
momentum density: n(k)
not observable directly

Spectral function: P(k,E) 
observable directly, theoretical 
calculations for A=3,  nuclear matter

Program - to resolve SRC nuclear structure using high energy high momentum transfer probes. 

Objects which enter into consideration are often new at least on the computation level. 

Decay  function: D(k1,k2, E) 
observable directly, theoretical 
calculations for A=3. Pair 
correlation model (~ 30 years 
old).  Connection to double 
momentum distribution?

Relativistic effectsNonrelativistic formulation
light cone dominance in hard processes  - 
approximations  maybe more transparent if LC 
formulation for the wave function is used

LC momentum density:    ρNA (α, kt)
observable

formally 

connectio
n with

 LC projectio
n 

of P(k,E)   Spectral function: ρNA (α, kt,p_) 
observable directly

Decay  function: D(α1,α2,  kt,p_)
observable directly

α1+α2=2 k1+k2=0 =/

Mark Strikman
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Consensus of the 70’s:   it is hopeless to look for SRC experimentally 

NO GO theorem: high momentum component of the nuclear wave function is not observable (Amado 78)

2

Way out - use processes with large energy
 and momentum transfer:

Adjusting resolution scale  as a function of the 
probed nucleon momentum allows to avoid Amado 
theorem. Standard trick in QCD.

Theoretical analysis of F&S (75) :  results from the medium energy  studies of short-range 
correlations are inconclusive due to insufficient energy/momentum transfer leading to complicated 
structure of interaction (meson exchange currents,...), enhancement of the final state contributions.

q0 � 1GeV ⇥ |V SR
NN |,  q � 1GeV/c⇥ 2 kF

Actually it is  now a standard trick in atomic (10 eV vs 1000 eV) and solid state 
physics (0.2 eV vs 30 eV) scales.

Hence for probing momenta < 400 MeV/c lower 
energy & momentum transfer should be sufficient 
than those used at BNL



Can one check whether indeed the tail is due to SRCs?

Consider distribution over the residual energies, ER, for A-1 nucleon system after a  
nucleon with momentum k was instantaneously removed -  

PA(k, Er), nA(k) =
�

dERPA(k, Er)

nuclear spectral function

for 2N SRC: �ER(k)⇥ = k2/2mN FS81-88

Confirmed by numerical calculations
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k=1.5 fm-1

k=2.2 fm-1

k=3.0 fm-1

k=3.5 fm-1

Points  are numerical calculation of the 
spectral functions of 3He and nuclear 
matter - curves two nucleon 
approximation from CSFS 91

Numerical calculations in NR quantum mechanics confirm dominance of two nucleon 
correlations in the spectral functions of nuclei at k> 300 MeV/c - could be fitted by a 
motion of a pair in a mean field   (Ciofi, Simula,Frankfurt,  MS - 91).  However  

numerical calculations ignored three nucleon correlations - 3p3h excitations. 
Relativistic effects maybe important rather early as the recoil modeling 
does involve k2/mN2 effects.
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In addition to 2N correlations higher order correlations
120

FIG. 8.8:

FIG. 8.9:

This phenomenon was observed numerically in the behaviour of P3He(k,E) and F3He(y,Q2) calculated using realistic
two-nucleon potentials [462].

To illustrate that nucleon configurations are important at x > 2 − 2.5 and large Q2 (i.e. large k) let us consider
the case of a three-nucleon system. It follows from the kinematical analysis of section 8 8.2 8.2.1 that in the case of
γ∗ scattering from a three-nucleon system at x > 2 and sufficiently large Q2 the momenta of both spectator nucleons
should be large. Thus, similar to the above analysis of nA(k) we can use as a guide for the behaviour of P3(k,E) at
large k the perturbation expansion in V (k).

The first obvious contribution is due to configurations in the ground state wave functions of the nucleus where the
momenta of all three nucleons are large. The leading diagrams for the ground state wave function of the nucleus for
such configurations are presented in fig. 8.8. Their contribution is proportional to (e.g. for fig. 8.8b)

PA(k,E)
∣∣
E<const., k→∞∼

(
V (k/2)
(k/2)2

)4

∼ n2
A(k/2). (8.37)

A comparable contribution to PA(k,E) is due to the overlap integral between the configuration of two nucleons in
the initial wave function with momenta p1 ∼ 0, −k and the final state wave function of the two-nucleon system with
momenta k1 ≈ k2 (see fig. 8.9). The final answer has the same form as in eq. (8.37). [We use here eqs. (8.33) and
(8.35) to estimate ψNN(k/2).]

