
Can account of Fermi motion describe the EMC effect?

YES
If one violates baryon charge 
conservation or momentum 

conservation or both
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Generic models of the EMC effect 

RA(x,Q
2) = 1� �Anx

1� x

extra pions  - λπ ~ 4% -actually for fitting Jlab and SLAC data  ~ 6%

+ enhancement from scattering off pion field with  απ~  0.15

6 quark configurations in nuclei with P6q~ 20-30%

◉

◉

◉

Mini delocalization (color screening model) - small swelling - 
enhancement of  deformation at large x due to suppression of 
small size configurations in bound nucleons + valence quark 
antishadowing with effect roughly ∝	 knucl2

Nucleon swelling - radius of the nucleus is  20--15% larger in nuclei. 
Color is significantly delocalized in nuclei

Larger size →fewer fast quarks - possible mechanism: gluon radiation  
starting at lower Q2

◉

(1/A)F2A(x,Q
2) = F2D(x,Q2

⇠A(Q
2))/2

2



Drell-Yan experiments:   

Q2 = 15 GeV2

A-dependence of antiquark 
distribution, data are from FNAL 
nuclear Drell-Yan experiment, 
curves - pQCD analysis of 
Frankfurt, Liuti, MS 90. Similar 
conclusions by  Eskola et al 93-07 
data analyses

vs Prediction q̄Ca(x)/q̄N = 1.1÷ 1.2|x=0.05÷0.1

x
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we find that the difference Rs(x, Q ) —I=S~(x,Q )/
AS~(x, Q )—1, evaluated at x =0.05, increases by a
factor of 2 as Q varies between Q =3 and 25 GeV . In
particular, if we use the QCD aligned-jet model
(QAJM) of Refs. 4 and 5 (which is a QCD extension of
the well-known parton logic of Bjorken) to calculate
Rs(x, Q ), we find, in the case of Ca, Rg(x=0.04,
Q =3 GeV ) =0.9 and Rs(x=0.04, Q =25 GeV )
=0.97. The last number is in good agreement with
Drell-Yan data (see Fig. 2). Thus, we conclude that
the small shadowing for S~ observed in Ref. 3 for
x=0.04 and Q & 16 GeV2 corresponds to a much
larger shadowing for Q =Qo.
Shadowing in the sea-quark distribution at x =0.04
[Rs(x=0.04, Q =3 GeV ) =0.9), combined with the
experimental data for F2 (x,Q )/AF2 (x,Q ) at the
same value of x [F2 (x,Q )/AFi (x,Q ) & I], unambi-
guously implies an enhancement of the valence quarks,
i.e., Rv(x, Q ):—V~(x, Q )/AV~(x, Q ) & 1. For Ca,
Rv(x =0.04-0.1, Q 3 GeV ) = 1.1, whereas for
infinite nuclear matter, we find Rv(x =0.04-0.1, Q =3
GeV ) ~ 1.2. By applying the baryon-charge sum rule
[Eq. (2)], we conclude that experimental data require
the presence of shadowing for valence quarks at small
values of x [i.e., Rv(x, Q ) & 1 for x,h &0.01-0.03].
Moreover, the amount of shadowing for Rv(x, Q ) is
about the same (somewhat larger) as the shadowing for
the sea-quark channel (see Fig. 3). The overall change
of the momentum carried by valence and sea quarks at
Q'= I GeV' is

yv(Qo) =1.3%, )s(Qo) =—4.6%.
To summarize, the present data are consistent with the

parton-fusion scenario 6rst suggested in Ref. 7: All par-
ton distributions are shadowed at small x, while at larger
x, only valence-quark and gluon distributions are en-
hanced. At the same time, other scenarios inspired by
the now popular (see, e.g. , Ref. 8) idea of parton fusion,

which assume that the momentum fraction carried by
sea quarks in a nucleus remains the same as in a free nu-
cleon, are hardly consistent with deep-inelastic and
Drell- Yan data.
Let us brieAy consider dynamical ideas that may be

