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The basic model of nuclear physics

« Atomic nuclei are strongly interacting many-body systems exhibiting fascinating properties
including: shell structure, pairing and superfluidity, deformation, and self-emerging clustering.
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*The basic model of nuclear physics aims at understanding the properties of atomic nuclei and
nucleonic matter in terms of the individual interactions among the neutrons and the protons




Nuclear Hamiltonian

* Nuclear ab-initio approaches are based on the non relativistic hamiltonian
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« Argonne vig is a finite, local, configuration-space potential controlled by ~4300 np and pp

scattering data below 350 MeV of the Nijmegen database
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- Three-nucleon interactions effectively include the lowest nucleon excitation, the A(1232)

resonance, end other nuclear effects
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Variational Monte Carlo (VMC)

A fundamental step towards a first-principle description of atomic nuclei is the solution of the
many-body Schrodinger equation

H|Wy) = Ey|¥y)

* In VMC, one assumes a form for the trial wave function and optimizes its variational parameters

Er = |H|Yr) > Ej

- The short-range behavior of the trial wave function is modeled by Jastrow-like correlations
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« They reflect the spin-isospin dependence of the two- three-nucleon interactions
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Green’s function Monte Carlo

- Green’s function Monte Carlo methods use an imaginary-time projection technique to enhance
the ground-state component of a starting trial wave function.
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« Suitable to solve of A <12 nuclei with ~1% accuracy
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Electron-nucleus scattering

In the Born approximation, the differential cross section of the inclusive electron-nucleus scattering is
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Schematic representation of the inclusive cross section as a function of the energy loss.
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Inclusive cross-section from GFMC

* The energy dependence of the response functions can be inferred from their Laplace transforms
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Eos(1,q) = /dwe_mRaB(w,q)

e Using the completeness of the final states, the Euclidean responses are expressed in terms of
ground-state expectation values that are computed within Green’s function Monte Carlo

Eog(r,a) = (Yol JI (q)e” HT=EIT J5(q)|Wo)

L Analogous techniques are used in Lattice QCD
and condensed matter Physics




N. Rocco et al. PRC 97 055501(2018)

Inclusive cross-section from GFMC
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Neutrino experiments

Neutrino-oscillation and OvB3 experiments are (also) sensitive to the high-momentum
components of the nuclear wave function

» Charge-parity (CP) violating phase and the » A large body of experimental data for the

mass hierarchy will be measured electromagnetic cross sections of 4He and
12C (and many other nuclei) is available.

e Determine whether the neutrino is a Majorana

or a Dirac particle .
P * A model unable to describe electron-nucleus

« Need for including nuclear dynamics; mean- scattering is (very) unlikely to describe
field models inadequate to describe neutrino- neutrino-nucleus scattering.
nucleus interaction




Multi-messenger astronomy

The capacity to explain scattering data at large energy is critical to assess the ability of a
potential model to describe the properties of nuclear matter in the high-density region
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Gravitational waves have been detected! For head-on collisions, the kinetic energy

in the laboratory frame is related to the
* Supernovae neutrinos will be detected by density as i

the current and next generation neutrino
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experiments
* Nuclear dynamics determines the structure 2m m U
and the cooling of neutron stars
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High momentum-transfer regime

* At (very) large momentum transfer, scattering off a nuclear target reduces to the sum of scattering
processes involving bound nucleons =3 short-range correlations.
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» Relativistic effects play a major role and need to be accounted for along with nuclear correlations
(Non-trivial interplay between them)

* Resonance-production and deep inelastic scattering processes need to be included



HIgh momentum-transfer regime

Reminder  Rag(w,q) = > (WolJ1(q)|Vs)(¥f|J5(q)|Wo)d(w — Ef + Ep)
f

At large momentum transfer, scattering off a nuclear target reduces to the incoherent sum of
scattering processes involving individual bound nucleons
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Inserting a single-particle state completeness, we isolate the current matrix element
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Keeping only the incoherent contribution (dominant in this regime), the one-body response reads

Rag = 3 > (kl52 p) (ol ) (g | [~y @ [K)][26(w — e(p) — EA~Y + E§)
p,k,f 1




HIgh momentum-transfer regime

Reminder Rog = » >  (k|jl' [p)(pljblk)| (v (17~ @ [k))[*6(w — e(p) — BEf ' + Eg)
p.k,f ¢

Momentum-conservation in the single-nucleon vertex and the identity

5(w — e(p) — B4 + B) = /dE 5w+ E — e(p)) 6(E + EA~1 — B

Covariant normalization

Allow one to rewrite the response function as )
of the four-spinors
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The hole spectral function yields the probability of removing a nucleon with momentum k from
the target ground state leaving the residual system with excitation energy E.