The diagram in fig. 8.8 is typical for three-nucleon correlations, i.e., for configurations in the wave function of the
nucleus where three nucleons are at small relative distances. The contribution of diagrams like that in fig. 8.9 to
PA(k,E) in the kinematic region discussed is determined by configurations in the nuclear wave function where nucleons
3 and 2 belong to a two-nucleon correlation and thus are close to each other. Since the contribution of diagrams like
that in fig. 8.9 is proportional to

∫
ψ3(k,−k−p1, p1)d3p1, the relative coordinate between the two-nucleon correlation

and the spectator nucleon (1), r32,1 = (r3 + r2)/2 − r1, is also small. Thus, we conclude that for x > 2 − 2.5 and
large Q2 the cross section of the (e, e′) reaction from a three-nucleon system seems to be determined by the term in
P3(k,E) arising from the configuration of three nucleons when all internucleon distances are smaller than average.
The k dependence of this contribution at large k is qualitatively different from that of nA(k).

Digression. Suggestions for future calculations of PA(k,E). Realistic two-nucleon potentials correspond to a rather
complicated behaviour of V (k) at large k; so it would be quite instructive to compare numerical calculations of
P3(k,E) and nA=3, 4,...(k) with the above analysis. These calculations will be of much use for the applications of
light-cone quantum mechanics to high-energy processes as well. For convenience of practitioners of such calculations
we summarise here the quantities of interest.

(1) nA(k) at k > 0.3− 0.4 GeV/c for realistic two-body NN potentials, possibly with account of three-body forces.
(2) Check of the validity of the two-nucleon approximation eq. (8.33) by studying how large a nucleon momentum

k is balanced in ψA.
(3) Analysis of the range of applicability of eq. (8.37).
(4) Study of the relative importance of the contributions to P3(k,E) of terms like the diagrams in figs. 8.8 and 8.9,
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PA(k, ER(k))|k>kF
=

A�

j=2

Pj(k, ER(k))
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In NR formalism 3N,.. correlations show up only via recoil cuts. In LC α> 2 cut --> 3N in density matrix

3N effects requires more careful analysis of relativistic kinematics - Misak’s talk 



kmin=0.3 GeV
kmin=0.25 GeV

Frankfurt et al, 
93

Right momenta for onset of scaling !!!

=
a2(A1)
a2(A2) |1.6>��1.3

W − MD ≤ 50 MeV

Masses of NN system produced in 
the process are small - strong 

suppression of isobar, 6q degrees 
of freedom.

The local FSI interaction,
up to a factor of 2, cancels 

in the ratio of σ’s
6



Nuclear Decay Function 

What happens if a nucleon with momentum k  belonging to SRC is instantaneously removed 
from the nucleus (hard process)? Our guess is that  associated nucleon from SRC with 
momentum ~ -k should be produced.

Formal definition of a new object  - nuclear decay function (FS 77-88) - probability to emit a 
nucleon with momentum k2  after removal of a fast nucleon with momentum k1, leading to 
a state with excitation energy Er   (nonrelativistic formulation)

DA(k2, k1, Er) = |⇥⇥A�1(k2, ...) |�(HA�1 � Er)a(k1)| ⇤A⇤|2

General principle (FS77): to release a nucleon of a SRC - it is necessary to remove 
nucleons from the same correlation - perform a work against potential V12(r)

7

Provides a much better way to determine what SRCs are made of 

Accuracy?

For 2N SRC  can model decay function as a decay of a NN pair moving 
in mean field (like for PA)                 Piasetzky et al 06



Operational definition of the SRC: nucleon belongs to SRC if its instantaneous  removal from 
the nucleus leads to emission of  one or two nucleons which balance its momentum:  includes not only 
repulsive core but also tensor force interactions.  Prediction of back - to - back correlation.

