"The proton, **deuteron**, and α particle are most interesting to study because they are among the simplest nuclear structures."

RW McAllister, R Hofstadter, Phys.Rev. 102 851 (1956)

Probing the Tensor Force with Tensor Polarization

Dr. Elena Long

SRC/EMC Workshop

MIT

March 22nd, 2019

N University of New Hampshire

3/22/2018

MIT SRC/EMC Workshop

J Forest, et al, PRC 54 646 (1996)

3/22/2018

MIT SRC/EMC Workshop

"Normal" Polarization: Vector $P_z = p_+ - p_-$

J Forest, et al, PRC 54 646 (1996)

3/22/2018

MIT SRC/EMC Workshop

"Normal" Polarization: Vector $P_z = p_+ - p_-$

(******+*****)-2*****

Tensor $P_{zz} = (p_+ + p_-) - 2p_0$

J Forest, et al, PRC 54 646 (1996)

3/22/2018

MIT SRC/EMC Workshop

Tensor $P_{zz} = (p_+ + p_-) - 2p_0$

J Forest, et al, PRC 54 646 (1996)

3/22/2018

MIT SRC/EMC Workshop

A high-luminosity tensorpolarized target has promise as a **novel probe of nuclear physics**

What is Tensor Polarization?

Tensor $P_{zz} = (p_+ + p_-) - 2p_0$

J Forest, et al, PRC 54 646 (1996)

3/22/2018

MIT SRC/EMC Workshop

3/22/2018

MIT SRC/EMC Workshop

3/22/2018

MIT SRC/EMC Workshop

MIT SRC/EMC Workshop

MIT SRC/EMC Workshop

3/22/2018

MIT SRC/EMC Workshop

MIT SRC/EMC Workshop

- x > 1 kinematics
- Enhancing tensor polarization

We combine both techniques

- x > 1 kinematics
- Enhancing tensor polarization

We combine both techniques

Deuteron Wavefunction

LL Frankfurt, MI Strikman, Phys. Rept. **76** 215 (1981)

3/22/2018

MIT SRC/EMC Workshop

Deuteron Wavefunction

LL Frankfurt, MI Strikman, Phys. Rept. **76** 215 (1981)

3/22/2018

MIT SRC/EMC Workshop

Deuteron Wavefunction

 $E_{a} = 8.8 \text{ GeV}, Q^{2} = 1.5 \text{ GeV}^{2}$ First calculated in the '70s, A_{zz} can be used in to ₹⁸ 0.2 discriminate between hard and soft wave functions **AV18** $A_{ZZ} = \frac{2}{f \cdot P_{\pi\pi}} \left(\frac{\sigma_p - \sigma_u}{\sigma_u} \right)$ 0% 0 -0.2 In the impulse approximation, A_{zz} is directly related to the -0.4 S- and D-states -0.6 $\propto \frac{\frac{1}{2}w^{2}(k) - u(k)w(k)\sqrt{2}}{u^{2}(k) + w^{2}(k)}$ -0.8 A_{zz} -1 -100% CDBonn -1.2 Modern calculations indicate a large separation of hard and soft WFs begins just above the quasi-elastic peak at x > 1.3-1.4 0.4 0.6 0.8 1.2 1.4 1.6 1.8 LL Frankfurt, MI Strikman, Phys. Rept. 76 215 (1981) **M** Sargsian

3/22/2018

MIT SRC/EMC Workshop

Deuteron Wavefunction

 $E_{a} = 8.8 \text{ GeV}, Q^{2} = 1.5 \text{ GeV}^{2}$ First calculated in the '70s, A_{zz} can be used in to ₹⁸ 0.2 discriminate between hard and soft wave functions **AV18** $A_{ZZ} = \frac{2}{f \cdot P_{ZZ}} \left(\frac{\sigma_p - \sigma_u}{\sigma_u} \right)$ 0 0% -0.2 ~60% In the impulse approximation, A_{zz} is directly related to the -0.4 S- and D-states -0.6 $\propto \frac{\frac{1}{2}w^{2}(k) - u(k)w(k)\sqrt{2}}{u^{2}(k) + w^{2}(k)}$ -0.8 A_{zz} -1 -100% CDBonn -1.2 Modern calculations indicate a large separation of hard and soft WFs begins just above the quasi-elastic peak at x > 1.3-1.4 0.4 0.6 0.8 1.2 1.4 1.6 1.8 LL Frankfurt, MI Strikman, Phys. Rept. 76 215 (1981) **M** Sargsian

