Nuclear Binding and Off-shell Corrections in the EMC Effect

S. Kulagin

INR Moscow, Russia R. Petti

University of South Carolina, Columbia SC, USA

"Quantitative Challenges in EMC and SRC Research and Data-Mining" December 4th, 2016, MIT, Cambridge, MA, USA

NUCLEAR MODEL

GLOBAL APPROACH aiming to obtain a quantitative model covering the complete range of x and Q^2 (S. Kulagin and R.P., NPA 765 (2006) 126; PRC 90 (2014) 045204):

- Scale of nuclear processes (target frame) $L_I = (Mx)^{-1}$ Distance between nucleons $d = (3/4\pi\rho)^{1/3} \sim 1.2Fm$
- $L_I < d$ For x > 0.2 nuclear DIS \sim incoherent sum of contributions from bound nucleons
- $L_I \gg d$ For $x \ll 0.2$ coherent effects of interactions with few nucleons are important

DIFFERENT EFFECTS

on parton distributions and structure functions included:

$$q_{a/A} = q_a^{p/A} + q_a^{n/A} + \delta q_a^{\text{MEC}} + \delta q_a^{\text{coh}} \qquad a = u, d, s....$$

- $q_a^{p(n)/A}$ PDF in bound p(n) with Fermi Motion, Binding (FMB) and Off-Shell effect (OS)
- $\delta q_a^{\mathrm{MEC}}$ nuclear Meson Exchange Current (MEC) correction
- $\delta q_a^{\rm coh}$ contribution from coherent nuclear interactions: Nuclear Shadowing (NS)

INCOHERENT NUCLEAR SCATTERING

FERMI MOTION AND BINDING in nuclear parton distributions can be calculated from the convolution of nuclear spectral function and (bound) nucleon PDFs: $q_{a/A}(x,Q^2) = q_a^{p/A} + q_a^{n/A}$ $xq_a^{p/A} = \int \mathrm{d}\varepsilon \,\mathrm{d}^3\mathbf{p}\,\mathcal{P}(\varepsilon,\mathbf{p})\left(1+\frac{p_z}{M}\right)x'q^N(x',Q^2,p^2)$ where $x' = Q^2/(2p \cdot q)$ and $p = (M + \varepsilon, \mathbf{p})$ and we dropped $1/Q^2$ terms for illustration purpose. ✤ Since bound nucleons are there appears dependence on the OFF-MASS-SHELL nucleon virtuality $p^2 = (M + \varepsilon)^2 - \mathbf{p}^2$ and expanding PDFs in the small $(p^2 - M^2)/M^2$: $q_a(x, Q^2, p^2) \approx q_a^N(x, Q^2) \left(1 + \delta f(x)(p^2 - M^2)/M^2\right).$ where we introduced a structure function of the NUCLEON: $\delta f(x)$

+ Hadronic/nuclear input:

- Proton/neutron SFs computed in NNLO pQCD + TMC + HT from fits to DIS data
- Realistic nuclear spectral function: mean-field $\mathcal{P}_{MF}(\varepsilon, \mathbf{p})$ + correlated part $\mathcal{P}_{cor}(\varepsilon, \mathbf{p})$

Off-shell function measures the in-medium modification of bound nucleon Any isospin (i.e. $\delta f_p \neq \delta f_n$) or flavor dependence (δf_a) in the off-shell function?

NUCLEAR SPECTRAL FUNCTION

- The description of the nuclear properties is embedded into the nuclear spectral function
- Nucleons occupy energy levels according to Fermi statistics and are distributed over momentum (Fermi motion) and energy states. In the MEAN FIELD model:

$$\mathcal{P}_{\mathrm{MF}}(\varepsilon, \mathbf{p}) = \sum_{\lambda < \lambda_{\mathbf{F}}} \mathbf{n}_{\lambda} \mid \phi_{\lambda}(\mathbf{p}) \mid^{\mathbf{2}} \delta(\varepsilon - \varepsilon_{\lambda})$$

where sum over occupied levels with n_{λ} occupation number. Applicable for small nucleon separation energy and momenta, $|\varepsilon| < 50$ MeV, p < 300 MeV/c