Pk, E) = ) [(Wg[lk) @ [wE ] 20(E — Bf 7+ By
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HIgh momentum-transfer regime

Reminder P, (k, £) = Y [(Wgl|[[k) @ [v7~ Y] P6(E + B4~ — EY)
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Using the Sokhotski-Plemelj theorem and the completeness of the A-1 states, the hole spectral
function can be expressed in terms of the hole Green's function

1 1
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The integral of the spectral function over the removal energy is the momentum distribution

(k) = (Wit lalanlu) = [ dEP(.E).

Taking E}f‘_l — FEy = € constant, the hole spectral function is sometimes approximated by

Py(k, E) ~ n(k)§(E — ¢



Hole SF from correlated-basis function

The hole SF of finite nuclei is expressed as a sum of two contributions, displaying distinctly
different energy and momentum dependences

P,(k,E) = P (k, E) + P°" (k, E)
The 1h terms corresponds to discrete excitations of the A-1 final states

Pk, E) = ) [Wglllk) © [0~ H]20(E — Bf 7' + Bg)
f

Computing this term in principle requires evaluating single-nucleon overlaps. Within the CBF
theory, it is obtained from a modified mean-field scheme

Pf}h(ka E) = Z Zoz’¢0é(k)‘2FOé(E_€Oz) ;

The high-momentum component, corresponding to the A-1 final state in the continuum,
is obtained from CBF by calculations in infinite nuclear matter

i (k, E) — / PR pa(R)PERa (k. B pa(R))
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O. Benhar et al. PRD 72 (2005) 053005




Including two-body currents

Using relativistic MEC requires the extension of the ¢ 3 A A—2
factorization scheme to two-nucleon emissions ‘\ij> — \p1p2> & ‘\ij >
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Inclusion of pion-production mechanisms

The fact‘?riza}:ciop scheme can be further extended to ¢ 3
include “real” pions in the final state

[U) = [p1p2) ®@ \‘I’?_2>
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The VMC Spectral Function of 4He

Since there are no excited states in 3H, the 1h contribution is simply given by

Pk, E) =) [(Tglllk) @ [¥5 N8B — EF ™ + Eg)
f
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The single-nucleon overlap can be (and have been) computed by Bob Wiringa within VMC
(center of mass motion fully accounted for)
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The VMC Spectral Function of 4He

To determine the correlation component we utilize the two-nucleon momentum distributions
computed within VMC

corr a N SR :
P, )= SN @ ) (B BE 4 B - et - )
]

pp(@:Q) (fm)

R.B. Wiringa, et al, PRC 89, 024305 (2014)
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The VMC Spectral Function of 4He

Following the strategy outlined in

PHYSICAL REVIEW C VOLUME 47, NUMBER 5 MAY 1993

Scattering of GeV electrons by light nuclei

O. Benhar* and V. R. Pandharipande
Department of Physics, University of Illinois, 1110 West Green Street, Urbana, Illinois 61801
(Received 12 November 1992)

we initially weighed the relative contributions to recover the full momentum distribution

MF corr n}l;dF (k)

Pyl B) = PYF (o B) + SO P (. B) <@ [ =1 Lo
p

YOU ARE ALSO INCLUDING PAIRS THAT ARE
NOT SHORT-RANGE CORRELATED!




The VMC Spectral Function of 4He

|deally, one should orthogonalize with the single-nucleon overlap
A—2 A—2 A—1 A—1 A—
K) @ [0F72%) = [K) @ 0577 =[O )(TE[IF) @ [T 7)]

Inspired by the contact formalism, we put a cut on the relative distance of the pair

1001— | | | | | ]
51°%e, _
10 ggggGg.
~ 104}38322355,%3 -
E 10 ogégggggpnp(riflOO) -
~ 0882 ®e
é 102__ oS ézgg OQggpnp(l’lj<1.50) —
O. 101 O Qgg 999@@000 B
& - ppp(rij<1.50) .®®®8OOOQ OOOOOooo i
- OOO ol
% 100__ ppp *O ® .00;;89066 OOOOOOQ_
< 101 T < ppp(fij<2-00) GOOOOOQQ
102 — | N
1071 \ \ \ -
0 1 2 3 4 5



The VMC Spectral Function of 4He

|deally, one should orthogonalize with the single-nucleon overlap
A—2 A—2 A—1 A—1 A—
K) @ [0F72%) = [K) @ 0577 =[O )(TE[IF) @ [T 7)]

Inspired by the contact formalism, we put a cut on the relative distance of the pair
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Conclusions & Plans in this direction

Conclusions

e Quantum Monte Carlo is suitable to compute cross-sections, not only responses, including
relativistic effects in the kinematics

* VMC calculations of the spectral function are feasible for nuclei up to 12C

Ongoing Plans

» Use the VMC hole SF of 4He to compute inclusive cross sections (to begin with)

» Use Bob’s overlap and two-body momentum distributions to compute the VMC hole SF of 12C
* GFMC calculations of the spectral function of light nuclei using imaginary-time techniques

(Wolafe=H=Eo)7 gy W)
(Wole(H=Fo)T W)

/ dEe "™ Py(k,E) ~

e Study nuclei up to 180 with the AFDMC method



