In-Medium Form-Factors and the Coulomb Sum Rule

Models

• Experiments on nuclei that are sensitive to form factors

- (e,e'N) quasi-elastic proton knockout
- (e,e') quasi-elastic inclusive cross section

Steffen Strauch University of South Carolina

Supported in parts by the U.S. National Science Foundation: NSF PHY-1505615

Quantitative challenges in EMC and SRC Research and Data-Mining, MIT, December 2–5, 2016

Models Predict Form-Factor Medium Modifications

CQS: J.R. Smith and G.A. Miller, Phys. Rev. C 70, 065205 (2004) QMC: D.H. Lu et al., Phys. Lett. B 417, 217 (1998) NJL: I.C. Cloet, W. Bentz, and A.W. Thomas

- Changes in the internal structure of bound nucleons result also in **bound nucleon** form factors.
- Chiral Quark Soliton (CQS), Quark Meson Coupling (QMC), Skyrme, Nambu-Jona-Lasinio (NJL), GPD Models.
- Observable effects predicted. Model predictions:
 - are density and Q² dependent,
 - show similar behavior,
 - consistent with experimental data (within large uncertainties).

Form Factors in the Dressed γNN Vertex

• Dressed K-Matrix model (DKM): dressing the bare vertex with an infinite number of meson loops (π , ρ , σ mesons)

S. Kondratyuk, K. Kubodera, and F. Myhrer, Phys. Rev. C 71, 028201 (2005).

Polarization-Transfer Technique

$$\frac{G_{Ep}}{G_{Mp}} = -\frac{P'_x}{P'_z} \frac{E_i + E_f}{2m} \tan \frac{\theta_e}{2}$$

• Free nucleon

- Bound nucleon data need evaluation within model Reaction-mechanism effects predicted to be small and minimal for
 - Quasi-elastic scattering
 - High Q², small missing momenta
- Compare quasi-elastic and free-proton scattering to study possible medium effects

$$R = \left(\frac{P'_x}{P'_z}\right)_A / \left(\frac{P'_x}{P'_z}\right)_H$$

 $^{A}X(\vec{e},e'\vec{p})^{A-1}X$

Strong Medium Effects Observed in ⁴He Polarization-Transfer Double Ratios

²H: B. Hu et al., PRC 73, 064004 (2006). ⁴He: S. Dieterich et al., PLB 500, 47 (2001); S. S., et al., PRL 91, 052301 (2003);
M. Paolone, et al., PRL 105, 0722001 (2010); S. Malace et al., PRL 106, 052501 (2011)

Madrid RDWIA

- Relativistic calculation in distorted-wave impulse approximation (RDWIA) overestimates R
- Both, the QMC and CQS models give reduction in R by about 6% and are in very good agreement with data

- Induced polarization, P_y, is almost exclusively sensitive to FSI
- **RLF optical potential** along with cc1 current operator results in excellent description of Py within the Madrid model

Schiavilla (2010)

- Variational wave functions for the bound three- and four-nucleon systems + nonrelativistic MEC
- Optical potentials include additional charge-exchange terms which are not all well constrained.
- The charge-exchange independent spin-orbit component of the optical potential was reduced to describe the Py data (2010).
- Very good agreement with the data after fitting FSI parameters to the induced polarization of E03–104.

R. Schiavilla, O. Benhar, A. Kievsky, L.E. Marcucci, and M. Viviani, Phys. Rev. Lett. **94**, 072303 (2005)

Within the **Madrid model** P_y seems unaffected by charge exchange to a large degree.

Medium Effect Increases with Proton Virtuality

Free proton

 ⁴He(e,e'p)³H polarizationtransfer double-ratio data and calculations show dependence on proton virtuality

$$v = p^2 - m_p^2$$

with the trend of $R \approx 1$ for $p^2 = m_P^2$; as it should be.

Increase of medium effects with proton virtuality;
4% to 10% over the range covered.

see: C. Ciofi degli Atti, L.L. Frankfurt, L.P. Kaptari, M.I. Strikman, Phys. Rev. C 76, 055206 (2007)

What Generates the Large Medium Effect?

- The nuclear density or
- the larger proton virtuality probed in the ⁴He experiments?

²H: B. Hu et al., PRC 73, 064004 (2006). ⁴He: S. Dieterich et al., PLB 500, 47 (2001); S. S., et al., PRL 91, 052301 (2003);
M. Paolone, et al., PRL 105, 0722001 (2010); S. Malace et al., PRL 106, 052501 (2011)

New experiment in Hall C will measure ¹H, ²H, ⁴He

$$v = p^{2} - m_{p}^{2}$$
$$= \left(M_{A} - \sqrt{M_{A-1}^{2} + \vec{p}_{m}^{2}}\right)^{2} - \vec{p}_{m}^{2} - m_{p}^{2}$$

*M. Sargsian, private communication C. Ciofi degli Atti, L.L. Frankfurt, L.P. Kaptari, M.I. Strikman, Phys. Rev. C **76**, 055206 (2007)

Q² (GeV/c)²	Pm (MeV/c)	Targets
1.0	0, +140, +220	⁴ He, ² H, ¹ H
1.8	0	⁴He, ¹H

1st Feature: Proton-virtuality coverage

- E11-002: Q² = 1.0 (GeV/c)² pm = 0, 140, 220 MeV/c
- Study the expected strong dependence of medium effects on the momentum of the bound nucleon.
- Previous ²H data (△) follow suggestively close the virtuality dependence of the ⁴He data (○).