Studies of the spectral and decay function of 3He reveal both two nucleon and three nucleon 
correlations 

For 2N SRC  we can model decay function as decay of a NN pair moving in mean field (like for 
spectral function  in the model of Ciofi, Simula and Frankfurt and MS91),    Piasetzky et al 06

☝

• 2N Correlations
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a)                                                           b)

q

-Type 2N-I correlations: E(2N−I)
m =

√
m2 + p2

m − m −TA−1

-Type 2N-II correlations: E(2N−II)
m =

√
m2 + p2

r2 +
√
m2 + p2

r3 − 2m

• 3N Correlations
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-Type 3N-I correlations: E(2N−I)
m ≈ |ϵA|

-Type 3N-II correlations: E(3N−II)
m = 2

√
m2 + p2

m − 2m −TA−1

Use 3He(e,e’ppn)

reactions to 
study pn, pp and 
ppn correlations.

Remember:
structure (though not 
probability) of 2N and 
3N correlations is very 

similar in A=3 and 
heavy nuclei

Spectator is 
released

Emission of  fast nucleons 
“2”  and “3” is strongly 
suppressed due to FSI

8

resembles 2N momentum 
distribution

does not resemble 2N momentum 
distribution -

 Sargsian et al 2004



Factorization (analogy with pQCD)

Same decay and density matrix  for different processes

�(H +A ! h0 +N1 +N2 + (A� 2)) = �(H +A ! h0 +N1)⇥D(↵i, kt, ...)

Impulse approximation

GEA - to correct for rescattering and absorption  

electron, vs photon vs proton beams

simplification - LC fraction conservation in elastic rescatterings 

9



A
A-1

pi

A-2

p1

p2k2

k1 ~ -k2

s’=(p1 +p2)2

t=(p1 -pp)2

neutron

From measurement of p1, p2 pneutron choose   small excitation energy of A-2 (< 100 MeV)

σ = d σpp➔pp/dt(s’,t)  * (Decay function)

Test of Factorization:  σ / d σpp➔pp/dt(s’,t)  independent of s’, t

k2=p1 +p2-pi

s’=αsNN,  α < 1
Collider frame

neutron momentum (2-α)p

To observe SRC  directly  it is far better to consider semi-exclusive processes
 e(p) +A → e(p) + p + “ nucleon from decay” +(A-2) since it measures 
both momentum of struck nucleon and decay of the nucleus

Two novel experiments reported results in the last 5 years

EVA BNL  5.9 GeV protons  (p,2p)n 

(e,e’ pp), (e,e’pn)  Jlab   Q2= 2GeV2

-t= 5 GeV2; t=(pin-pfin)2

Based on our proposal of 88-89 (strong enhancement of scattering off fast 
forward nucleons due to s-10 dependence of the elementary cross section

k2

k1
→

→

29

GEA - to correct for rescattering and absorption  

electron, vs photon vs proton beams; violation of factorization due to 
EMC like effects (off shellness - Sunday session)

simplification - LC fraction conservation in elastic rescatterings 
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↵ = (
p

p2 +m2 � p3)/(mD/2)

↵ = 1� k3p
k2 +m2

Numerical rel. effect is
 modest for unpolarized case

25

(a) (b)

FIG. 2.13: The spectator mechanism of the nucleon production.

done by applying the general equation (2.19) for the impulse approximation and eq. (2.49) for ⇤N
D(�, k⌅). The final

formula has the form

Eb
d3⌅D+h⇤b+···

d3pb

=
�

[U2(k) + W 2(k)]d3kEb
d3⌅h+N⇤b+···

d3pb

(⇥̃, pb). (2.53)

Here ⇥̃ is given by eq. (2.19a) and the relationship between � and k is given by eq. (2.21).

2.5.2. Spectator mechanism of fast backward nucleon production

The so called spectator mechanism dominates FB nucleon (see fig. 2.13a). One of nucleons of the deuteron scatters
from hadron h, loses its energy and therefore releases its neighbour-spectator. In the impulse approximation the cross
section of this process is determined by the imaginary part of the zero-angle amplitude (see fig. 2.13b)

d⌅D+h⇤N+···

(d�/�)d2k⌅
=

1
⇥

Imf [⇥̃]
⇧2

D(�, k⌅)
(2� �)2

. (2.54)

Here ⇧D(�, k⌅) is the light cone deuteron WF. All notations correspond to eq. (2.19). In section 2 2.4 it has been
found that ⇧2

D is directly expressed through the S, D deuteron WF: ⇧2
D(k) = [U2(k) + W 2(k)]

⇤
m2 + k2 (cf. eq.