3/22/2018

MIT SRC/EMC Workshop

Deuteron Wavefunction

3/22/2018

MIT SRC/EMC Workshop

Deuteron Wavefunction

3/22/2018

MIT SRC/EMC Workshop

Relativistic NN Bound System

Unpolarized

Understanding SRCs requires relativistic calculations at high *p*

Currently two methods:

- Light Cone (LC)
- Virtual Nucleon (VN)

Large p > 500 MeV/c needed to discriminate with unpolarized deuterons

• Extremely difficult!

M Sargsian, Tensor Spin Observables Workshop (2014)

MIT SRC/EMC Workshop

Relativistic NN Bound System

Tensor Polarized

Understanding SRCs requires relativistic calculations at high *p*

Currently two methods:

- Light Cone (LC)
- Virtual Nucleon (VN)

Large p > 500 MeV/c needed to discriminate with unpolarized deuterons

• Extremely difficult!

With tensor A_{zz} , significant difference at much lower p > 300 MeV/c and x > 1.1

M Sargsian, Tensor Spin Observables Workshop (2014)

3/22/2018

MIT SRC/EMC Workshop

Relativistic NN Bound System

3/22/2018

Understanding SRCs requires relativistic calculations at high p

Currently two methods:

- Light Cone (LC)
- Virtual Nucleon (VN)

Large p > 500 MeV/c needed to discriminate with unpolarized deuterons

• Extremely difficult!

With tensor A_{zz} , significant difference at much lower p > 300 MeV/c and x > 1.1

M Sargsian, Tensor Spin Observables Workshop (2014)

Final State Interactions

FSI must be understood & minimized to get *NN* potential information

Minimum/maximum FSI on A_{zz} calculated by W. Cosyn^[1]

FSIs minimized in kinematic choice (large $x \ge 1.35$ and medium p_m)

 Best suited for attempting to extract information on *D*-wave content^[2]

^[2] S Jeschonnek, JW Van Orden, arXiv:1606.04072 (2016)

MIT SRC/EMC Workshop

^{3/22/2018}

MIT SRC/EMC Workshop

No current quasi-elastic tensor measurements

3/22/2018

MIT SRC/EMC Workshop

No current quasi-elastic tensor measurements

Sensitive to effects that are very difficult or **impossible to measure with unpolarized** or vector polarized deuterons

3/22/2018

MIT SRC/EMC Workshop

No current quasi-elastic tensor measurements

Sensitive to effects that are very difficult or **impossible to measure with unpolarized** or vector polarized deuterons

Huge 10-100% asymmetry

3/22/2018

MIT SRC/EMC Workshop

No current quasi-elastic tensor measurements

Sensitive to effects that are very difficult or **impossible to measure with unpolarized** or vector polarized deuterons

Huge 10-100% asymmetry

Decades of theoretical interest that **we can only now probe** with a high-luminosity tensorpolarized target

3/22/2018

MIT SRC/EMC Workshop

No current quasi-elastic tensor measurements

Sensitive to effects that are very difficult or **impossible to measure with unpolarized** or vector polarized deuterons

Huge 10-100% asymmetry

Decades of theoretical interest that **we can only now probe** with a high-luminosity tensorpolarized target

Importance ranges from understanding shortrange correlations to the equations of state of neutron stars

3/22/2018

MIT SRC/EMC Workshop

So, How Much Longer?

• Results from UVA are promising, preliminary $P_{zz} > 30\%$ recently achieved on butanol. ND3 in progress.

D Keller, Eur.Phys.J.A., in review (2016) D Keller, PoS, PSTP2015:014 (2016) D Keller, J.Phys.Conf.Ser., **543**(1):012015 (2014) D Keller, Int.J.Mod.Phys.Conf.Ser., **40**(1):1660105 (2016)

3/22/2018

MIT SRC/EMC Workshop

So, How Much Longer?

Tempo Doped Araldite

UNH DNP Lab <u>NOW FULLY OPERATIONAL!!</u>

- First Proton TE: Nov. 2018 on Araldite
- First Enhanced Proton: ~30 second later

So, How Much Longer?

