EMC Theory:
The Polarized EMC effect

Ian Cloét
Argonne National Laboratory

Quantitative challenges in EMC and SRC Research and Data-Mining
Massachusetts Institute of Technology
2 -5 December 2016
U.S. DEPARTMENT OF Offlce Of é
ENERGY Science Argon ne

NATIONAL LABORATORY




Understanding the EMC effect
@ The puzzle posed by the EMC effect will only be solved by conducting new
experiments that expose novel aspects of the EMC effect

@ Measurements should help distinguish between explanations of EMC effect
e.g. whether all nucleons are modified by the medium or only those in SRCs

@ Important examples are:
o EMC effect in polarized structure functions
o flavour dependence of EMC effect

@ JLab has an approved experiment to measure the spin structure of "Li
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Theory approaches to EMC effect

@ To address the EMC effect must determine nuclear quark distributions:

pt dé~ .p+ = =
ta(oa) =T [ GoePT I P07 4€)IA, )

@ Common to approximate using convolution formalism
A 1
A(Ta) = Z/ dyA/ dz 6(za —ya ) fa,x(ya) das ()
o J0 0

o « = (bound) protons, neutrons, pions, deltas. ...

neutrons 1 protons
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Theory approaches to EMC effect

@ To address the EMC effect must determine nuclear quark distributions:

pt dé~ .p+ = =
ta(oa) =T [ GoePT I P07 4€)IA, )

@ Common to approximate using convolution formalism
A 1
wa o)=Y [ dua [0 00a = a) foun(ua) dn 0)
o J0 0

o « = (bound) protons, neutrons, pions, deltas. ...
@ ¢, (x) light-cone distribution of quarks ¢ in bound hadron «

@ fu(ya) light-cone distribution of hadrons « in nucleus
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Sum Rules and Convolution Formalism

@ Recall convolution model:

A 1
qa (za) = Z/o dyA/O dr 6(za —ya®) fa(ya) qa (x)

@ All credible explanations of the EMC effect must satisfy baryon number and
momentum sum rules:

A A
/ dzau,(za)=2Z+ N, / drady(za)=2Z+2N,
0 0
A
/ draza[uli(za) +di(za)+...+ga(za)] =Z+ N = A,
0

@ In convolution formalism these sum rules imply

A A
o & =A @ =A
g nB/O dya fo(ya) g/o dyaya fa(ya)

e quark distributions g, (x) should satisfy baryon number and momentum sum
rules for hadron o
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Nuclear Wave Functions
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Quarks, Nuclei and the NJL model Arggpne'
. “integrate out gluons” 1 O(A2_12
Continuum QCD —_ ><Z§ O(A%—k?)

o this is just a modern interpretation of the Nambu—Jona-Lasinio (NJL) model

@ model is a Lagrangian based covariant QFT, exhibits dynamical chiral symmetry
breaking & quark confinement; elements can be QCD motivated via the DSEs

@ Quark confinement is implemented via proper-time regularization
o quark propagator:  [p —m + gt - Z(pz)[p — M +ig]™!

@ wave function renormalization vanishes at quark mass-shell: Z(p? = M?) =0
@ confinement is critical for our description of nuclei and nuclear matter

2 NJL ] 04 NIL |
Cf DSEs -~ w = 0.6 ] DSEs
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@ Nucleon = quark+diquark @ Form factors given by Feynman diagrams:

g

@ Calculation satisfies electromagnetic gauge invariance; includes

o dressed quark—photon vertex with p and w contributions
e contributions from a pion cloud

[ICC, W. Bentz and A. W. Thomas, Phys. Rev. C 90, 045202 (2014)]
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@ Nucleon = quark+diquark @ Form factors given by Feynman diagrams:

g

@ Calculation satisfies electromagnetic gauge invariance; includes

o dressed quark—photon vertex with p and w contributions
e contributions from a pion cloud

[ICC, W. Bentz and A. W. Thomas, Phys. Rev. C 90, 045202 (2014)]
0 T T T T 0 T T

—0.2

—0.6

’)

—0.1 | 7] = -10

------ empirical - Kelly «« oo cmpirical - Kelly
—0.2 : : : : : : : :

0 1 2 3 4 5 0 1 2 3 4 5
@Q* (GeV?) Q@ (GeV?

table of contents Quantitative challe



Nucleon quark distributions

@ Nucleon = quark+diquark @ PDFs given by Feynman diagrams: (

PN @

@ Covariant, correct support; satisfies sum rules, Soffer bound & positivity

(q(x) — q(x)) = Ny, (zu(z)+zd(z)+...) =1, |Aq(z)|, |Arq(z)| < q(x)
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NJL at Finite Density

@ Finite density (mean-field) Lagrangian: gq interaction in o, w, p channels

L= (i~ M*— V) b+ L1

@ Fundamental physics — mean fields couple to the quarks in nucleons
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@ Quark propagator: S(k)™' = — M +ic = Sy(k)"' =§—M* -V, +ic

@ Hadronization + mean—field = effective potential (solve self-consistently)

2 2

E=Ev+&E+E— 78— 18

w

P

e &y =vacuum energy
@ &,y = energy of nucleons moving in o, w, p mean-fields
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EMC and Polarized EMC effects

[ICC, W. Bentz and A. W. Thomas, Phys. Rev. Lett. 95, 052302 (2005)] [J. R. Smith and G. A. Miller, Phys. Rev. C 72, 022203(R) (2005)]
13 T T T
9 L Sick and D. Day, Phys. Lett. B 274, 16 (1992).
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@ Definition of polarized EMC effect: AR =
@ ratio equals unity if no medium effects
@ Large polarized EMC effect arises because in-medium quarks are more
relativistic (M* < M)
o lower components of quark wave functions are enhanced and these usually have
larger orbital angular momentum
o in-medium we find that quark spin is converted to orbital angular momentum
@ A large polarized EMC effect would be difficult to accommodate within

traditional nuclear physics and most other explanations of the EMC effect
10/15

grll’jivc B Pp Jip + Pn 9in
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EMUC effects in Finite Nuclei

[ICC, W. Bentz and A. W. Thomas, Phys. Lett. B 642, 210 (2006)]
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@ Spin-dependent cross-section is suppressed by 1/A

@ should choose light nucleus with spin carried by proton e.g. = “Li, !B, ...

