Short-range correlations in Effective Field Theory: Introduction

C. Weiss (JLab), EMS and SRC Workshop, MIT, 2-5 Nov 2016

Jefferson Lab

- Basic concept
- Chiral EFT for πN dynamics
- $\bullet~{\rm EFT}$ for NN interactions and light nuclei
- Field redefinition, observables \leftrightarrow non-observables
- Factorization and scheme dependence in high-momentum processes
- Toward SRCs in EFT

Review: Epelbaum, Hammer, Meissner 09 + more recent literature

EFT: Concept

- EFT \equiv general method for describing low-energy behavior of dynamical systems with widely separated scales Weinberg 79; Wilson 83. Reviews Georgi 93, Manohar 96
- Formulated as quantum field theory

Low-energy degrees of freedom described by fields

High-energy dynamics encoded in couplings

Form of Lagrangian constrained by symmetries of microscopic dynamics

Constructed & solved by parametric expansion in $\{p, M_{
m low}\}/M_{
m high}$

 $\mathsf{Quantum\ loops} \to \mathsf{renormalization}$

• Simple systems: Derive L_{eff} from microscopic dynamics Complex systems: Use symmetries, determine constants empirically

EFT: Chiral EFT

• Dynamical chiral symmetry breaking in QCD

Pion as Goldstone boson: $M_\pi \ll \Lambda_\chi \; (\sim M_
ho)$, coupling to hadrons $\propto p^\mu$

- Expansion in \mathcal{Q}/Λ_χ with $\mathcal{Q}=\{M_\pi,p\}$ Gasser, Leutwyler 84+
- Chiral Lagrangian
 Structures constrained by chiral symmetry
 Constants from measurements, LQCD (on-shell vertices!)
 Nucleon as heavy source, non-relativistic or relativistic

• Numerous applications Review Bernard, Meissner 07 $\pi\pi, \pi N$ scattering $\langle N|J^{\mu}|N \rangle$, EM processes $\langle N|O(\text{twist-2})|N \rangle$ NN interaction

EFT: NN interactions and nuclei

- Multiple dynamical scales Kaplan, Savage, Wise 98+ scatt length $a^{-1}({}^{1}S_{0}) = 8 \text{ MeV}$ deuteron $\sqrt{\epsilon_{D}M_{N}} = 45 \text{ MeV}$ $\left. \right\} \ll M_{\pi} \ll \Lambda_{\chi}$
- Chiral EFT in nuclei

 $\begin{array}{ll} NN \text{ interaction from } \chi \mathsf{EFT} & \longrightarrow \mathsf{Potential} \\ \mathsf{Large-distance \ scales \ from \ iteration} & \longrightarrow \mathsf{Schrödinger \ eq.} \end{array}$

Advantages over conventional interactions
 Controlled accuracy, systematic improvement
 3N, 4N forces included systematically
 Current operators consistent with dynamics
 On-shell information only ↔ πN/NN data, LQCD
 Very extensive work. NN interactions now available at N⁴LO. Review Epelbaum 16

EFT: Fields and observables

• Field redefinition $\phi \rightarrow \phi [1 + a\phi + b\phi^2 + ...]$

On-shell properties remain invariant: S-matrix elements, $\langle ... | J(\text{conserved}) | ... \rangle$ observable

Off-shell Green functions changes, form of interaction changes

non-observable

Unitarity transformation in configuration space

• Momentum density $\langle a_p^\dagger a_p \rangle$ generally not observable $_{\rm Furnstahl,\ Hammer\ 2001}$

Operator not conserved, cf. gauge theories

• Factorization

EFT: Factorization and scheme dependence

• High-momentum nucleon knockout A(e, e'N)...

Factorization: Scale and scheme dependence cf. QCD factorization in DIS

• Unitary transformation More, König, Furnstahl, Hebeler 2015 \rightarrow Talk More

one-body↔two-body currenthigh-momentum↔low-momentum wave function

• SRC in EFT: Representation of high-momentum knockout process which maximizes high-momentum components of WF and role of one-body current

How to construct it? Is it unique?

Can it be improved beyond LO?

Are the high-momentum components of the WF universal? Do they work in processes with other one-body operators?

EFT: Relativistic dynamics

- Momentum transfers $\gtrsim 1 \text{ GeV} (\gg \Lambda_{\chi})$: Process evolves along unique direction, probes system at fixed light-front time t + z = const.
- Light-front quantization keeps off-shellness finite in high-energy limit, permits "composite" description of nuclear & hadronic structure Frankfurt, Strikman 81
- Non-nucleonic degrees of freedom: Δ isobar, πN
- Include in EFT framework! Light-front representation of chiral EFT for πN , Δ : Granados, Weiss 15-16