2nd Feature: ⁴He and ²H targets

• E11-002:

Compare proton knock-out from dense and thin nuclei: ⁴He(e,e'p)³H and ²H(e,e'p)n

- Modern, rigorous ²H(e,e'p)n calculations show reactiondynamics effects and FSI will change the ratio up to 5% (maximum 8%) in this kinematics
- Any larger effects

 (35%?)should be attributed
 to something else ...

S. Jeschonnek and J.W. Van Orden, Phys. Rev. C **81**, 014008 (2010) and Phys. Rev. C **78**, 014007 (2008); M.M. Sargsian, Phys. Rev. C**82**, 014612 (2010)

3rd Feature: High-Q² point

- Polarization-transfer data effectively described by inmedium electromagnetic form factors or charge-exchange FSI.
- For Q² ≥ 1.3 (GeV/c)² Madrid RDWIA and Schiavilla (2010) results seem to agree.
- Additional data needed
 - E11-002 will measure one new high-precision data point of the ⁴He polarization-transfer double ratio at Q² = 1.8 (GeV/c)².
 - Will it be reduced by 7% with respect to Madrid RDWIA/Schiavilla?

New MAMI Data: ²H data virtuality dependent

No significant Q² dependence

²H data agree with ⁴He data

Results do not seem to depend on the nuclear density.

Model calculations on average 10% low

No need for medium-modified form factors, but certainly not excluded.

Results of H. Arenhövel calculations

Final-state interactions are the major medium effect in the calculation. Medium modifications of the proton FF are expected to be small at the MAMI Q^2 .

Measurement of the ¹²C(e,e'p) Reaction

• S-shell knockout in the ${}^{12}C(e,e'p){}^{11}B$ reaction allows probing medium modifications of the P'_x/P'_z ratio at high proton virtualities.

Neutron in the Nuclear Medium

very difficult measurement.

⁴He(e,e'n)³He: Challenges and Choice of Q^2

- Measure P'_x, P'_z to study possible neutron medium modifications
- Q² = 0.1 (GeV/c)² Theory calculation* best at low energy
- Q² = 0.4 (GeV/c)² Highest sensitivity to changes in magnetic FF
- $Q^2 = 0.8 (GeV/c)^2$, 1.3 $(GeV/c)^2 \begin{bmatrix} a \\ b \\ b \\ results \end{bmatrix}$
- Py in ⁴He(e,e'n) could also provide crucial constraints on charge-exchange FSI

*S. Bacca, N. Barnea, W. Leidemann, and G. Orlandini, PRL **102**, 162501 (2009) JLab LOI 10–007: G. Ron, D. Higinbotham, R. Gilman, S. Strauch, J. Lichtenstadt

MAMI ?

Coulomb Sum Rule in quasi-elastic A(e,e')

$$S_L(|\mathbf{q}|) = \int_{\omega^+}^{|\mathbf{q}|} d\omega \frac{R_L(\omega, |\mathbf{q}|)}{ZG_{Ep}^2(Q^2) + NG_{En}^2(Q^2)}$$

Nonrelativistic expectation: S_L should approach unity for |q| much greater than the Fermi momentum.

Experimental findings controversial:

- No quenching in the data observed
 J. Jourdan, Nucl. Phys. A 603, 117 (1996)
- Quenching of S_L is experimentally established
 J. Morgenstern, Z.-E. Meziani, Phys. Lett. B 515, 269 (2001)
- Good agreement between theory and experiment for ⁴He when using free-nucleon form factors
 J. Carlson, J. Jourdan, R. Schiavilla, and I. Sick, Phys. Lett. B 553, 191 (2003)

J. Morgenstern, Z.-E. Meziani, Phys. Lett. B 515, 269 (2001)

Very different recent interpretations

"The observed quenching is directly associated with a softer F_{1p} in medium."

Ian C. Cloët, Wolfgang Bentz, Anthony W. Thomas, Phys. Phys. Rev. Lett. **116**, 032701 (2016)

"The so-called quenching ... emerges in this study as a result of initial-state correlations and final-state interactions."

A. Lovato, S. Gandolfi, J. Carlson, Steven C. Pieper,R. Schiavilla, Phys. Rev. Lett. 117, 082501 (2016)

New Data are coming from Hall A E05-110

- Four nuclei: ⁴He, ¹²C, ⁵⁶Fe, ²⁵⁶Pb
- high momentum: q = 650 MeV/c
- "Final results are just around the corner"

Ian C. Cloët, Wolfgang Bentz, Anthony W. Thomas, Phys. Phys. Rev. Lett. **116**, 032701 (2016) E05–110: Choi, Chen, and Meziani spokespeople

Future Steps

A(e,e')

• Finalize results from Hall A Coulomb Sum Rule experiment

 $A(e,e'\vec{p})$

- Finalize MAMI ²H and ¹²C data analysis
- Re-defend Hall C ⁴He, ²H, ¹H polarization-transfer experiment
- Propose to include ¹²C in Hall C experiment?

 $A(e,e'\vec{n})$

- at MAMI?
- at JLab?