Semi-Inclusive Reactions: N, Z, Nucleon momenta, and Pairing

 Lawrence WeinsteinOld Dominion University

N, Z and high momentum nucleons: " $54-40$ or Fight" aka "The CaFe Experiment"

- Goal: understand pairing mechanisms in symmetric and asymmetric nuclei
- Neutron skins
- Connection to EMC effect
- Method: Measure $A\left(\mathrm{e}, \mathrm{e}^{\prime} \mathrm{p}\right)$ at low and hi missing momentum at kinematics sensitive to $n(k)$
- Targets: D, ${ }^{12} \mathrm{C},{ }^{40} \mathrm{Ca},{ }^{48} \mathrm{Ca},{ }^{54} \mathrm{Fe}$
- Add p, n symmetrically from D to ${ }^{12} \mathrm{C}$ to ${ }^{40} \mathrm{Ca}$
- Add 8 neutrons from ${ }^{40} \mathrm{Ca}$ to ${ }^{48} \mathrm{Ca}$
- Add 6 protons from ${ }^{48} \mathrm{Ca}$ to ${ }^{54} \mathrm{Fe}$

N, Z and high momentum nucleons: " $54-40$ or Fight" aka "The CaFe Experiment"

- Goal: understand pairing mechanisms in symmetric and asymmetric n
- Neutron skin.
- Connection t.
- Method: Meas at kinematics
- Targets: D, ${ }^{12}$
- $\operatorname{Add} p, n \operatorname{sym}_{\mathrm{c}}$

э momentum

- 8 Neutrons

Adding neutrons to 40Ca

Two models:

- More neutrons, similar volume \rightarrow larger p_{n}
- More neutrons, more $n p$ pairs \rightarrow larger p_{p}

M. Vanhalst, et al., J. Phys. G 42, 055104 (2015)

Adding neutrons to 40Ca

Two models:

- More neutrons, similar volume \rightarrow larger p_{n}
- More neutrons, more $n p$ pairs \rightarrow larger p_{p}

Focusing on ${ }^{48} \mathrm{Ca}$

Coordinate space:
[CREX]

Adding correlations:

- Reduce the radius.
- Inverts the momentum skin?

Focusing on ${ }^{48} \mathrm{Ca}$

Coordinate space:
[CREX]

Momentum space:
[CaFe]

$$
\begin{aligned}
& \text { Depends on pairing } \\
& \text { mechanisms in asymmetric } \\
& \text { nucleil. }
\end{aligned}
$$

Adding correlations:

- Reduce the radius.
- Inverts the momentum skin?

The CaFe Triplet:

 A Lab for Asymmetric Nuclei

The CaFe Triplet: A Lab for Asymmetric Nuclei

$2 s$
$1 d-$
$=$
$1 s_{1 / 2} 2$
$1 d_{5 / 2} 6$

${ }^{40} \mathrm{Ca} 20 \quad 20$ Symmetric double magic ${ }^{48} \mathrm{Ca} 20 \quad 28$ + Full neutron shell $\left(1 \mathrm{f}_{7 / 2}\right)$
${ }^{54} \mathrm{Fe} 2628$ Almost symmetric double magic

How do the neutrons from the outer $1 f_{7 / 2}$ shell correlate with the ${ }^{40} \mathrm{Ca}$ core?

What do we already know?

(e,e') cross-section ratios at $x_{B}>1$ are sensitive to the TOTAL NUMBER OF SRC PAIRS:

$\sim 5 \%$ norm uncertainty not shown

$={ }^{48} \mathrm{Ca}:+20 \%$ nucleons, $+20 \%$ SRC pairs!

What do we already know?

(e,e') cross-section ratios at $x_{B}>1$ are sensitive to the TOTAL NUMBER OF SRC PAIRS:

The neutrons in the outer $1 \mathrm{f}_{7 / 2}$ shell (i.e. in the skin) are equally correlated as the nucleons in the ${ }^{40} \mathrm{Ca}$ core!

What do we already know?

(e, e') cross-section ratios at $x_{B}>1$ are sensitive to the TOTAL NUMBER OF SRC PAIRS:

The neutrons in the outer $1 \mathrm{f}_{7 / 2}$ shell (i.e. in the skin) are equally correlated as the nucleons in the ${ }^{40} \mathrm{Ca}$ core! ${ }^{12}$

detect the proton (e, ép)

Cross section factorizes (in PWIA):

 $\frac{d \sigma}{d E_{e} d \Omega_{e} d T_{p} d \Omega_{p}}=K S\left(\vec{p}_{\text {miss }}, E_{\text {miss }}\right) \frac{d \sigma^{\text {free }}}{d \Omega}$Complications:

$E_{\text {miss }}=v-T_{p}-T_{A-1}$
$\vec{p}_{\text {miss }}=\vec{q}-\vec{p}_{p}=-\vec{p}_{\text {initial }}$

- Rescattering of the outgoing proton.
- Off-shell proton cross-section.
- Meson Exchange Currents (MEC).
- Delta production (i.e. IC).
$=>$ Spectral function is not an observable!

$$
S^{D}\left(\vec{p}_{\text {miss }}, E_{\text {miss }}\right)=\frac{d \sigma}{d E_{e} d \Omega_{e} d T_{p} d \Omega_{p}} / K \frac{d \sigma^{\text {free }}}{d \Omega}
$$

Compare cross sections for high (SRC) and low (MF) missing momentum protons in various nuclei

Minimizing FSI
Full $=$ PWIA + FSI
$\Theta_{\mathrm{rq}}=$ angle between q and recoil

$$
P_{\mathrm{miss}}(\mathrm{GeV} / \mathrm{c})
$$

Boeglin et al., PRL 107 (2011) 262501

Optimizing (e,e'p) kinematics

- $E_{\text {beam }}=11 \mathrm{GeV} @ 40 \mathrm{uA}$ to maximize rates.
- ${ }^{1} \mathrm{H},{ }^{2} \mathrm{H},{ }^{12} \mathrm{C},{ }^{40} \mathrm{Ca},{ }^{48} \mathrm{Ca}$, and ${ }^{54} \mathrm{Fe}$ targets.
- $\mathrm{Q}^{2} \approx 3.5 \mathrm{GeV}^{2}$
- Reduces non-nucleonic currents (MEC, IC).
- Proton energies high enough for Glauber FSI calculations.
- $x_{B}=Q^{2} / 2 m \omega>1.2$ to minimize non-nucleonic currents.
- $\theta_{r q}<50^{\circ}$ to minimize FSI.
- Two Kinematics:
$-350<\mathrm{p}_{\text {miss }}<600 \mathrm{MeV} / \mathrm{c}$ ("SRC")
- $\quad \mathrm{p}_{\text {miss }}<250 \mathrm{MeV} / \mathrm{c}$ ("Mean-Field")

"Observables"

- Distorted spectral functions (i.e., reduced σ)
- Need theory support to interpret
- Double ratios of

$$
\frac{\sigma(S R C) / \sigma(M F)_{A 1}}{\sigma(S R C) / \sigma(M F)_{A 2}}
$$

\rightarrow extra SRC p from A_{1} to A_{2}

- e.g.: from 40 to $48 \mathrm{Ca} \rightarrow n p$ pairs created by 8 more n
- Reduced transparency (FSI) corrections
- Compare symmetric and asymmetric nuclei
- 40 and 48Ca; 6 and 7Li
- d, C, Ca, Fe

