EMC Theory: The Polarized EMC effect

Ian Cloët Argonne National Laboratory

Quantitative challenges in EMC and SRC Research and Data-Mining Massachusetts Institute of Technology

2-5 December 2016

Understanding the EMC effect

- The puzzle posed by the EMC effect will only be solved by conducting new experiments that expose novel aspects of the EMC effect
- Measurements should help distinguish between explanations of EMC effect e.g. whether *all nucleons* are modified by the medium or only those in SRCs
- Important examples are:
 - EMC effect in polarized structure functions
 - flavour dependence of EMC effect

JLab has an approved experiment to measure the spin structure of ⁷Li

Theory approaches to EMC effect

To address the EMC effect must determine nuclear quark distributions:

$$q_A(x_A) = \frac{P^+}{A} \int \frac{d\xi^-}{2\pi} e^{iP^+ x_A \xi^- / A} \langle A, P | \overline{\psi}_q(0) \gamma^+ \psi_q(\xi^-) | A, P \rangle$$

Common to approximate using convolution formalism

$$q_A(x_A) = \sum_{\alpha,\kappa} \int_0^A dy_A \int_0^1 dx \ \delta(x_A - y_A x) \ f_{\alpha,\kappa}(y_A) \ q_{\alpha,\kappa}(x)$$

• $\alpha = (bound)$ protons, neutrons, pions, deltas. ...

Theory approaches to EMC effect

To address the EMC effect must determine nuclear quark distributions:

$$q_A(x_A) = \frac{P^+}{A} \int \frac{d\xi^-}{2\pi} e^{iP^+ x_A \xi^- / A} \langle A, P | \overline{\psi}_q(0) \gamma^+ \psi_q(\xi^-) | A, P \rangle$$

Common to approximate using convolution formalism

$$q_A(x_A) = \sum_{\alpha,\kappa} \int_0^A dy_A \int_0^1 dx \ \delta(x_A - y_A x) \ f_{\alpha,\kappa}(y_A) \ q_{\alpha,\kappa}(x)$$

- $\alpha = (bound)$ protons, neutrons, pions, deltas. ...
- $q_{\alpha}(x)$ light-cone distribution of quarks q in bound hadron α
- $f_{\alpha}(y_A)$ light-cone distribution of hadrons α in nucleus

Sum Rules and Convolution Formalism

Recall convolution model:

$$q_A(x_A) = \sum_{\alpha} \int_0^A dy_A \int_0^1 dx \ \delta(x_A - y_A x) \ f_\alpha(y_A) \ q_\alpha(x)$$

All credible explanations of the EMC effect must satisfy baryon number and momentum sum rules:

$$\int_{0}^{A} dx_{A} u_{A}^{-}(x_{A}) = 2 Z + N, \qquad \int_{0}^{A} dx_{A} d_{A}^{-}(x_{A}) = Z + 2 N,$$
$$\int_{0}^{A} dx_{A} x_{A} \left[u_{A}^{+}(x_{A}) + d_{A}^{+}(x_{A}) + \dots + g_{A}(x_{A}) \right] = Z + N = A,$$

In convolution formalism these sum rules imply

$$\sum_{\alpha} n_B^{\alpha} \int_0^A dy_A f_{\alpha}(y_A) = A \qquad \sum_{\alpha} \int_0^A dy_A y_A f_{\alpha}(y_A) = A$$

• quark distributions $q_{\alpha}(x)$ should satisfy baryon number and momentum sum rules for hadron α

Nuclear Wave Functions

- Modern GFMC or VMC nucleon momentum distributions have significant high momentum tails
 - indicates momentum distributions contain SRCs: ∼20% for ¹²C
- Light cone momentum distribution of nucleons in nucleus is given by

$$f(y_A) = \int \frac{d^3 \vec{p}}{(2\pi)^3} \,\delta\left(y_A - \frac{p^+}{P^+}\right) \,\rho(p)$$

Continuum QCD

- this is just a modern interpretation of the Nambu-Jona-Lasinio (NJL) model
- model is a Lagrangian based covariant QFT, exhibits dynamical chiral symmetry breaking & quark confinement; elements can be QCD motivated via the DSEs
- Quark confinement is implemented via proper-time regularization
 - quark propagator: $[p m + i\varepsilon]^{-1} \rightarrow Z(p^2)[p M + i\varepsilon]^{-1}$
 - wave function renormalization vanishes at quark mass-shell: $Z(p^2 = M^2) = 0$
 - confinement is critical for our description of nuclei and nuclear matter