CORRELATION EFFECTSin nuclear ground state drive the high-energy andhigh-momentum component of the nuclear spectrum, when $|\varepsilon|$ increases

IMPACT OF NN CORRELATIONS

- Impulse Approximation (IA) fails to quantitatively describe observed modifications
- Instructive to drop P_{cor}(ε, **p**) from spectral function to estimate effect of NN correlations
- Significant change on structure functions in clear disagreement with data indicates mean-field P_{MF}(ε, **p**) alone not sufficient

⇒ Study NN correlations and refine description of spectral function

PREDICTIONS FOR CHARGED LEPTON DIS

$\delta f(x)$ FROM $A \ge 4$ NUCLEI AND DEUTERON

• Precise determination of $\delta f(x)$ from RATIOS F_2^A/F_2^B from DIS off different nuclei, including SLAC, NMC, EMC, BCDMS, E665 data (NPA 765 (2006) 126)

 Independent determination from global QCD fit to p and D data with DIS, DY, W[±]/Z provides consistent results (S. Alekhin, S. Kulagin and R.P., arXiv:1609.08463 [nucl-th])

INTERPRETATION OF $\delta f(x)$

Valence quark distribution in a covariant diquark spectator model (see *S.Kulagin et.al., PRC50(1994)1154*)

$$q_{\rm val}(x,p^2) = \int_{-\infty}^{x\left(p^2 - \frac{s}{1-x}\right)} dk^2 C\phi\left(k^2/\Lambda^2\right)/\Lambda^2$$

- Assume a single-scale quark distribution over the virtuality k^2 . The model gives a resonable description of the nucleon valence distribution for x > 0.2
- Off-shell nucleon: $C \to C(p^2)$, $\Lambda \to \Lambda(p^2)$. The function $\delta f = \partial \ln q_{val} / \partial \ln p^2$ depends on $c = \partial \ln C / \partial \ln p^2$ and $\lambda = \partial \ln \Lambda^2 / \partial \ln p^2$.
- Tune c and λ to reproduce the node $\delta f(x_0) = 0$ and the slope $\delta f'(x_0)$ of phenomenological off-shell function. We obtain $\lambda \approx 1$ and $c \approx -2.3$.
- The positive parameter λ suggests smaller in-medium scale Λ or larger nucleon core size $R_c = \Lambda^{-1}$ ("swelling" of a bound nucleon).

$$\begin{array}{c} \left. \frac{\delta R_c}{R_c} \right|_{\rm in-medium} = -\frac{1}{2} \frac{\delta \Lambda^2}{\Lambda^2} = -\frac{1}{2} \lambda \frac{\langle p^2 - M^2 \rangle}{M^2} \\ ^{208} {\rm Pb}: \ \delta R_c/R_c \sim 10\% \qquad {\rm Deuteron}: \ \delta R_c/R_c \sim 2\% \end{array}$$

NUCLEAR EFFECTS IN RESONANCE REGION

- + Use Christy-Bosted SF parameterization for p and n in resonance region
- ³He spectral function from exact Faddeev three-body calculation by Hannover group (R.-W. Schulze and P. U. Sauer, Phys. Rev. C 48, (1993) 38)
- Apply nuclear corrections for ³He/(D+p) as predicted from the DIS region to the cross-section in the resonance kinematics

 \implies Consistent treatment of nuclear effects in DIS and resonance regions?

CONSTRAINTS FROM SUM RULES

- Nuclear meson correction constrained by light-cone momentum balance and equations of motion. (S. Kulagin, NPA 500 (1989) 653; S. Kulagin and R.P., NPA 765 (2006) 126; PRC 90 (2014) 045204)
- At high Q² (PDF regime) coherent nuclear corrections controlled by the effective scattering amplitudes, which can be constrained by normalization sum rules:

$$\delta N_{\rm val}^{\rm OS} + \delta N_{\rm val}^{\rm coh} = 0 \longrightarrow a_0$$

$$\delta N_1^{\rm OS} + \delta N_1^{\rm coh} = 0 \longrightarrow a_1$$

where $N_{\text{val}}^A = A^{-1} \int_0^A dx q_{0/A}^- = 3$ and $N_1^A = A^{-1} \int_0^A dx q_{1/A}^- = (Z - N)/A$