(2.49)). The factor (2 � �)�2 in the eq. (2.54) is due to the initial and final state phase volume of the interacting
nucleon. ⇥̃ is given by eq. (2.19a). Because of the optical theorem Imf(⇥) = ⇥⌅tot(⇥). We neglect here elastic and
di�ractive processes because energy transferred to the interacting nucleon is not large in this case and therefore final
state interaction will suppress yield of spectators (cf. section 7 7.4). Finally we obtain [61–63]:

d⌅D+h⇤N+···

(d�/�)d2p⌅
= ⌅hN

inel.[⇥̃] · [U2(k) + W 2(k)]
(2� �)

⇥
k2 + m2. (2.55)

The relationship between � and k is given by eq. (2.21).

2.5.3. Glauber screening of spectator mechanism

Eq. (2.55) overestimates the spectator yield since the projectile h can transfer positive longitudinal momentum to
the FB nucleon provided both nucleons are at close impact parameters, see fig. 2.14.

This is the Glauber correction familiar from the analysis of total and elastic cross sections. Recall that AGK
cancellation is not complete in this case since the spectator itself participates in the reggeon-deuteron interaction.
To explain basic features of this phenomenon we assume that similar to quantum mechanics Glauber screening
corresponds to the eikonal diagram 2.15. Within the eikonal approach this procedure overestimates the Glauber
screening as rescattering diagrams of next order fig. 2.16 will somewhat reduce the contribution of diagram fig. 2.15.

LC imp.approx.

NR imp.approx.

LC nucleon:  nonlinear relation between internal momentum k and 
observed momentum p (see next slide).   Asymptotic behavior at  α→2 
is determined by WF at k→∞.  Similar to particle physics.

d�D+h!N+···

(d↵/↵)d2p?
= �hN

inel.[(2� ↵)sNN ] · (2� ↵)[U2(p) +W 2(p)]
p
p2 +m2

d�D+h!N+···

(d↵/↵)d2p?
= �hN

inel.[(2� ↵)sNN ] · [U
2(k) +W 2(k)]

(2� ↵)

p
k2 +m2
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FIG. 3.17:

�/2 = (
�

m2 + p2�p3)/mD. The result of the calculation overestimates experimental data by (30-50 %26. It is worth

noting that in the studied range of spectator momenta the dominant contribution is given by D-wave. To check this

important feature of the realistic WFs experiments with polarized deuteron beams are necessary (see [7] and section

3 3.3).

3.5.3. Comparison with other approaches

First we compare predictions of eq. (3.37) with the quantum mechanical approach and the Bethe-Salpeter approach

[65], which is similar to approaches [114, 170, 171] for the deuteron structure functions and the deuteron form factor,

which were discussed in the previous subsections. These approaches lead to eqs. (3.44) and (3.45)respectively27

G
D/N
h (p) = ⇤hN

tot⌅
2
D(p)(1 + p3/M)(2� �). (3.44)

G
D/N
h (p) = ⇤hN

tot⌅
2
D(p)(2� �)⇥(2� �). (3.45)

Here p is the spectator momentum in the deuteron rest frame. 1 + p3/M , (2 � �) is the Möller flux factor, which

reflects the Doppler shift for the frequency of the interacting nucleon. � is given by eq. (3.43) and ⌅2(p) = (U2(p) +

W 2(p))/(
�

m2 + p2). ⇥(2� �) accounts for the phase space restrictions due to energy conservation.

Eq. (3.37) and eqs. (3.44), (3.45) correspond to a qualitatively di�erent space-time picture of the strong interaction.

Thus it seems instructive to compare predictions of these models for the nucleon yield. To be definite we use the

deuteron rest frame.

(1) In the Bethe-Peierls approximation when p/m ⇥ 1 (p2 � m⇧D) all formulae coincide. Really this case cor-

responds to the pointlike vertex D ⇤ NN, where expression (3.37) follows from the exact calculation of the

Feynman diagrams [1–3, 61–63].