Nucleon Electromagnetic Form Factors

Nucleon = quark+diquark

• Form factors given by Feynman diagrams:

Calculation satisfies electromagnetic gauge invariance; includes

- ٠ dressed quark–photon vertex with ρ and ω contributions
- contributions from a pion cloud ٠

[ICC, W. Bentz and A. W. Thomas, Phys. Rev. C 90, 045202 (2014)]

Nucleon Electromagnetic Form Factors

Nucleon = quark+diquark

• Form factors given by Feynman diagrams:

Calculation satisfies electromagnetic gauge invariance; includes

- dressed quark–photon vertex with ρ and ω contributions
- contributions from a pion cloud

[ICC, W. Bentz and A. W. Thomas, Phys. Rev. C 90, 045202 (2014)]

Nucleon quark distributions

• Nucleon = quark+diquark • PDFs given by Feynman diagrams: $\langle \gamma^+ \rangle$

Covariant, correct support; satisfies sum rules, Soffer bound & positivity

 $\langle q(x) - \bar{q}(x) \rangle = N_q, \ \langle x u(x) + x d(x) + \ldots \rangle = 1, \ |\Delta q(x)|, \ |\Delta_T q(x)| \leqslant q(x)$

table of contents

Quantitative challenges in EMC and SRC 2-5 December 2016

NJL at Finite Density

Finite density (mean-field) Lagrangian: $\bar{q}q$ interaction in σ , ω , ρ channels

$$\mathcal{L} = \overline{\psi}_q \left(i \, \partial \!\!\!/ - M^* - V_q \right) \psi_q + \mathcal{L}'_H$$

Fundamental physics – mean fields couple to the quarks in nucleons

• Quark propagator: $S(k)^{-1} = k - M + i\varepsilon \rightarrow S_q(k)^{-1} = k - M^* - V_q + i\varepsilon$

• Hadronization + mean-field \implies effective potential (solve self-consistently)

$$\mathcal{E} = \mathcal{E}_V + \mathcal{E}_p + \mathcal{E}_n - \frac{\omega_0^2}{4 G_\omega} - \frac{\rho_0^2}{4 G_
ho}$$

E_V = vacuum energy
 E_{p(n)} = energy of nucleons moving in σ, ω, ρ mean-fields
 table of contents
 Quantitative challenges in EMC and SRC 2-5 December 2016

EMC and Polarized EMC effects

Definition of polarized EMC effect:

• ratio equals unity if no medium effects

- Large polarized EMC effect arises because in-medium quarks are more relativistic (M* < M)
 - lower components of quark wave functions are enhanced and these usually have larger orbital angular momentum
 - in-medium we find that quark spin is converted to orbital angular momentum
- A large polarized EMC effect would be difficult to accommodate within traditional nuclear physics and most other explanations of the EMC effect

table of contents

EMC effects in Finite Nuclei

Spin-dependent cross-section is suppressed by 1/A

- should choose light nucleus with spin carried by proton e.g. \implies ⁷Li, ¹¹B, ...
- Effect in ⁷Li is slightly suppressed because it is a light nucleus and proton does not carry all the spin (simple WF: $P_p = 13/15$ & $P_n = 2/15$)
- Experiment now approved at JLab [E12-14-001] to measure spin structure functions of ⁷Li (GFMC: $P_p = 0.86$ & $P_n = 0.04$)

Everyone with their favourite explanation for the EMC effect should make a prediction for the polarized EMC effect in ⁷Li

table of contents

Turning off Medium Modification

table of contents

Without medium modification both EMC & polarized EMC effects disappear

 Polarized EMC effect is smaller than the EMC effect – this is natural within standard nuclear theory and also from SRC perspective

• Large splitting very difficult without *mean-field* medium modification

Mean-field vs SRC induced Medium Modification Argonne

Explanations of EMC effect using SRCs also invoke medium modification

• since about 20% of nucleons are involved in SRCs, need medium modifications about 5 times larger than in mean-field models

• For polarized EMC effect only 2–3% of nucleons are involved in SRCs

- it would therefore be natural for SRCs to produce a smaller polarized EMC effect
- Observation of a large polarized EMC effect would imply that SRCs are less likely to be the mechanism responsible for the EMC effect

table of contents

Nuclear spin sum

Proton spin states	Δu	Δd	Σ	g_A
p	0.97	-0.30	0.67	1.267
⁷ Li	0.91	-0.29	0.62	1.19
$^{11}\mathbf{B}$	0.88	-0.28	0.60	1.16
15 N	0.87	-0.28	0.59	1.15
27 Al	0.87	-0.28	0.59	1.15
Nuclear Matter	0.79	-0.26	0.53	1.05