consistent with the emerging picture of the small-x
(x ~ 0.1) parton structure of nuclei. In the nucleus rest
frame the x =0.1 region corresponds to a possibility for
the virtual photon to interact with two nucleons which
are at distances of about I fm [cf. Eq. (I)]. But at these
distances quark and gluon distributions of different nu-
cleons may overlap. So, in analogy with the pion model
of the European Muon Collaboration effect, the natural
interpretation of the observed enhancement of gluon and
valence-quark distributions is that intermediate-range in-
ternucleon forces are a result of interchange of quarks
and gluons. Within such a model, screening of the color
charge of quarks and gluons would prevent any sig-
nificant enhancement of the meson field in nuclei. Such
a picture of internucleon forces does not necessarily con-
tradict the experience of nuclear physics. Really, in the
low-energy processes where quark and gluon degrees of
freedom cannot be excited, the exchange of quarks
(gluons) between nucleons is equivalent, within the
dispersion representation over the momentum transfer,
to the exchange of a group of a few mesons. Another

1. 10I—

. 00
CL

0. 90

0, 80

1.30
1.20 Ca/D

FIG. 2. Ratio R =(2/A)ug(x, g')/uD(x, g') plotted vs x,
for diff'erent values of Q . Notations as in Fig. 1. Experimen-
tal data from Ref. 3.

1 0

FIG. 3. Ratios R(x,gj) (2/3)F" (x,gf)/FP(x, g$)
(dashed line), R=Rv(x, gS) -(2/A) Vq(x, gf)/Vo(x, QS)
(solid line), and R—=Rs(x, g/) =(2/A)S~(x, g/)/SD(x, g/)
(dot-dashed line) in Ca. All curves have been obtained at
Q) =2 GeV . The Iow-x behavior (x ~ x,h) corresponds to the
predictions of the QA3M of Refs. 4 and 5; the antishadowing
pattern (i.e., a 10/o enhancement in the valence channel
whereas no enhancement in the sea, leading to a less than 5%
increase of F~q at x =0.1-0.2) has been evaluated within the
present approach by requiring that sum rules (2) and (3) are
satisfied. Experimental data are from Ref. 1 (diamonds) and
Ref. 3 (squares), the latter representing the sea-quark ratio Rg
(cf. Fig. 2). The theoretical curves are located below the data
at small x, due to the high experimental values of g~: (g )
=14.5 GeV~ in Ref. 1 and (Q ) =16 GeV2 in Ref. 3, respec-
tively.
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✺
Structure of 2N correlations - probability ~ 20% for A>12  
→ dominant  but not the only term in kinetic energy

90% pn + 10% pp < 10% exotics⇒probability of exotics < 2%

Combined analysis of (e,e’) and knockout data

Analysis  of (e,e’) SLAC data at x=1 -- tests Q2 dependence of the 
nucleon form factor  for nucleon momenta kN < 150 MeV/c and Q2 
> 1 GeV2 : 

rbound
N

/rfree
N

< 1.036

Analysis of elastic pA scattering

L. Frankfurt and M. Strikman, Hard nuclear processes and microscopic nuclear structure 243

satisfied for the sea at all Q2 (see fig. 3.8). This leads [in the case of a small contribution of the ‘rr~
component to the SU(2) sea] to the restriction AN >3 GeV2 (cf. ref. [7]).

(iii) 1TTNN(t) extracted from the reactions e + p(n)—*e + N(z~)(see ref. [8] and section 8.6) corre-
sponds to

AN=(6±1)GeV2.

(iv) From the reaction p + p-~N + ~ [9]AN 2.5 GeV2.
The derived lower limit on AN  3 GeV2 is much larger than the number used in the OBEP models

(eq. 2.2). Thus the question of the consistency of these models with the restrictions from high-energy
processes requires further investigations. Such an investigation would help to clarify whether short-
range nuclear forces are due to meson exchanges or due to exchanges by constituent quarks and gluons.