26 We consider this as one of the evidencies that the absolute normalization of the data [27] should be increased by a factor 1.5-2 (cf.

footnote on p. 84. Note also that it is necessary to check the accuracy of scaling in variable � at � 1.5 at higher energies.

27 To simplify the comparison we consider here the predictions of the models in the impulse approximation.

LC

NR

46

FIG. 3.15: The fast backward proton production in the pD scattering at p� = 0 [27, 39]. The solid curve is the result of
calculation in the relativistic Glauber approximation. Dashed curve is the QCD prediction of section 4 normalized at pN =
0.5 GeV/c. The broken (dashed) curves is the prediction of the Schmidt-Blankenbecler model [71] assuming �(pcm/pcm max)
scaling normalized at pN = 0.3 GeV/c.

FIG. 3.16: Test of the � scaling hypothesis in p+p⇥ ⇥+ +X reaction at pN = 8.9 GeV/c [27] (p� = 0). The solid and dashed
curves are the predictions based on the high energy data [182, 183] assuming � scaling and radial scaling (x = Ecm/Ecm max �
pcm/pcm/pcm max) For authors: is this relation OK? correspondingly.

The same pattern of scaling onset is observed for the process p+p� � +X (fig. 3.16). We want to emphasize that
condition (3.42) is not fulfilled if standard variables such as x = p�L/p�max or E�/E�

max are used (see e.g., [25, 37, 71]) to
compare asymptotic formulae with experiment. In particular these variables vary up to x = 1 at any incident energy.
As a result an artificial violation of the Yang scaling is introduced, see e.g. fig. 3.16 and the dotted curve in fig. 3.15.
This is especially clear for the region of small spectator momenta pN, where the validity of the impulse approximation
can be strictly proved. For example the use of variable x = p�/p�max leads to a change of the cross-section of the
p + D � p + X reaction by a factor of 300 at x = 1

2 , p⇥ = 0 in the range Einc
N = 2-100 GeV (at large energy x = 1

2 ,
p⇥ = 0 corresponds to pN = 0).

In fig. 3.15 a calculation of p + D � p + X [61–63, 106–109] using eq. (3.37) is compared with experimental data
[27, 38, 39]. We use the Hamada-Johnston WF of the deuteron-solution of Weinberg eq. (2.22) and scaling variable
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FIG. 7.4: The meson exchange current diagram for the reaction γ∗ + D → N + N.

description of w(r) for r > 2 fm (k ! 0.15 GeV/c) and the prediction of conventional models for the total probability
of the D-wave, PD = (6 ± 1)%, is consistent with the analysis of µd; cf. the discussion in ref. [420]. The recent
measurements [413, 414, 421] of elastic eD → eD⃗ scattering for q ∼ 2 fm−1 probe w(k) for k ∼ 0.2 GeV/c, while
elastic high-energy pD scattering is sensitive to GQ(Q2) at Q2 ∼ 0.3 GeV2/c (see, e.g., ref. [422]).

It has been suggested in the literature that the nuclear core hypothesis may be checked by measuring Gc(Q2)
and GQ at −q2 > 0.5 GeV2 inelastic eD⃗ scattering or by measuring the tensor polarization of the recoil deuteron
(see, e.g., ref. [423], where the experimental problems involved in such measurements are also discussed). Incoherent
phenomena, discussed below, have a number of obvious advantages for performing a critical test of the nuclear core
hypothesis (this was first explained in ref. [424]):

(i) In incoherent processes at high energy one can measure the deuteron wave function directly in momentum space
instead of a convolution of wave functions as in the case of elastic deuteron form factors.

(ii) The nucleon yields in incoherent fragmentation of a two-nucleon correlation and of a 6q bag are qualitatively
different (see the discussion in sections 2 and 8 8.6), while in elastic scattering processes the separation of 6q and
2N contributions is hardly possible.

(iii) The absolute values of the cross sections are much larger than for elastic eD scattering.
(iv) In the kinematical region where the contribution of the high-momentum component of the deuteron wave

function dominates (k > 0.2 GeV/c) the cross section of these reactions should strongly depend on the deuteron
polarization.

