Semi-Inclusive Reactions: N, Z, Nucleon momenta, and Pairing Lawrence Weinstein Old Dominion University

N, Z and high momentum nucleons: "54-40 or Fight" aka "The CaFe Experiment"

- Goal: understand pairing mechanisms in symmetric and asymmetric nuclei
 - Neutron skins
 - Connection to EMC effect
- Method: Measure A(e,e'p) at low and hi missing momentum at kinematics sensitive to n(k)
- Targets: D, ¹²C, ⁴⁰Ca, ⁴⁸Ca, ⁵⁴Fe
 - Add *p*, *n* symmetrically from D to 12 C to 40 Ca
 - Add 8 neutrons from ⁴⁰Ca to ⁴⁸Ca
 - Add 6 protons from ⁴⁸Ca to ⁵⁴Fe

N, Z and high momentum nucleons: "54-40 or Fight" aka "The CaFe Experiment"

3

Adding neutrons to 40Ca

Two models:

- More neutrons, similar volume \rightarrow larger p_n
- More neutrons, more np pairs \rightarrow larger p_p

M. Vanhalst, et al., J. Phys. G 42, 055104 (2015)

Adding neutrons to 40Ca

Two models:

- More neutrons, similar volume → larger p_n
- More neutrons, more np pairs \rightarrow larger p_p

Hagen et al, Nature Phys **12**, p186 (2015)

L. Weinstein, EMC SRC MIT 2016

Focusing on ⁴⁸Ca

Focusing on ⁴⁸Ca

M. Vanhalst, et al., J. Phys. G 42, 055104 (2015)

The CaFe Triplet: A Lab for Asymmetric Nuclei

The CaFe Triplet: A Lab for Asymmetric Nuclei

Nucleus	Ζ	Ν	
⁴⁰ Ca	20	20	Symmetric double magic
⁴⁸ Ca	20	28	+ Full neutron shell (1f _{7/2})
⁵⁴ Fe	26	28	Almost symmetric double magic

$$1p = 1p_{1/2} 2 \boxed{8} \\ 1p_{3/2} 4$$

How do the neutrons from the outer $1f_{7/2}$ shell correlate with the ⁴⁰Ca core?

$$1s - 1s_{1/2} 2 2$$

L. Weinstein, EMC SRC MIT 2016

9

What do we already know?

(e,e') cross-section ratios at $x_B>1$ are sensitive to the TOTAL NUMBER OF SRC PAIRS:

=> ⁴⁸Ca: + 20% nucleons, +20% SRC pairs!

Z. Ye Ph.D. Thesis, UVA. arXiv: 1408.5861

Z. Ye, JLab Users Group Meeting Talk (2016) ¹⁰

What do we already know?

(e,e') cross-section ratios at $x_B>1$ are sensitive to the TOTAL NUMBER OF SRC PAIRS:

The neutrons in the outer $1f_{7/2}$ shell (i.e. in the skin) are equally correlated as the nucleons in the ⁴⁰Ca core!¹¹ ²⁶

What do we already know?

(e,e') cross-section ratios at $x_B>1$ are sensitive to the TOTAL NUMBER OF SRC PAIRS:

The neutrons in the outer $1f_{7/2}$ shell (i.e. in the skin) are equally correlated as the nucleons in the ⁴⁰Ca core!¹² 27

detect the proton (e,e'p)

Cross section factorizes (in PWIA): $\frac{d\sigma}{dE_e d\Omega_e dT_p d\Omega_p} = KS(\vec{p}_{miss}, E_{miss}) \frac{d\sigma^{free}}{d\Omega}$

$$E_{miss} = v - T_p - T_{A-1}$$

 $\vec{p}_{miss} = \vec{q} - \vec{p}_p = -\vec{p}_{initial}$

Complications:

- Rescattering of the outgoing proton.
- Off-shell proton cross-section.
- Meson Exchange Currents (MEC).
- Delta production (i.e. IC).
- => Spectral function is not an observable!

 $Q = (\vec{q}, w)$

$$S^{D}(\vec{p}_{miss}, E_{miss}) = \frac{d\sigma}{dE_{e}d\Omega_{e}dT_{p}d\Omega_{p}} / K \frac{d\sigma^{free}}{d\Omega_{e}d\Omega_{p}}$$

Compare cross sections for high (SRC) and low (MF) missing momentum protons in various nuclei

Optimizing (e,e'p) kinematics

- $E_{\text{beam}} = 11 \text{ GeV} @ 40 \text{ uA to maximize rates.}$
- ¹H, ²H, ¹²C, ⁴⁰Ca, ⁴⁸Ca, and ⁵⁴Fe targets.
- Q² ≈ 3.5 GeV²
 - Reduces non-nucleonic currents (MEC, IC).
 - Proton energies high enough for Glauber FSI calculations.
- $x_B = Q^2/2m\omega > 1.2$ to minimize non-nucleonic currents.
- $\theta_{rq} < 50^{\circ}$ to minimize FSI.
- Two Kinematics:
 - 350 < p_{miss} < 600 MeV/c ("SRC")
 - p_{miss} < 250 MeV/c ("Mean-Field")</p>

"Observables"

- Distorted spectral functions (*i.e.*, reduced σ)
 - Need theory support to interpret
- Double ratios of $\sigma(SRC)/\sigma(MF)_{A1}$

 $\sigma(SRC) / \sigma(MF)_{A2}$

- \rightarrow extra SRC *p* from A_1 to A_2
 - *e.g.:* from 40 to 48Ca \rightarrow *np* pairs created by 8 more *n*
- Reduced transparency (FSI) corrections
- Compare symmetric and asymmetric nuclei
 - 40 and 48Ca; 6 and 7Li
 - d, C, Ca, Fe