2.1.2. Properties of bound nucleons
(a) Nonrelativistic theory reasonably describes the main deuteron characteristics: the magnetic

moment ~d (with 1% accuracy), the electromagnetic form factors up to Q2 1 GeV2 [10], etc. (It is
worth emphasizing that in the momentum space representation realistic deuteron wave functions — Reid
wave function, Paris potential wave function, and Hamada—Johnston wave function — differ consider-
ably for k ~ 0.6—0.8 GeV/c only.) Accounting for the relativistic motion of nucleons in a deuteron, in
terms of light-cone quantum mechanics, improves the description of js~(accuracy 0.5%) [111and
enables us to describe a number of hard nuclear reactions. (For a review see ref. [12]and sections 6—8.)

(b) The data on elastic proton—nucleus scattering at T~ 1 GeV agree with the standard Glauber
model (which uses as input free NN amplitudes) with an accuracy of the order of 2% [13]. Thus the
radii of bound and free nucleons are quite close (cf. the analysis of p4He data [14]):

— 1~~ 0.04. (2.3)

This inequality is relevant for the properties of nucleons at average nuclear densities (not only near the
nuclear surface).

(c) The recent analysis [15] of the SLAC data for the Q2 dependence of the inelastic electron—3He
cross section in the region of the quasinelastic peak indicates that the radius of a nucleon bound in 3He
with momentum ~0.2 GeV/c is close to that of the free nucleon:*)

r~0~!r~~ 1.036. (2.4)

Similar conclusions were reported very recently from the analysis [16] of preliminary SLAC data for
inclusive electron—Al, Fe scattering:

r~°°~/r~~< 1.05. (2.5)

Note that all these data mainly probe the magnetic nucleon form factor of a bound nucleon (see
discussion in section 8.6).

2.1.3. Indications for a signijicant high-momentum component in the wave function of the nucleus
(d) Analysis of high-energy reactions: elastic pD scattering (see, e.g., ref. [17]), kinematically

forbidden proton and pion production, elastic and inelastic electromagnetic form factors of the
*) For k  0.2 the analyses of refs. [15,16] are more uncertain since they neglect the final state interaction effect and the excitation of the

residual system. A more model independent analysis briefly presented in section 8.6 somewhat improves the limit (2.5) for small k.

Similar conclusions from combined analysis of  (e,e’p)  and (e,e’)  JLab 
data 

☛

Problem for the nucleon swelling models of the EMC effect with 20% swelling

✺

4



Thou shalt not introduce dynamic pions into nuclei

Remember baryon conservation law
Honour momentum  conservation law

Thou shalt not introduce large deformations of low momentum nucleons
However large admixture of nonnucleonic degrees of 
freedom (20-- 30 %) strange but was not initially  ruled out.

Qualitative change due to direct observation of  short-range 
NN correlations  at JLab and BNL

First five commandments

Honour  existence of large predominantly nucleonic short-range 
correlations
Thou shalt not introduce large exotic component in  nuclei
 - 20 % 6q, Δ’s

5
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Theory of the leading twist shadowing 
based on the Gribov unitarity relations and 
QCD factorization theorem for hard 
diffraction. Predictions for LHC, EIC,...
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Figure 4. The same as in figure 3, but with the LO pQCD predictions evaluated at µ2 = 3 GeV2.

Figures 3 and 4 present the suppression factor S(Wγp) for Lead as a function of x =

M2
J/ψ/W

2
γp. The two ALICE data points (see the discussion above) are compared with the

LO pQCD predictions given by eq. (2.11) at µ2 = 2.4 GeV2 (figure 3) and at µ2 = 3 GeV2

(figure 4). In the two upper panels and in the lower left one, the factors of R(x, µ2) and

κA/N are calculated in the framework of the leading twist approximation (LTA) consisting

in the combination of the leading twist theory of nuclear shadowing [30] with the given

(MNRT07, CTEQ6L1, CTEQ6L, MRST04 and NNPDF) gluon distributions of the free

nucleon. In each case, we show the band of predictions which corresponds to the intrinsic

uncertainty of the leading twist theory of nuclear shadowing1. Note also that since the

predictions with the CTEQ6L1 and CTEQ6L and with the MRST04 and NNPDF gluon

distributions are rather close, we show only the representative examples of CTEQ6L1 and

NNPDF.