Solve numerically in terms of δf and virtuality $v = (p^2 - M^2)/M^2$ (input) and obtain the effective cross-section in the (I = 0, C = 1) state, as well as Re/Im of amplitudes

 \implies Nuclear corrections to PDFs largely controlled by $\mathcal{P}(\varepsilon, \mathbf{p})$ AND $\delta f(x)$

PREDICTIONS FOR DRELL-YAN PRODUCTION IN pA

- Predictions based on the assumption of a common off-shell function δf for both valence and sea quark distributions consistent with existing Drell-Yan data from E772 (S. Kulagin and R.P., Phys. Rev. C90 (2014), 045204)
- More precise data with kinematic coverage extended at larger x values from E906 could provide better insights on the flavor dependence of δf

PREDICTIONS FOR W^{\pm}, Z PRODUCTION IN pPb AT THE LHC

- ◆ Sensitivity of W[±], Z rapidity distributions in p+Pb collisions at the LHC to FMB and OS corrections ⇒ current data consistent with assumption no flavor dependence (P. Ru, S. Kulagin, R.P. and B-W. Zhang, arXiv:1608.06835 [nucl-th])
- Future more precise measurements could provide additional insights on the flavor (isospin) dependence of δf

P. Ru, S. Kulagin, R.P. and B-W. Zhang, arXiv:1608.06835 [nucl-th]

SUMMARY

- The impulse approximation (FMB) alone cannot provide a quantitative description of data without the in-medium modification of bound nucleons from the OS effect.
- The off-shell modification of bound nucleons in a nucleus can be described by a universal function δf(x), which can be regarded as a nucleon structure function describing the relative modification of nucleon SFs in the vicinity of the mass shell.
 ⇒ Any isospin (i.e. δf_p ≠ δf_n) or flavor dependence (δf_a) in the off-shell function?
- NN correlation effects in nuclear ground state drive the high energy/momentum component of spectral function and are required for a quantitative description of data.
- Interplay between nuclear effects in the DIS and resonance regions?
- Sum rules and normalization constraints relate different nuclear effects in different kinematic regions of x. Nuclear corrections to PDFs largely controlled by the spectral function $\mathcal{P}(\varepsilon, \mathbf{p})$ and the off-shell function $\delta f(x)$.
- ◆ Quantitative description of data in a wide range of nuclear processes including lepton-nucleus DIS, Drell-Yan production in pA, W[±], Z production in p+Pb at LHC.

Backup slides

NUCLEAR MESON EXCHANGE CURRENTS

+ Leptons can scatter off mesons which mediate interactions among bound nucleons:

$$\delta q_a^{\text{MEC}}(x,Q^2) = \int_x \mathrm{d}y \, f_{\pi/A}(y) q_a^{\pi}(x/y,Q^2)$$

• Contribution from nuclear pions (mesons) to balance nuclear light cone momentum $\langle y \rangle_{\pi} + \langle y \rangle_{N} = 1$. The pion distribution function is localized in a region of $y \leq p_{F}/M \sim 0.3$ so that the pion contribution is at x < 0.3. The correction is driven by the average number of "pions" $n_{\pi} = \int dy f_{\pi}(y)$ and $n_{\pi}/A \sim 0.1$ for heavy nuclei.

+ Hadronic/nuclear input:

- Pion Parton Density Functions from fits to Drell-Yan data
- $f_{\pi/A}(y)$ calculated using constraints of light-cone momentum conservation and equations of motion for pion-nucleon system

COHERENT NUCLEAR EFFECTS

(ANTI)SHADOWING correction comes from multiple interactions of the hadronic component of virtual photon during the propagation through matter. This is described following the Glauber-Gribov approach:

$$\mathcal{A}(a) = ia^2 \int_{z_1 < z_2} d^2 \mathbf{b} dz_1 dz_2 \,\rho_A(\mathbf{b}, z_1) \rho_A(\mathbf{b}, z_2) e^{i \int_{z_1}^{z_2} dz' a \,\rho_A(\mathbf{b}, z')} e^{ik_L(z_1 - z_2)}$$

 $\boxed{a = \sigma(i + \alpha)/2}$ is the (effective) scattering amplitude ($\alpha = \operatorname{Re} a/\operatorname{Im} a$) in forward direction, $k_L = Mx(1 + m_v^2/Q^2)$ is longitudinal momentum transfer in the process $v^* \to v$ (accounts for finite life time of virtual hadronic configuration).

