$

$$f(\mathbf{p}_2) \equiv \epsilon_1 + \sqrt{p_2^2 + m^2} - 2m + (B_i^A - \langle B_f^{A-2} \rangle) + \frac{(\mathbf{p}_1 + \mathbf{p}_2)^2}{2m(A-2)}$$

$$n_{CM}(\mathbf{K}) \propto e^{-rac{K^2}{2\sigma_{CM}^2}}$$

Similar to the convolution model

C. Ciofi degli Atti, S. Simula, L. L. Frankfurt, and M. I. Strikman, Phys. Rev. C 44, R7(R) (1991), C. Ciofi degli Atti and S. Simula PRC 53, 1689 (1996)

 $S^{p}(\boldsymbol{p_{1}}, \epsilon_{1}) = C^{1}_{pn}S^{1}_{pn}(\boldsymbol{p_{1}}, \epsilon_{1}) + C^{0}_{pn}S^{0}_{pn}(\boldsymbol{p_{1}}, \epsilon_{1}) + 2C^{0}_{pp}S^{0}_{pp}(\boldsymbol{p_{1}}, \epsilon_{1})$

 $\epsilon_1 = 0.82 \text{ GeV}$

AV18 potential

 $S^{p}(\boldsymbol{p_{1}}, \epsilon_{1}) = C^{1}_{pn}S^{1}_{pn}(\boldsymbol{p_{1}}, \epsilon_{1}) + C^{0}_{pn}S^{0}_{pn}(\boldsymbol{p_{1}}, \epsilon_{1}) + 2C^{0}_{pp}S^{0}_{pp}(\boldsymbol{p_{1}}, \epsilon_{1})$

 $S^{p}(\boldsymbol{p_{1}}, \epsilon_{1}) = C^{1}_{pn}S^{1}_{pn}(\boldsymbol{p_{1}}, \epsilon_{1}) + C^{0}_{pn}S^{0}_{pn}(\boldsymbol{p_{1}}, \epsilon_{1}) + 2C^{0}_{pp}S^{0}_{pp}(\boldsymbol{p_{1}}, \epsilon_{1})$

$$S^{p}(\boldsymbol{p_{1}}, \epsilon_{1}) = C^{1}_{pn}S^{1}_{pn}(\boldsymbol{p_{1}}, \epsilon_{1}) + C^{0}_{pn}S^{0}_{pn}(\boldsymbol{p_{1}}, \epsilon_{1}) + 2C^{0}_{pp}S^{0}_{pp}(\boldsymbol{p_{1}}, \epsilon_{1})$$

 4 He $p_{1} = 390 - 410 \text{ MeV/c}$ $\sigma_{CM} = 100 \text{ MeV}$

#*pp* (\pmb{p}_1,ϵ_1) #γ

The experiment by Korover et. al. [PRL 113, 022501 (2014)]:

Using the spectral function

$$\frac{\#pp}{\#pn} = \frac{S_{pp}^{0}(p_{1},\epsilon_{1})}{\frac{C_{pn}^{1}}{C_{pp}^{0}}S_{pn}^{1}(p_{1},\epsilon_{1}) + S_{pn}^{0}(p_{1},\epsilon_{1})}$$

Assuming isospin symmetry for symmetric nuclei

 $C_{pp}^{0}\approx C_{pn}^{0}$

Using the spectral function

Using the spectral function

Using the spectral function

Using the spectral function

$$\frac{\#pp}{\#p} = \frac{S_{pp}^{0}(p_{1},\epsilon_{1})}{\frac{C_{pn}^{1}}{C_{pp}^{0}}S_{pn}^{1}(p_{1},\epsilon_{1}) + S_{pn}^{0}(p_{1},\epsilon_{1}) + 2S_{pp}^{0}(p_{1},\epsilon_{1})}$$

AV18 ¹²C

$$\frac{C_{pn}^d}{C_{pp}^0} \left({}^{12}C \right) = 14 \pm 3$$

Previous $\frac{C_{pn}^d}{C_{pp}^0}({}^{12}C) = 11 - 18$

Experimental data: R. Shneor et al., Phys. Rev. Lett. 99, 072501 (2007)

- 1. The **nuclear contacts -** the probability of 2N-SRCs.
- 2. High-momentum tails and short-range densities are described well by the contact relations.
- 3. The high-momentum **spectral function** is calculated using the contact formalism.
- 4. Provide predictions for the energy and momentum dependence of **exclusive scattering experiments**.