In the lower right panels, S(Wγp) is calculated using the leading order EPS09 param-

eterization of nuclear PDFs [31] extracted from the global QCD fit to available data; at

the leading order, EPS09 should be coupled with the CTEQ6L1 gluon distribution of the

free proton. Note that we use EPS09 as a typical representative example—predictions for

1The bands shown in figures 3 and 4 represent the theoretical uncertainty of the leading twist theory

of nuclear shadowing [30] associated with the ambiguity in the magnitude of the contribution describing

the interaction of the virtual photon with three and more nucleons of the nucleus. The upper and lower

boundaries of the bands correspond to the lower and higher limits on shadowing.

– 10 –

Test: Strong suppression of coherent J/ψ production observed by ALICE and CMS 
confirms our prediction of  significant gluon shadowing on the Q2 ~ 3 GeV2 

Points - experimental values of S extracted by Guzey et al (arXiv:1305.1724) from the 
ALICE  data;   Curves - analysis with determination of  Q -scale by Guzey and Zhalov 
arXiv:1307.6689; JHEP 1402 (2014) 046.
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Two minor effects to be included in a  precision analysis of 
the EMC ratio requires

a) correction for the definition of x= AQ2/2q0mA

b) 1% of heavy nucleus LC  momentum carried by 
Weizs ̈acker-William photons



Very few models of the EMC effect survive  when constraints due to 
the observations of the SRC are included & lack of enhancement of 
antiquarks and Q2 dependence of the quasielastic (e,e’) at x=1

 It appears that essentially one generic scenario survives - strong 
deformation of rare configurations in bound nucleons increasing with 
nucleon momentum  and with most of the effect due to the  SRCs . 

8



Dynamical model - color screening model of the EMC effect 

(b) Nucleon in a quark-gluon configurations of a size << average size 
(PLC) should interact weaker than in average configuration.  Already 
application of the variational principle indicates that  probability of such 
configurations in bound nucleons is suppressed by factor 

Combination of two ideas: 
(a)  Quarks in nucleon with x>0.5 --0.6 belong to small size 
configurations with  strongly suppressed pion field.
prediction for  pA with trigger - confirmed by pA LHC  and BNL DAu 
studies of large x jet produciton.

9

In color screening model modification of average properties is < 2- 3 %.

(FS 83-85)

δ(p,Eexc) =
✓
1� p2int�m2

2∆E

◆�2

effect 

ΔE~ 0.5 GeV



Dependence of suppression we find for small virtualities: 
1-c(p2int-m2)

 

seems to be very general for the modification of the nucleon properties.  Indeed, 
consider analytic continuation of the scattering amplitude to  p2int-m2=0. In  this 
point modification should vanish. Our quantum mechanical treatment of 85  
automatically  took this into account.   

This generalization of initial formula allows a more 
accurate study of  the A-dependence of the EMC 
effect.

10

Our dynamical model for dependence of bound nucleon pdf on virtuality - explains 
why effect is large for large x and practically absent for  x~ 0.2 (average 
configurations V(conf) ~ <V>).
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(b) EMC ratio for 208Pb

FIG. 5: (Color online.) EMC ratios with and without the color screening model of medium
modifications. Q2 = 10 GeV2, and data and nucleonic structure function parametrizations

are as in Fig. 3.

The nucelon, after all, has an overall neutral color charge, so any color interaction between
nucleons owes to higher moments (dipole, quadrupole, etc.), which decrease with distance
between the color-charged constituents. Moreover, it can be shown by the renormalizability
of QCD that meson exchange between nucleons, one of which is in a PLC, is suppressed[49].