@ Effect in "Li is slightly suppressed because it is a light nucleus and proton
does not carry all the spin (simple WF: P, = 13/15 & P, =2/15)

@ Experiment now approved at JLab [E12-14-001] to measure spin structure
functions of "Li (GFMC: P, = 0.86 & P, = 0.04)

@ Everyone with their favourite explanation for the EMC effect should make a
prediction for the polarized EMC effect in "Li
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EMC Ratios

@ Without medium modification both EMC & polarized EMC effects disappear
@ Polarized EMC effect is smaller than the EMC effect — this is natural within

0.6

Experiment: 27Al
Unpolarized EMC effect
Polarized EMC effect

0.2 0.4
T

0.6

standard nuclear theory and also from SRC perspective

@ Large splitting very difficult without mean-field medium modification
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Mean-field vs SRC induced Medium Modification Argggne'

[ICC, W. Bentz and A. W. Thomas, Phys. Lett. B 642, 210 (2006)] [L. B. Weinstein et al., Phys. Rev. Lett. 106 052301 (2011)]
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@ Explanations of EMC effect using SRCs also invoke medium modification
@ since about 20% of nucleons are involved in SRCs, need medium modifications

about 5 times larger than in mean-field models

@ For polarized EMC effect only 2-3% of nucleons are involved in SRCs
o it would therefore be natural for SRCs to produce a smaller polarized EMC effect

@ Observation of a large polarized EMC effect would imply that SRCs are less
likely to be the mechanism responsible for the EMC effect
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Nuclear spin sum

Proton spin states Au Ad b ga
P 0.97 -0.30 0.67 1.267

"Li 0.91 -0.29 0.62 1.19

] 0.88 -0.28 0.60 1.16

15N 0.87 -0.28 0.59 1.15

2TAL 0.87 -0.28 0.59 1.15

Nuclear Matter 0.79 -0.26 0.53 1.05

@ Angular momentum of nucleon: J =1 =1AS+L,+ J,

o in medium M* < M and therefore quarks are more relativistic
o lower components of quark wavefunctions are enhanced
o quark lower components usually have larger angular momentum

e Ag(x) very sensitive to lower components

@ Therefore, in-medium quark spin = orbital angular momentum
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Conclusion

@ Understanding the EMC effect is a
critical step towards a QCD based
description of nuclei

o need new experiments that provide
clean access to novel aspects of
the EMC effect

@ Key example is the approved JLab
experiment that will measure the
polarized EMC effect in “Li
o [ hope our community can get

behind this experiment
o also PVDIS!!

@ A next frontier is GPDs and TMDs
of nuclei at JLab and an EIC

QCD town meeting: “... must solve

problem posed by the EMC effect ...’
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Explanations of the EMC effect

@ Traditional explanations include:

@ nuclear binding and Fermi motion
@ pion excess in nuclei

@ QCD motivated explanations include:

@ dynamical rescaling
o multi-quark clusters, e.g. 6,9, ... quark bags

@ nucleon swelling and suppression of
point-like configurations

@ medium modification of bound nucleon
wave functions

@ Hybrid explanations include:

o short-range nucleon-nucleon correlations (SRCs)

@ After 30 years data has ruled out almost
none of these explanations!
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Confinement in NJL model

@ In general the NJL model is not confining; quark propagator is simply
1 ¥+ M

k) — —
) f—M+ic k2 — M2 +ice

@ quark propagator has a pole = quarks are part of physical spectrum

1
Xn

1, —717X

. L 1 e e
@ However the proper-time scheme is unique = ooy Jo drm e

oo e—(kz—AIQ)/A%JV_e—(k2—A42)/A%R
S(k) :/0 dr (kJrM) 677(]62*”[2) N [ — ] [kJrM]
=Z(k?)
@ quark propagator does not have a pole: Z(k?) = S Ny
AMp Aby

@ Important consequences are:

@ saturation of nuclear matter
@ have a A bound state for M < 400 MeV, etc
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Nuclear Matter

@ Finite density Lagrangian: gq interaction in o, w, p channels

L= wq (z @ - M* — Vq) Vg + EII [W. Bentz, A.W. Thomas, Nucl. Phys. A 696, 138 (2001)]

Fundamental idea:

/ E ol
mean-fields couple to | -
quarks in bound \ = b

nucleons
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@ Quark propagator: St =f—M +ie — S;l'=f— M-V, +ic
@ Hadronization + mean—field = effective potential

V@) =wotpo,  wo=6Gu(pp+prn),  po=2G,(pp — pn)

o G, <= Z = N saturation & G, <= symmetry energy
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Nuclear Matter Results
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o small restoration of chiral symmetry: |
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@ Curvature [“scalar polarizability”’] important for saturation

@ is a consequence of confinement and prevents nuclear matter collapse

2
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@ Hadronization = effective potential: £ = £y — G — % +&E+E,
P
e &y vacuum energy

@ &,(n): energy of nucleons movmg in 0, w, p mean-fields
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