Hadronic/nuclear input:

- Nuclear number densities $\rho_A(r)$ from parameterizations based on elastic electron scattering data
- Low Q^2 limit of scattering amplitude a given by Vector Meson Dominance (VMD) model

Targets	χ^2 /DOF								
	NMC	EMC	E139	E140	BCDMS	E665	HERMES		
⁴ He/ ² H	10.8/17		6.2/21						
$^{7}\mathrm{Li}/^{2}\mathrm{H}$	28.6/17								
$^{9}\mathrm{Be}/^{2}\mathrm{H}$			12.3/21						
$^{12}C/^{2}H$	14.6/17		13.0/17						
${}^{9}\text{Be}/{}^{12}\text{C}$	5.3/15								
$^{12}C/^{7}Li$	41.0/24								
$^{14}N/^{2}H$							9.8/12		
$^{27}Al/^{2}H$			14.8/21						
$^{27}\text{Al/C}$	5.7/15								
$^{40}Ca/^{2}H$	27.2/16		14.3/17						
40 Ca $/^{7}$ Li	35.6/24								
$^{40}Ca/^{12}C$	31.8/24					1.0/5			
$^{56}\mathrm{Fe}/^{2}\mathrm{H}$			18.4/23	4.5/8	14.8/10				
56 Fe/ 12 C	10.3/15								
$^{63}Cu/^{2}H$		7.8/10							
84 Kr/ 2 H		·					4.9/12		
$^{108}Ag/^{2}H$			14.9/17						
119 Sn/ 12 C	94.9/161								
$^{197}Au/^{2}H$			18.2/21	2.4/1					
207 Pb/ 2 H						5.0/5			
²⁰⁷ Pb/ ¹² C	6.1/15					0.2/5			

TABLE II. Values of χ^2 /DOF between different data sets with $Q^2 \ge 1$ GeV² and the predictions of Ref. [17]. The normalization of each experiment is fixed. The sum over all data results in χ^2 /DOF = 466.6/586.

S. Kulagin and R.P., PRC 82 (2010) 054614

Observable	N_{Data}	ABMP15	CT10	ABMP15	
		+ KP	+ EPS09	(Zp + Nn)	
			CMS experiment:		
$d\sigma^+/d\eta^l$	10	1.052	1.532	3.057	
${ m d}\sigma^-/{ m d}\eta^l$	10	0.617	1.928	1.393	
$N^+(+\eta^l)/N^+(-\eta^l)$	5	0.528	1.243	2.231	
$N^-(+\eta^l)/N^-(-\eta^l)$	5	0.813	0.953	2.595	
$(N^+ - N^-)/(N^+ + N^-)$	10	0.956	1.370	1.064	
$d\sigma/dy^Z$	12	0.596	0.930	1.357	
$N(+y^Z)/N(-y^Z)$	5	0.936	1.096	1.785	
CMS combined	57	0.786	1.332	1.833	
		ATLAS experiment:			
$d\sigma^+/d\eta^l$	10	0.586	0.348	1.631	
${ m d}\sigma^-/{ m d}\eta^l$	10	0.151	0.394	0.459	
$d\sigma/dy^Z$	14	1.449	1.933	1.674	
CMS+ATLAS combined	91	0.796	1.213	1.635	

TABLE I. Normalized χ^2 (per degree of freedom) for the various observables (rows) shown in the plots listed in the first column, calculated between each data set and three different model predictions: ABMP15+KP, CT10+EPS09, and ABMP15 without nuclear modifications (last column).

P. Ru, S. Kulagin, R.P. and B-W. Zhang, arXiv:1608.06835 [nucl-th]