Since nucleons in an average-sized configuration (ASC) and a PLC will interact differently,
the probability that the nucleon can be found in either configuration should be modified by
the immresion of a nucleon in the nuclear medium. In particular, PLCs are expected to
be suppressed compared to ASCs since the bound nucleon will assume a configuration that
maximizes the binding energy and brings the nucleus to a lower-energy ground state. The
change in probability can be estimated using non-relativistic perturbation theory, as has
been done in Refs. [1, 49]. What is found is that the light cone density matrix should be
modified by a factor δA(k2), which depends on the nucleon momentum (or virtuality) as

δA(k
2) =

1

(1 + z)2
(34)

z =
k2

mp
+ 2ϵA

∆EA
. (35)

In analogy with electric charge screening, this is called the color screening model of the
EMC effect. We shall use it as an example of accounting for medium modifications when
calculating dijet cross sections.

Since the suppression factor depends on the total nucleon momentum rather than just
the light cone momentum fraction α, it is necessary to use the three-dimensional light cone
density ρ(α,pT ) when applying the color screening model. Moreover, since the suppression
of PLCs depends on inter-nucleon dynamics, it is expected not just that the parameters of
δA(k2) should vary with the nucleus considered, but with whether the nucleons are moving
in the mean field or are in an SRC. For a nucleon in the mean field of a heavy nucleus,
we expect the excitation energy ∆EA to be in the range 300 − 500 MeV, namely between
the excitation energies of a ∆ and an N∗ resonance. The best bit to data appears to be
with the N∗ excitation energy ∆EA ≈ 500 MeV. However, for the deuteron, as well as for a

16

Simple parametrization of 
suppression:  no suppression x≤ 
0.45,  by factor δA(k) for x ≥0.65,  
and linear interpolation in 
between

Fe , Q2=10 GeV2

Freese, Sargsian, MS 14



interesting to measure  tagged structure functions where 
modification is expected to increase quadratically with tagged 
nucleon momentum. It is applicable for searches of the form 
factor modification in (e,e’N). If  an effect is observed at 
say100 MeV/c - go to 200 MeV/c and see whether the effect 
would increase by a factor of ~3-4.

1� F

bound

2N (x/↵, Q2)/F2N (x/↵, Q2) = f(x/↵, Q2)(m2 � p

2
int

)

Here α is the light cone fraction of interacting nucleon

Tagging  of  proton and neutron in  e+D→e+ backward 
N +X (lab frame).

↵spect = (2� ↵) = (EN � p3N )/(mD/2)

11

γ

D p

A>2 -- two step contributions, motion of the pair. mask effect. 
In neutrino scattering BEBC tried to remove two step processes to see better 2N SRC 
“Doppler” shift

Collider kinematics -- nucleons with pN>pD/2  

“Gold plated test” (FS85) (Silver?)
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Experimental challenges

❖ Jlab Q range - separate LT and HT (50 :50 ) contribution to the 
EMC effect  at Jlab. Precision relative normalization to study 
scaling of 

F2A(x) / FD(x) -1 = f(A) φ(x)   and precision of f(A) ~ a2-1

feasible: Freese, Sargsian, MS

COMPASS DIS --- improve old DIS data which have errors ~50% for x=0.6

❖ Superfast (x> 1) quarks Jlab: Study of Q2 dependence, trying to reach 
LT regime for x~ 1 at Q2 ~ 15 GeV2 

x~1 LHC  dijet production in pPb 

❖ EIC --- x~0.1:  u-, d- quarks, gluons 

F2A(x = 1)/F2D(x = 1) > a2(A)

❖ Direct searches for exotics - isobars,...
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Large angle processes like  γ+A --> N  π + (A-1)

In color transparency regime - breaking of factorization  due to 
suppression of small size configurations in bound nucleons. -- by 
factor 

δ(p,Eexc) =
✓
1� p2int�m2

2∆E

◆�2