¹²C #*pp*/#*pn*

AV18

N3LO

Experimental data: R. Shneor et al., Phys. Rev. Lett. 99, 072501 (2007)

⁴He #*pp*/#*p*

Experimental data from Korover et. al. [PRL 113, 022501 (2014)]:

¹²C #*pp*/#*p*

Experimental data: R. Shneor et al., Phys. Rev. Lett. 99, 072501 (2007)

⁴He #*pn*/#*p*

AV18

N3LO

Experimental data from Korover et. al. [PRL 113, 022501 (2014)]:

¹²C #*pn*/#*p*

AV18

Experimental data: R. Shneor et al., Phys. Rev. Lett. 99, 072501 (2007)

• The factorization of the wave function:

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{n_1 n_2} \to 0} \varphi_{nn}(r_{nn}) \times A_{nn}(\mathbf{R}_{nn}, \{\mathbf{r}_k\}_{k \neq n_1, n_2})$$

• The factorization of the wave function:

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{n_1 n_2} \to 0} \varphi_{nn}(r_{nn}) \times A_{nn}(\mathbf{R}_{nn}, \{\mathbf{r}_k\}_{k \neq n_1, n_2})$$

• The two-body system: $\left[-\frac{\hbar^2}{m}\nabla^2 + V(r)\right]\varphi = E\varphi$

For
$$r \to 0$$
: The energy becomes negligible $E \ll \frac{\hbar^2}{mr^2}$

 $\varphi(r) \equiv$ The **zero-energy** solution of the Schrodinger Eq.

• The factorization of the wave function:

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{n_1 n_2} \to 0} \varphi_{nn}(r_{nn}) \times A_{nn}(\mathbf{R}_{nn}, \{\mathbf{r}_k\}_{k \neq n_1, n_2})$$

▶ The simplest example – nn density:

$$\rho_{nn}(\boldsymbol{r}) = \langle \Psi | \delta(\boldsymbol{r}_{nn} - \boldsymbol{r}) | \Psi \rangle$$

$$\rho_{nn}(\mathbf{r}) \xrightarrow{\mathbf{r} \to 0} \langle \varphi_{nn} | \delta(\mathbf{r}_{nn} - \mathbf{r}) | \varphi_{nn} \rangle \frac{N(N-1)}{2} \langle A_{nn} | A_{nn} \rangle = |\varphi_{nn}(\mathbf{r})|^2 \frac{N(N-1)}{2} \langle A_{nn} | A_{nn} \rangle$$

• The factorization of the wave function:

$$\Psi(r_1, r_2, \dots, r_A) \xrightarrow{r_{n_1 n_2} \to 0} \varphi_{nn}(r_{nn}) \times A_{nn}(\mathbf{R}_{nn}, \{\mathbf{r}_k\}_{k \neq n_1, n_2})$$

• The simplest example – nn density:

The atomic contact

• Many quantities are connected to the *contact C*:

 $n(k) = C/k^4$ for $k \to \infty$

$$T + U = \frac{\hbar^2}{4\pi ma} C + \sum_{\sigma} \frac{d^3 k}{(2\pi)^3} \frac{\hbar^2 k^2}{2m} \left(n_{\sigma}(k) - \frac{C}{k^4} \right)$$

and many more...

S. Tan, Ann. Phys. (N.Y.) 323, 2952 (2008); Ann. Phys. (N.Y.) 323, 2971 (2008); Ann. Phys. (N.Y.) 323, 2987 (2008)

The atomic contact

J. T. Stewart, J. P. Gaebler, T. E. Drake, and D. S. Jin, Phys. Rev. Lett. 104, 235301 (2010)

From atoms to nucleons