7.2. High-Q2 e + D⃗ → e + p + n, e + N + X, e + X reactions

Evidently, detailed information about the structure of the deuteron wave function can be obtained only if the
distribution of spectator nucleons is measured. The high-Q2 exclusive reactions e + D → e + p + n(∆,N∗) seem to
be the simplest for a theoretical analysis, since a large energy-momentum (q) is transferred to the struck nucleon in
a controlled way. At sufficiently high Q2 and W − md " 100 MeV the interference diagram (fig. 8.12 below) is small
(a few percent) in the essential kinematic region. The difference between the final state momenta of the nucleons is
large, so the correction due to misidentification of a spectator and the “active” nucleon is also small even for forward
moving spectators. Besides, the final state interaction estimated within the nonrelativistic approach (sec, e.g., ref.
[425, 426]) is expected to be rather small, ! (10 − 30)%, in the kinematic region discussed. In fact it is even smaller
because at Q2 " 2 GeV2 nucleons are produced in compressed configurations, which have a small interaction cross
section (section 6 6.3). Moreover, in the ratio of the cross sections for γ∗ scattering from polarized and unpolarized
deuterons uncertainties due to the off-energy-shell effects in γ∗N interaction, discussed in section 8 8.3, are cancelled
to a large extent. Note also that in order to suppress two-step processes like e + D → e + ∆ + N → e + p + n one
should choose W far enough from W = m∆ + mN.

Since the total cross section of unpolarized electron scattering off a polarized nucleon does not depend on the
nucleon polarization, the ratio of the cross sections of scattering off a polarized and an unpolarized deuteron has a
rather simple form if the polarization of the produced nucleon is not measured [427]:

dσ(e + DΩ → e + N + X)
(dα/α) d2pt

/
dσ(e + D → e + N + X)

(dα/α) d2pt

= 1 +
(

3kikj

k2
Ωij − 1

) 1
2w2(k) +

√
2u(k)w(k)

u2(k) + w2(k)
≡ P (Ω, k), (7.1)

where Ω is the spin density matrix of the deuteron, SpΩ = 1 [the expression for the case of unpolarized deuterons is
given in ref. [410]. eq. (3.17)].93 The relationship between the spectator nucleon momentum, p, in the deuteron lab.

93 In line with the convention of ref. [428] w(k) is defined so that w(k) > 0 at small k.
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measurements [413, 414, 421] of elastic eD → eD⃗ scattering for q ∼ 2 fm−1 probe w(k) for k ∼ 0.2 GeV/c, while
elastic high-energy pD scattering is sensitive to GQ(Q2) at Q2 ∼ 0.3 GeV2/c (see, e.g., ref. [422]).

It has been suggested in the literature that the nuclear core hypothesis may be checked by measuring Gc(Q2)
and GQ at −q2 > 0.5 GeV2 inelastic eD⃗ scattering or by measuring the tensor polarization of the recoil deuteron
(see, e.g., ref. [423], where the experimental problems involved in such measurements are also discussed). Incoherent
phenomena, discussed below, have a number of obvious advantages for performing a critical test of the nuclear core
hypothesis (this was first explained in ref. [424]):

(i) In incoherent processes at high energy one can measure the deuteron wave function directly in momentum space
instead of a convolution of wave functions as in the case of elastic deuteron form factors.

(ii) The nucleon yields in incoherent fragmentation of a two-nucleon correlation and of a 6q bag are qualitatively
different (see the discussion in sections 2 and 8 8.6), while in elastic scattering processes the separation of 6q and
2N contributions is hardly possible.

(iii) The absolute values of the cross sections are much larger than for elastic eD scattering.
(iv) In the kinematical region where the contribution of the high-momentum component of the deuteron wave

function dominates (k > 0.2 GeV/c) the cross section of these reactions should strongly depend on the deuteron
polarization.