• Angular momentum of nucleon: $J = \frac{1}{2} = \frac{1}{2}\Delta\Sigma + L_q + J_g$

- in medium $M^* < M$ and therefore quarks are more relativistic
- lower components of quark wavefunctions are enhanced
- quark lower components usually have larger angular momentum
- $\Delta q(x)$ very sensitive to lower components

• Therefore, in-medium quark spin \rightarrow orbital angular momentum

Conclusion

- Understanding the EMC effect is a critical step towards a QCD based description of nuclei
 - need new experiments that provide clean access to novel aspects of the EMC effect
- Key example is the approved JLab experiment that will measure the polarized EMC effect in ⁷Li
 - I hope our community can get behind this experiment
 - also PVDIS!!
- A next frontier is GPDs and TMDs of nuclei at JLab and an EIC

QCD town meeting: "... must solve problem posed by the EMC effect ..."

Backup Slides

Explanations of the EMC effect

- Traditional explanations include:
 - nuclear binding and Fermi motion
 - pion excess in nuclei
- QCD motivated explanations include:
 - dynamical rescaling
 - multi-quark clusters, e.g. 6,9,... quark bags
 - nucleon swelling and suppression of point-like configurations
 - medium modification of bound nucleon wave functions
 - Hybrid explanations include:
 - short-range nucleon-nucleon correlations (SRCs)
- After 30 years data has ruled out almost none of these explanations!

Confinement in NJL model

In general the NJL model is not confining; quark propagator is simply

$$S(k) = \frac{1}{\not k - M + i\varepsilon} = \frac{\not k + M}{k^2 - M^2 + i\varepsilon}$$

- quark propagator has a pole \implies quarks are part of physical spectrum
- However the proper-time scheme is unique $\frac{1}{X^n} = \frac{1}{(n-1)!} \int_0^\infty d\tau \ \tau^{n-1} e^{-\tau X}$

$$S(k) = \int_0^\infty d\tau \, (\not\!k + M) \, e^{-\tau \left(k^2 - M^2\right)} \to \underbrace{\frac{\left[e^{-(k^2 - M^2)/\Lambda_{UV}^2 - e^{-(k^2 - M^2)/\Lambda_{IR}^2}\right]}{k^2 - M^2}}_{\equiv Z(k^2)} \left[\not\!k + M\right]$$

• quark propagator does not have a pole: $Z(k^2) \stackrel{k^2 \to M^2}{=} \frac{1}{\Lambda_{TR}^2} - \frac{1}{\Lambda_{TV}^2} \neq \infty$

Important consequences are:

- saturation of nuclear matter
- have a Δ bound state for $M < 400\,{\rm MeV},$ etc

Nuclear Matter

Finite density Lagrangian: $\bar{q}q$ interaction in σ , ω , ρ channels

 $\mathcal{L}=\overline{\psi}_q\left(i\,\partial\!\!\!/-M^*-V_q
ight)\psi_q+\mathcal{L}_I'$ [W. Bentz, A.W. Thomas, Nucl. Phys. A 696, 138 (2001)]

Fundamental idea: mean-fields couple to quarks in bound nucleons

- Quark propagator: $S^{-1} = k M + i\varepsilon \rightarrow S_q^{-1} = k M^* V_q + i\varepsilon$
- Hadronization + mean-field \implies effective potential

$$V_{u(d)} = \omega_0 \pm \rho_0, \qquad \omega_0 = 6 G_\omega \left(\rho_p + \rho_n \right), \qquad \rho_0 = 2 G_\rho \left(\rho_p - \rho_n \right)$$

• $G_{\omega} \iff Z = N$ saturation & $G_{\rho} \iff$ symmetry energy

Nuclear Matter Results

• Constituent mass: $M^* = m - 2 G_{\pi} \langle \overline{\psi} \psi \rangle^*$

• small restoration of chiral symmetry: $|\langle \overline{\psi}\psi \rangle^*| < |\langle \overline{\psi}\psi \rangle|$

Curvature ["scalar polarizability"] important for saturation

• is a consequence of confinement and prevents nuclear matter collapse

Hadronization \rightarrow effective potential: $\mathcal{E} = \mathcal{E}_V - \frac{\omega_0^2}{4G_o} - \frac{\rho_0^2}{4G_o} + \mathcal{E}_p + \mathcal{E}_n$

- \mathcal{E}_V : vacuum energy
- $\mathcal{E}_{p(n)}$: energy of nucleons moving in σ , ω , ρ mean-fields

1.2