Tempo Doped Araldite

How Much Longer?

Tempo Doped Araldite

• UNH DNP Lab NOW FULLY OPERATIONAL!!

- First Proton TE: Nov. 2018 on Araldite
- First Enhanced Proton: ~30 second later
- First Butanol TE & Enhancement: Last week
- Regularly producing butanol & NH₃ target material

How Much Longer?

Tempo Doped Araldite

• UNH DNP Lab **NOW FULLY OPERATIONAL!!**

• First Proton TE: Nov. 2018 on Araldite

212.8

Frequency (MHz)

213

- First Enhanced Proton: ~30 second later
- First Butanol TE & Enhancement: Last week
- Regularly producing butanol & NH₃ target material
- First Deuteron Measurements: Coming Summer 2019

 1st 3D-printed target stick to survive 1K temperature cycling; no microfractures w/ off-the-shelf SLA resin!

3/22/2018

MIT SRC/EMC Workshop

- 1st 3D-printed target stick to survive 1K temperature cycling; no microfractures w/ off-the-shelf SLA resin!
- New solid-state mm-wave system complete, capable of multiple frequencies to attempt $-P_{zz}$

3/22/2018

MIT SRC/EMC Workshop

- 1st 3D-printed target stick to survive 1K temperature cycling; no microfractures w/ off-the-shelf SLA resin!
- New solid-state mm-wave system complete, capable of multiple frequencies to attempt –P_{zz}
 - Doesn't seem limited by lower mm-wave power

3/22/2018

MIT SRC/EMC Workshop

 1st 3D-printed target stick to survive 1K temperature cycling; no microfractures w/ off-the-shelf SLA resin!

olarization

- New solid-state mm-wave system complete, capable of multiple frequencies to attempt –P_{zz}
 - Doesn't seem limited by lower mm-wave power
- Last week: First 1K Cool-down with 3Dprinted Kel-F target cups

3/22/2018

MIT SRC/EMC Workshop

Computation Pook

1 30 Ring Scintilatols

73/4" x 93/8" Ru/u 4 squares/inch

Numbered Sheets

nuclear.unh.edu/~elong

- 1st 3D-printed target stick to survive 1K temperature cycling; no microfractures w/ off-the-shelf SLA resin!
- New solid-state mm-wave system complete, capable of multiple frequencies to attempt –P_{zz}
 - Doesn't seem limited by lower mm-wave power
- Last week: First 1K Cool-down with 3Dprinted Kel-F target cups
- 3D printing small scintillators for lowenergy scattering/proof of P_{zz}

3/22/2018

mbered pages to track in mation

e quality heavyweight paper

MIT SRC/EMC Workshop

Computation Took

mbered pages to track in mation

ME 30 Rinting Scintilatols

Rula 4 squares/inch

nuclear.unh.edu/~elong

 1st 3D-printed target stick to survive 1K temperature cycling; no microfractures w/ off-the-shelf SLA resin!

olarization

100

200

- New solid-state mm-wave system complete, capable of multiple frequencies to attempt –P_{zz}
 - Doesn't seem limited by lower mm-wave power
- Last week: First 1K Cool-down with 3Dprinted Kel-F target cups
- 3D printing small scintillators for lowenergy scattering/proof of P_{zz}
- Attempting to 3D print 10 MeV beamline for target material pre-irradiation with <\$4k printer

mmWave Power (mW)

300

400

IT SRC/EMC Workshop

lop Elena l

Where We Are and Where We're Going

3/22/2018

MIT SRC/EMC Workshop

3/22/2018

MIT SRC/EMC Workshop

3/22/2018

MIT SRC/EMC Workshop

N. LaJoie UG (Long Lab)

L. Jameson T. Collins UGs

R. Williams

(Long Lab)

........

K. Slifer

UG

M. McClellan Ph.D. Student D. Ruth (Long Lab)

J. Yost

(Slifer Lab)

UG

L. Kurbany Ph.D. Student Ph.D. Student (Slifer Lab) (Long Lab)

(Slifer Lab) Thank you!

Elena Long <elena.long@unh.edu>

N. Santiesteban Ph.D. Student (Slifer Lab)