7.2. High-Q2 e + D⃗ → e + p + n, e + N + X, e + X reactions

Evidently, detailed information about the structure of the deuteron wave function can be obtained only if the
distribution of spectator nucleons is measured. The high-Q2 exclusive reactions e + D → e + p + n(∆,N∗) seem to
be the simplest for a theoretical analysis, since a large energy-momentum (q) is transferred to the struck nucleon in
a controlled way. At sufficiently high Q2 and W − md " 100 MeV the interference diagram (fig. 8.12 below) is small
(a few percent) in the essential kinematic region. The difference between the final state momenta of the nucleons is
large, so the correction due to misidentification of a spectator and the “active” nucleon is also small even for forward
moving spectators. Besides, the final state interaction estimated within the nonrelativistic approach (sec, e.g., ref.
[425, 426]) is expected to be rather small, ! (10 − 30)%, in the kinematic region discussed. In fact it is even smaller
because at Q2 " 2 GeV2 nucleons are produced in compressed configurations, which have a small interaction cross
section (section 6 6.3). Moreover, in the ratio of the cross sections for γ∗ scattering from polarized and unpolarized
deuterons uncertainties due to the off-energy-shell effects in γ∗N interaction, discussed in section 8 8.3, are cancelled
to a large extent. Note also that in order to suppress two-step processes like e + D → e + ∆ + N → e + p + n one
should choose W far enough from W = m∆ + mN.

Since the total cross section of unpolarized electron scattering off a polarized nucleon does not depend on the
nucleon polarization, the ratio of the cross sections of scattering off a polarized and an unpolarized deuteron has a
rather simple form if the polarization of the produced nucleon is not measured [427]:

dσ(e + DΩ → e + N + X)
(dα/α) d2pt

/
dσ(e + D → e + N + X)

(dα/α) d2pt

= 1 +
(

3kikj

k2
Ωij − 1

) 1
2w2(k) +

√
2u(k)w(k)

u2(k) + w2(k)
≡ P (Ω, k), (7.1)

where Ω is the spin density matrix of the deuteron, SpΩ = 1 [the expression for the case of unpolarized deuterons is
given in ref. [410]. eq. (3.17)].93 The relationship between the spectator nucleon momentum, p, in the deuteron lab.

93 In line with the convention of ref. [428] w(k) is defined so that w(k) > 0 at small k.
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FIG. 7.5: (σ± − σ0)/⟨σ⟩ for backward nucleon production, (a) in high-energy eD⃗ and pD⃗ scattering for the Reid soft core

wave function, (b) in high-energy eD⃗ scattering for the Pans potential wave function and for the QCB model with bag radius
b = 1.2 fm and 1.4 fm.

frame and the inner momentum, k, is given by eq. (5.31); the 3-axis is chosen in the direction of the γ∗ momentum.94
It follows from eq. (7.1) that by studying the dependence of the nucleon yield on the deuteron tensor polarization

one can directly measure the ratio w(k)/u(k). An independent check of the nuclear core hypothesis can be obtained
from the measurement of the dependence of the nucleon polarization on the deuteron vector polarization, see ref.
[427], pp. 578, 579. (For the parametrization of Ω in terms of tensor and vector polarizations, see, e.g., ref. [429].)

It is convenient to represent the magnitude of spin effects in the form of the tensor asymmetry

R = T20 =
[
1
2
(σ+ − σ−) − σ0

]/
⟨σ⟩, (7.2)

where ⟨σ⟩ = 1
3 (σ++σ−+σ0). The indices (+,−, 0) denote deuteron helicities. In the deuteron rest frame the deuteron

spin is quantized in the direction of the γ∗ momentum. Note that in the unpolarized electron case σ+ = σ− due to
space parity conservation. Evidently in the physical region R can vary from −3 to 1.5. Using eq. (7.1) we obtain for
R a rather simple expression:

R(ps) =
3(k2

t /2 − k2
z)

k2

u(k)w(k)
√

2 + 1
2w2(k)

u2(k) + w2(k)
. (7.3)

In nonrelativistic quantum mechanics (ps/m ≪ 1) ps and ks coincide. In this case R has the form

Rnonrel(ps) =
3(p2

t/2 − p2
z)

p2

u(p)w(p)
√

2 + 1
2w2(p)

u2(p) + w2(p)
. (7.4)

Eq. (7.3) with a conventional nuclear core wave function like the Reid soft core predicts a large variation of R(ps)

94 The difference between k and p is due to the fact that in eq. (7.1) the space-time picture characteristic for high-energy processes in
relativistic theory [409, 410] is taken into account.
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FIG. 7.6: Angular dependence of (σ±−σ0)/⟨σ⟩ for the spectator distribution in the reaction e+D⃗ → N+X at different nucleon
momenta. Solid and dashed lines are predictions of relativistic theory and nonrelativistic quantum mechanics, respectively.

FIG. 7.6: (cont.)

for nucleon momenta ps ! 0.1 GeV/c (fig. 7.5a),95 although no significant effect is expected for ps ! 0.4 GeV/c in the
6q model (see the above discussion in section 7 7.1). The use of different realistic potentials with nuclear core leads
to quite similar expressions for R(ps), probably because in this framework the relationship between the phase shifts

95 Indeed, the qualitative picture of the ps dependence of R at not too large nucleon momenta within the deuteron (k/m ≪ 1) is quite
simple. It is well known that in corrdinate space, due to the presence of the D-wave, the charge distribution in the deuteron with spin
pointing in the direction of the 3-axis is “cigar-shaped”. Evidently due to the properties of the Fourier transform in momentum space
the deuteron with helicity ±1 has the form of a ball flattened in the direction of the 3-axis. As a result the yield of the backward
spectators is minimal for deuteron helicity ±1.
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FIG. 7.6: (cont.)

and the corresponding wave functions is rather rigid. However, once this relationship is changed, e.g., by introducing
the transitions of two nucleons into a quark compound bag (QCB), the prediction for R(ps) changes significantly at
ps > 0.3 GeV/c, see, e.g., fig. 7.5b.96

It is worthwhile to emphasize that eqs. (7.3) and (7.4) predict a different momentum dependence at fixed angle
and at fixed nucleon momentum (fig. 7.6), It can be seen from fig. 7.6 that the calculation based on eq. (7.4) leads
to R ∼ ( 1

2 cos2 θ − sin2 θ), although a rather complicated angular dependence follows from eq. (7.3) (θ is the angle
between ps and the 3-axis). To our knowledge the discussed angular dependence of R(ps) is the clearest relativistic
effect suggested so far in the literature. Actually this is the only effect where the relativistic relation between k and
ps becomes important at momenta as low as 0.3 GeV/c.

Equation (7.3) predicts Q2 independence of R(ps). Besides, the same R(ps) is expected for different final states
like Nsp + N, Nsp + ∆, Nsp + N∗, . . .. Such a universality of R(ps) at fixed ps is a general feature of the two-
nucleon approximation (valid in all approaches, nonrelativistic, covariant, and light-cone). Thus, the independence
of w(k)/u(k) extracted from different measurements for the same spectator momentum would provide an important
check of the extraction procedure and of the role of the final state interaction.

At the same time one can expect that at large spectator momenta R(ps) would depend on Q2 in the transitional Q2

range 2− 4 GeV2, where scattering off the compressed nucleon configuration becomes important. This is because the
deformation of the bound nucleon wave function should be somewhat different for S- and D-waves due to the different
relative roles of the one- and two-pion exchange potentials. Indeed, the contribution of the two-pion exchange potential,
which leads to a larger deformation of the bound nucleon wave function (cf. the discussion in section 2 2.5 2.5.2), is
more important for the S-wave.

In the impulse approximation eq. (7.1) is also valid for the deep inelastic reaction e+D → e+p+X. The final state
interaction between the struck nucleon and the spectator is a correction because a large amount of energy (∼ 1 GeV)
is transferred to the interacting nucleon in an average process. Moreover, the contribution to the nucleon yield due to
the production of nucleons in γ∗N interaction (the direct mechanism) constitutes a small correction to the production
of spectator nucleons in a wide kinematical region, α = (

√
m2 + p2

s − ps3)/m > 1 − x. This region includes (for
sufficiently large x) emission of spectators in the forward direction.

Equation (7.1) may be modified due to suppression of the spectator nucleon yield (with α > 1 − x) as a result
of the final state interaction between hadrons produced in ℓN interaction and would-be spectators. However, the
suppression of the nucleon yield in different spin states should be rather close, at least at small pt, because secondary
hadron rescatterings mostly suppress the contribution of configurations in the deuteron wave function where p, n are

96 We are indebted to I. M. Narodetski for supplying numerical results for the QCB deuteron wave functions [405].
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